/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ // This is a GPU-backend specific test. #include "include/core/SkTypes.h" #include "include/private/SkChecksum.h" #include "include/utils/SkRandom.h" #include "src/gpu/GrAutoLocaleSetter.h" #include "src/gpu/GrContextPriv.h" #include "src/gpu/GrDrawOpTest.h" #include "src/gpu/GrDrawingManager.h" #include "src/gpu/GrPipeline.h" #include "src/gpu/GrRenderTargetContextPriv.h" #include "src/gpu/GrXferProcessor.h" #include "src/gpu/effects/GrPorterDuffXferProcessor.h" #include "src/gpu/effects/GrXfermodeFragmentProcessor.h" #include "src/gpu/effects/generated/GrConfigConversionEffect.h" #include "src/gpu/glsl/GrGLSLFragmentProcessor.h" #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h" #include "src/gpu/glsl/GrGLSLProgramBuilder.h" #include "src/gpu/ops/GrDrawOp.h" #include "tests/Test.h" #include "tools/gpu/GrContextFactory.h" #ifdef SK_GL #include "src/gpu/gl/GrGLGpu.h" #endif /* * A dummy processor which just tries to insert a massive key and verify that it can retrieve the * whole thing correctly */ static const uint32_t kMaxKeySize = 1024; class GLBigKeyProcessor : public GrGLSLFragmentProcessor { public: void emitCode(EmitArgs& args) override { // pass through GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder; if (args.fInputColor) { fragBuilder->codeAppendf("%s = %s;\n", args.fOutputColor, args.fInputColor); } else { fragBuilder->codeAppendf("%s = vec4(1.0);\n", args.fOutputColor); } } static void GenKey(const GrProcessor&, const GrShaderCaps&, GrProcessorKeyBuilder* b) { for (uint32_t i = 0; i < kMaxKeySize; i++) { b->add32(i); } } private: typedef GrGLSLFragmentProcessor INHERITED; }; class BigKeyProcessor : public GrFragmentProcessor { public: static std::unique_ptr Make() { return std::unique_ptr(new BigKeyProcessor); } const char* name() const override { return "Big Ole Key"; } GrGLSLFragmentProcessor* onCreateGLSLInstance() const override { return new GLBigKeyProcessor; } std::unique_ptr clone() const override { return Make(); } private: BigKeyProcessor() : INHERITED(kBigKeyProcessor_ClassID, kNone_OptimizationFlags) { } virtual void onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override { GLBigKeyProcessor::GenKey(*this, caps, b); } bool onIsEqual(const GrFragmentProcessor&) const override { return true; } GR_DECLARE_FRAGMENT_PROCESSOR_TEST typedef GrFragmentProcessor INHERITED; }; GR_DEFINE_FRAGMENT_PROCESSOR_TEST(BigKeyProcessor); #if GR_TEST_UTILS std::unique_ptr BigKeyProcessor::TestCreate(GrProcessorTestData*) { return BigKeyProcessor::Make(); } #endif ////////////////////////////////////////////////////////////////////////////// class BlockInputFragmentProcessor : public GrFragmentProcessor { public: static std::unique_ptr Make(std::unique_ptr fp) { return std::unique_ptr(new BlockInputFragmentProcessor(std::move(fp))); } const char* name() const override { return "Block Input"; } GrGLSLFragmentProcessor* onCreateGLSLInstance() const override { return new GLFP; } std::unique_ptr clone() const override { return Make(this->childProcessor(0).clone()); } private: class GLFP : public GrGLSLFragmentProcessor { public: void emitCode(EmitArgs& args) override { SkString temp = this->invokeChild(0, args); args.fFragBuilder->codeAppendf("%s = %s;", args.fOutputColor, temp.c_str()); } private: typedef GrGLSLFragmentProcessor INHERITED; }; BlockInputFragmentProcessor(std::unique_ptr child) : INHERITED(kBlockInputFragmentProcessor_ClassID, kNone_OptimizationFlags) { this->registerChildProcessor(std::move(child)); } void onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override {} bool onIsEqual(const GrFragmentProcessor&) const override { return true; } typedef GrFragmentProcessor INHERITED; }; ////////////////////////////////////////////////////////////////////////////// /* * Begin test code */ static const int kRenderTargetHeight = 1; static const int kRenderTargetWidth = 1; static std::unique_ptr random_render_target_context(GrContext* context, SkRandom* random, const GrCaps* caps) { GrSurfaceOrigin origin = random->nextBool() ? kTopLeft_GrSurfaceOrigin : kBottomLeft_GrSurfaceOrigin; GrColorType ct = GrColorType::kRGBA_8888; const GrBackendFormat format = caps->getDefaultBackendFormat(ct, GrRenderable::kYes); int sampleCnt = random->nextBool() ? caps->getRenderTargetSampleCount(2, format) : 1; // Above could be 0 if msaa isn't supported. sampleCnt = std::max(1, sampleCnt); return GrRenderTargetContext::Make( context, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kExact, {kRenderTargetWidth, kRenderTargetHeight}, sampleCnt, GrMipMapped::kNo, GrProtected::kNo, origin); } #if GR_TEST_UTILS static void set_random_xpf(GrPaint* paint, GrProcessorTestData* d) { paint->setXPFactory(GrXPFactoryTestFactory::Get(d)); } static std::unique_ptr create_random_proc_tree(GrProcessorTestData* d, int minLevels, int maxLevels) { SkASSERT(1 <= minLevels); SkASSERT(minLevels <= maxLevels); // Return a leaf node if maxLevels is 1 or if we randomly chose to terminate. // If returning a leaf node, make sure that it doesn't have children (e.g. another // GrComposeEffect) const float terminateProbability = 0.3f; if (1 == minLevels) { bool terminate = (1 == maxLevels) || (d->fRandom->nextF() < terminateProbability); if (terminate) { std::unique_ptr fp; while (true) { fp = GrFragmentProcessorTestFactory::Make(d); if (!fp) { return nullptr; } if (0 == fp->numChildProcessors()) { break; } } return fp; } } // If we didn't terminate, choose either the left or right subtree to fulfill // the minLevels requirement of this tree; the other child can have as few levels as it wants. // Also choose a random xfer mode. if (minLevels > 1) { --minLevels; } auto minLevelsChild = create_random_proc_tree(d, minLevels, maxLevels - 1); std::unique_ptr otherChild(create_random_proc_tree(d, 1, maxLevels - 1)); if (!minLevelsChild || !otherChild) { return nullptr; } SkBlendMode mode = static_cast(d->fRandom->nextRangeU(0, (int)SkBlendMode::kLastMode)); std::unique_ptr fp; if (d->fRandom->nextF() < 0.5f) { fp = GrXfermodeFragmentProcessor::MakeFromTwoProcessors(std::move(minLevelsChild), std::move(otherChild), mode); SkASSERT(fp); } else { fp = GrXfermodeFragmentProcessor::MakeFromTwoProcessors(std::move(otherChild), std::move(minLevelsChild), mode); SkASSERT(fp); } return fp; } static void set_random_color_coverage_stages(GrPaint* paint, GrProcessorTestData* d, int maxStages, int maxTreeLevels) { // Randomly choose to either create a linear pipeline of procs or create one proc tree const float procTreeProbability = 0.5f; if (d->fRandom->nextF() < procTreeProbability) { std::unique_ptr fp(create_random_proc_tree(d, 2, maxTreeLevels)); if (fp) { paint->addColorFragmentProcessor(std::move(fp)); } } else { int numProcs = d->fRandom->nextULessThan(maxStages + 1); int numColorProcs = d->fRandom->nextULessThan(numProcs + 1); for (int s = 0; s < numProcs; ++s) { std::unique_ptr fp(GrFragmentProcessorTestFactory::Make(d)); if (!fp) { continue; } // finally add the stage to the correct pipeline in the drawstate if (s < numColorProcs) { paint->addColorFragmentProcessor(std::move(fp)); } else { paint->addCoverageFragmentProcessor(std::move(fp)); } } } } #endif #if !GR_TEST_UTILS bool GrDrawingManager::ProgramUnitTest(GrContext*, int) { return true; } #else bool GrDrawingManager::ProgramUnitTest(GrContext* context, int maxStages, int maxLevels) { GrDrawingManager* drawingManager = context->priv().drawingManager(); GrProxyProvider* proxyProvider = context->priv().proxyProvider(); GrProcessorTestData::ViewInfo views[2]; // setup dummy textures GrMipMapped mipMapped = GrMipMapped(context->priv().caps()->mipMapSupport()); { static constexpr SkISize kDummyDims = {34, 18}; const GrBackendFormat format = context->priv().caps()->getDefaultBackendFormat(GrColorType::kRGBA_8888, GrRenderable::kYes); auto proxy = proxyProvider->createProxy(format, kDummyDims, GrRenderable::kYes, 1, mipMapped, SkBackingFit::kExact, SkBudgeted::kNo, GrProtected::kNo, GrInternalSurfaceFlags::kNone); GrSwizzle swizzle = context->priv().caps()->getReadSwizzle(format, GrColorType::kRGBA_8888); views[0] = {{std::move(proxy), kBottomLeft_GrSurfaceOrigin, swizzle}, GrColorType::kRGBA_8888, kPremul_SkAlphaType}; } { static constexpr SkISize kDummyDims = {16, 22}; const GrBackendFormat format = context->priv().caps()->getDefaultBackendFormat(GrColorType::kAlpha_8, GrRenderable::kNo); auto proxy = proxyProvider->createProxy(format, kDummyDims, GrRenderable::kNo, 1, mipMapped, SkBackingFit::kExact, SkBudgeted::kNo, GrProtected::kNo, GrInternalSurfaceFlags::kNone); GrSwizzle swizzle = context->priv().caps()->getReadSwizzle(format, GrColorType::kAlpha_8); views[1] = {{std::move(proxy), kTopLeft_GrSurfaceOrigin, swizzle}, GrColorType::kAlpha_8, kPremul_SkAlphaType}; } if (!std::get<0>(views[0]) || !std::get<0>(views[1])) { SkDebugf("Could not allocate dummy textures"); return false; } SkRandom random; static const int NUM_TESTS = 1024; for (int t = 0; t < NUM_TESTS; t++) { // setup random render target(can fail) auto renderTargetContext = random_render_target_context(context, &random, context->priv().caps()); if (!renderTargetContext) { SkDebugf("Could not allocate renderTargetContext"); return false; } GrPaint paint; GrProcessorTestData ptd(&random, context, 2, views); set_random_color_coverage_stages(&paint, &ptd, maxStages, maxLevels); set_random_xpf(&paint, &ptd); GrDrawRandomOp(&random, renderTargetContext.get(), std::move(paint)); } // Flush everything, test passes if flush is successful(ie, no asserts are hit, no crashes) drawingManager->flush(nullptr, 0, SkSurface::BackendSurfaceAccess::kNoAccess, GrFlushInfo(), GrPrepareForExternalIORequests()); // Validate that GrFPs work correctly without an input. auto renderTargetContext = GrRenderTargetContext::Make( context, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kExact, {kRenderTargetWidth, kRenderTargetHeight}); if (!renderTargetContext) { SkDebugf("Could not allocate a renderTargetContext"); return false; } int fpFactoryCnt = GrFragmentProcessorTestFactory::Count(); for (int i = 0; i < fpFactoryCnt; ++i) { // Since FP factories internally randomize, call each 10 times. for (int j = 0; j < 10; ++j) { GrProcessorTestData ptd(&random, context, 2, views); GrPaint paint; paint.setXPFactory(GrPorterDuffXPFactory::Get(SkBlendMode::kSrc)); auto fp = GrFragmentProcessorTestFactory::MakeIdx(i, &ptd); auto blockFP = BlockInputFragmentProcessor::Make(std::move(fp)); paint.addColorFragmentProcessor(std::move(blockFP)); GrDrawRandomOp(&random, renderTargetContext.get(), std::move(paint)); drawingManager->flush(nullptr, 0, SkSurface::BackendSurfaceAccess::kNoAccess, GrFlushInfo(), GrPrepareForExternalIORequests()); } } return true; } #endif static int get_programs_max_stages(const sk_gpu_test::ContextInfo& ctxInfo) { int maxStages = 6; #ifdef SK_GL GrContext* context = ctxInfo.grContext(); if (skiatest::IsGLContextType(ctxInfo.type())) { GrGLGpu* gpu = static_cast(context->priv().getGpu()); if (kGLES_GrGLStandard == gpu->glStandard()) { // We've had issues with driver crashes and HW limits being exceeded with many effects on // Android devices. We have passes on ARM devices with the default number of stages. // TODO When we run ES 3.00 GLSL in more places, test again #ifdef SK_BUILD_FOR_ANDROID if (kARM_GrGLVendor != gpu->ctxInfo().vendor()) { maxStages = 1; } #endif // On iOS we can exceed the maximum number of varyings. http://skbug.com/6627. #ifdef SK_BUILD_FOR_IOS maxStages = 3; #endif } if (ctxInfo.type() == sk_gpu_test::GrContextFactory::kANGLE_D3D9_ES2_ContextType || ctxInfo.type() == sk_gpu_test::GrContextFactory::kANGLE_D3D11_ES2_ContextType) { // On Angle D3D we will hit a limit of out variables if we use too many stages. maxStages = 3; } } #endif return maxStages; } static int get_programs_max_levels(const sk_gpu_test::ContextInfo& ctxInfo) { // A full tree with 5 levels (31 nodes) may cause a program that exceeds shader limits // (e.g. uniform or varying limits); maxTreeLevels should be a number from 1 to 4 inclusive. int maxTreeLevels = 4; if (skiatest::IsGLContextType(ctxInfo.type())) { // On iOS we can exceed the maximum number of varyings. http://skbug.com/6627. #ifdef SK_BUILD_FOR_IOS maxTreeLevels = 2; #endif #ifdef SK_BUILD_FOR_ANDROID GrGLGpu* gpu = static_cast(ctxInfo.grContext()->priv().getGpu()); // Tecno Spark 3 Pro with Power VR Rogue GE8300 will fail shader compiles with // no message if the shader is particularly long. if (gpu->ctxInfo().vendor() == kImagination_GrGLVendor) { maxTreeLevels = 3; } #endif if (ctxInfo.type() == sk_gpu_test::GrContextFactory::kANGLE_D3D9_ES2_ContextType || ctxInfo.type() == sk_gpu_test::GrContextFactory::kANGLE_D3D11_ES2_ContextType) { // On Angle D3D we will hit a limit of out variables if we use too many stages. maxTreeLevels = 2; } } return maxTreeLevels; } static void test_programs(skiatest::Reporter* reporter, const sk_gpu_test::ContextInfo& ctxInfo) { int maxStages = get_programs_max_stages(ctxInfo); if (maxStages == 0) { return; } int maxLevels = get_programs_max_levels(ctxInfo); if (maxLevels == 0) { return; } REPORTER_ASSERT(reporter, GrDrawingManager::ProgramUnitTest(ctxInfo.grContext(), maxStages, maxLevels)); } DEF_GPUTEST(Programs, reporter, options) { // Set a locale that would cause shader compilation to fail because of , as decimal separator. // skbug 3330 #ifdef SK_BUILD_FOR_WIN GrAutoLocaleSetter als("sv-SE"); #else GrAutoLocaleSetter als("sv_SE.UTF-8"); #endif // We suppress prints to avoid spew GrContextOptions opts = options; opts.fSuppressPrints = true; sk_gpu_test::GrContextFactory debugFactory(opts); skiatest::RunWithGPUTestContexts(test_programs, &skiatest::IsRenderingGLOrMetalContextType, reporter, opts); }