/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkRefCnt.h" #include "include/core/SkSpan.h" #include "include/utils/SkRandom.h" #include "src/core/SkEnumerate.h" #include "src/core/SkTSearch.h" #include "src/core/SkTSort.h" #include "src/core/SkZip.h" #include "tests/Test.h" #include #include #include #include class RefClass : public SkRefCnt { public: RefClass(int n) : fN(n) {} int get() const { return fN; } private: int fN; using INHERITED = SkRefCnt; }; static void test_autounref(skiatest::Reporter* reporter) { RefClass obj(0); REPORTER_ASSERT(reporter, obj.unique()); sk_sp tmp(&obj); REPORTER_ASSERT(reporter, &obj == tmp.get()); REPORTER_ASSERT(reporter, obj.unique()); REPORTER_ASSERT(reporter, &obj == tmp.release()); REPORTER_ASSERT(reporter, obj.unique()); REPORTER_ASSERT(reporter, nullptr == tmp.release()); REPORTER_ASSERT(reporter, nullptr == tmp.get()); obj.ref(); REPORTER_ASSERT(reporter, !obj.unique()); { sk_sp tmp2(&obj); } REPORTER_ASSERT(reporter, obj.unique()); } static void test_autostarray(skiatest::Reporter* reporter) { RefClass obj0(0); RefClass obj1(1); REPORTER_ASSERT(reporter, obj0.unique()); REPORTER_ASSERT(reporter, obj1.unique()); { SkAutoSTArray<2, sk_sp > tmp; REPORTER_ASSERT(reporter, 0 == tmp.count()); tmp.reset(0); // test out reset(0) when already at 0 tmp.reset(4); // this should force a new allocation REPORTER_ASSERT(reporter, 4 == tmp.count()); tmp[0].reset(SkRef(&obj0)); tmp[1].reset(SkRef(&obj1)); REPORTER_ASSERT(reporter, !obj0.unique()); REPORTER_ASSERT(reporter, !obj1.unique()); // test out reset with data in the array (and a new allocation) tmp.reset(0); REPORTER_ASSERT(reporter, 0 == tmp.count()); REPORTER_ASSERT(reporter, obj0.unique()); REPORTER_ASSERT(reporter, obj1.unique()); tmp.reset(2); // this should use the preexisting allocation REPORTER_ASSERT(reporter, 2 == tmp.count()); tmp[0].reset(SkRef(&obj0)); tmp[1].reset(SkRef(&obj1)); } // test out destructor with data in the array (and using existing allocation) REPORTER_ASSERT(reporter, obj0.unique()); REPORTER_ASSERT(reporter, obj1.unique()); { // test out allocating ctor (this should allocate new memory) SkAutoSTArray<2, sk_sp > tmp(4); REPORTER_ASSERT(reporter, 4 == tmp.count()); tmp[0].reset(SkRef(&obj0)); tmp[1].reset(SkRef(&obj1)); REPORTER_ASSERT(reporter, !obj0.unique()); REPORTER_ASSERT(reporter, !obj1.unique()); // Test out resut with data in the array and malloced storage tmp.reset(0); REPORTER_ASSERT(reporter, obj0.unique()); REPORTER_ASSERT(reporter, obj1.unique()); tmp.reset(2); // this should use the preexisting storage tmp[0].reset(SkRef(&obj0)); tmp[1].reset(SkRef(&obj1)); REPORTER_ASSERT(reporter, !obj0.unique()); REPORTER_ASSERT(reporter, !obj1.unique()); tmp.reset(4); // this should force a new malloc REPORTER_ASSERT(reporter, obj0.unique()); REPORTER_ASSERT(reporter, obj1.unique()); tmp[0].reset(SkRef(&obj0)); tmp[1].reset(SkRef(&obj1)); REPORTER_ASSERT(reporter, !obj0.unique()); REPORTER_ASSERT(reporter, !obj1.unique()); } REPORTER_ASSERT(reporter, obj0.unique()); REPORTER_ASSERT(reporter, obj1.unique()); } ///////////////////////////////////////////////////////////////////////////// #define kSEARCH_COUNT 91 static void test_search(skiatest::Reporter* reporter) { int i, array[kSEARCH_COUNT]; SkRandom rand; for (i = 0; i < kSEARCH_COUNT; i++) { array[i] = rand.nextS(); } SkTHeapSort(array, kSEARCH_COUNT); // make sure we got sorted properly for (i = 1; i < kSEARCH_COUNT; i++) { REPORTER_ASSERT(reporter, array[i-1] <= array[i]); } // make sure we can find all of our values for (i = 0; i < kSEARCH_COUNT; i++) { int index = SkTSearch(array, kSEARCH_COUNT, array[i], sizeof(int)); REPORTER_ASSERT(reporter, index == i); } // make sure that random values are either found, or the correct // insertion index is returned for (i = 0; i < 10000; i++) { int value = rand.nextS(); int index = SkTSearch(array, kSEARCH_COUNT, value, sizeof(int)); if (index >= 0) { REPORTER_ASSERT(reporter, index < kSEARCH_COUNT && array[index] == value); } else { index = ~index; REPORTER_ASSERT(reporter, index <= kSEARCH_COUNT); if (index < kSEARCH_COUNT) { REPORTER_ASSERT(reporter, value < array[index]); if (index > 0) { REPORTER_ASSERT(reporter, value > array[index - 1]); } } else { // we should append the new value REPORTER_ASSERT(reporter, value > array[kSEARCH_COUNT - 1]); } } } } DEF_TEST(Utils, reporter) { test_search(reporter); test_autounref(reporter); test_autostarray(reporter); } DEF_TEST(SkEnumerate, reporter) { int A[] = {1, 2, 3, 4}; auto enumeration = SkMakeEnumerate(A); size_t check = 0; for (auto [i, v] : enumeration) { REPORTER_ASSERT(reporter, i == check); REPORTER_ASSERT(reporter, v == (int)check+1); check++; } check = 0; for (auto [i, v] : SkMakeEnumerate(A)) { REPORTER_ASSERT(reporter, i == check); REPORTER_ASSERT(reporter, v == (int)check+1); check++; } check = 0; std::vector vec = {1, 2, 3, 4}; for (auto [i, v] : SkMakeEnumerate(vec)) { REPORTER_ASSERT(reporter, i == check); REPORTER_ASSERT(reporter, v == (int)check+1); check++; } REPORTER_ASSERT(reporter, check == 4); check = 0; for (auto [i, v] : SkMakeEnumerate(SkSpan(vec))) { REPORTER_ASSERT(reporter, i == check); REPORTER_ASSERT(reporter, v == (int)check+1); check++; } { auto e = SkMakeEnumerate(SkSpan(vec)).first(2); for (auto[i, v] : e) { REPORTER_ASSERT(reporter, v == (int) i + 1); } REPORTER_ASSERT(reporter, e.size() == 2); } { auto e = SkMakeEnumerate(SkSpan(vec)).last(2); for (auto[i, v] : e) { REPORTER_ASSERT(reporter, v == (int) i + 1); } REPORTER_ASSERT(reporter, e.size() == 2); } { auto e = SkMakeEnumerate(SkSpan(vec)).subspan(1, 2); for (auto[i, v] : e) { REPORTER_ASSERT(reporter, v == (int) i + 1); } REPORTER_ASSERT(reporter, e.size() == 2); } { struct I { I() = default; I(const I&) = default; I(int v) : i{v} { } ~I() {} int i; }; I is[10]; auto s = SkSpan(is); for (auto [i, v] : SkMakeEnumerate(s)) { new (&v) I(i); } for (size_t i = 0; i < s.size(); i++) { REPORTER_ASSERT(reporter, s[i].i == (int)i); REPORTER_ASSERT(reporter, is[i].i == (int)i); } } { std::unique_ptr is[10]; std::unique_ptr os[10]; auto s = SkSpan(is); for (auto [i, v] : SkMakeEnumerate(s)) { v = std::make_unique(i); } for (auto [i, v] : SkMakeEnumerate(SkSpan(os))) { v = std::move(s[i]); } for (size_t i = 0; i < s.size(); i++) { REPORTER_ASSERT(reporter, *os[i] == (int)i); REPORTER_ASSERT(reporter, is[i] == nullptr); } } { std::unique_ptr is[10]; std::unique_ptr os[10]; auto s = SkSpan(is); for (auto [i, v] : SkMakeEnumerate(s)) { v = std::make_unique(i); } for (auto [i, ov, iv] : SkMakeEnumerate(SkMakeZip(os, is))) { ov = std::move(iv); } for (size_t i = 0; i < s.size(); i++) { REPORTER_ASSERT(reporter, *os[i] == (int)i); REPORTER_ASSERT(reporter, is[i] == nullptr); } } } DEF_TEST(SkZip, reporter) { uint16_t A[] = {1, 2, 3, 4}; const float B[] = {10.f, 20.f, 30.f, 40.f}; std::vector C = {{20, 30, 40, 50}}; std::array D = {{100, 200, 300, 400}}; SkSpan S = SkSpan(C); // Check SkZip calls SkZip z{4, &A[0], &B[0], C.data(), D.data(), S.data()}; REPORTER_ASSERT(reporter, z.size() == 4); REPORTER_ASSERT(reporter, !z.empty()); { // Check front auto t = z.front(); REPORTER_ASSERT(reporter, std::get<0>(t) == 1); REPORTER_ASSERT(reporter, std::get<1>(t) == 10.f); REPORTER_ASSERT(reporter, std::get<2>(t) == 20); REPORTER_ASSERT(reporter, std::get<3>(t) == 100); REPORTER_ASSERT(reporter, std::get<4>(t) == 20); } { // Check back auto t = z.back(); REPORTER_ASSERT(reporter, std::get<0>(t) == 4); REPORTER_ASSERT(reporter, std::get<1>(t) == 40.f); } { // Check ranged-for int i = 0; for (auto [a, b, c, d, s] : z) { REPORTER_ASSERT(reporter, a == A[i]); REPORTER_ASSERT(reporter, b == B[i]); REPORTER_ASSERT(reporter, c == C[i]); REPORTER_ASSERT(reporter, d == D[i]); REPORTER_ASSERT(reporter, s == S[i]); i++; } REPORTER_ASSERT(reporter, i = 4); } { // Check first(n) int i = 0; for (auto [a, b, c, d, s] : z.first(2)) { REPORTER_ASSERT(reporter, a == A[i]); REPORTER_ASSERT(reporter, b == B[i]); REPORTER_ASSERT(reporter, c == C[i]); REPORTER_ASSERT(reporter, d == D[i]); REPORTER_ASSERT(reporter, s == S[i]); i++; } REPORTER_ASSERT(reporter, i = 2); } { // Check last(n) int i = 0; for (auto t : z.last(2)) { uint16_t a; float b; int c; int d; int s; std::tie(a, b, c, d, s) = t; REPORTER_ASSERT(reporter, a == A[i + 2]); REPORTER_ASSERT(reporter, b == B[i + 2]); REPORTER_ASSERT(reporter, c == C[i + 2]); REPORTER_ASSERT(reporter, d == D[i + 2]); REPORTER_ASSERT(reporter, s == S[i + 2]); i++; } REPORTER_ASSERT(reporter, i = 2); } { // Check subspan(offset, count) int i = 0; for (auto t : z.subspan(1, 2)) { uint16_t a; float b; int c; int d; int s; std::tie(a, b, c, d, s) = t; REPORTER_ASSERT(reporter, a == A[i + 1]); REPORTER_ASSERT(reporter, b == B[i + 1]); REPORTER_ASSERT(reporter, c == C[i + 1]); REPORTER_ASSERT(reporter, d == D[i + 1]); REPORTER_ASSERT(reporter, s == S[i + 1]); i++; } REPORTER_ASSERT(reporter, i = 2); } { // Check copy. auto zz{z}; int i = 0; for (auto [a, b, c, d, s] : zz) { REPORTER_ASSERT(reporter, a == A[i]); REPORTER_ASSERT(reporter, b == B[i]); REPORTER_ASSERT(reporter, c == C[i]); REPORTER_ASSERT(reporter, d == D[i]); REPORTER_ASSERT(reporter, s == S[i]); i++; } REPORTER_ASSERT(reporter, i = 4); } { // Check const restricting copy SkZip cz = z; int i = 0; for (auto [a, b, c, d, s] : cz) { REPORTER_ASSERT(reporter, a == A[i]); REPORTER_ASSERT(reporter, b == B[i]); REPORTER_ASSERT(reporter, c == C[i]); REPORTER_ASSERT(reporter, d == D[i]); REPORTER_ASSERT(reporter, s == S[i]); i++; } REPORTER_ASSERT(reporter, i = 4); } { // Check data() returns all the original pointers auto ptrs = z.data(); REPORTER_ASSERT(reporter, ptrs == std::make_tuple(&A[0], &B[0], C.data(), D.data(), S.data())); } { // Check index getter auto span = z.get<1>(); REPORTER_ASSERT(reporter, span[1] == 20.f); } // The following mutates the data. { // Check indexing auto [a, b, c, d, e] = z[1]; REPORTER_ASSERT(reporter, a == 2); REPORTER_ASSERT(reporter, b == 20.f); REPORTER_ASSERT(reporter, c == 30); REPORTER_ASSERT(reporter, d == 200); REPORTER_ASSERT(reporter, e == 30); // Check correct refs returned. REPORTER_ASSERT(reporter, &a == &A[1]); REPORTER_ASSERT(reporter, &b == &B[1]); REPORTER_ASSERT(reporter, &c == &C[1]); REPORTER_ASSERT(reporter, &d == &D[1]); REPORTER_ASSERT(reporter, &e == &S[1]); // Check assignment a = 20; // std::get<1>(t) = 300.f; // is const c = 300; d = 2000; e = 300; auto t1 = z[1]; REPORTER_ASSERT(reporter, std::get<0>(t1) == 20); REPORTER_ASSERT(reporter, std::get<1>(t1) == 20.f); REPORTER_ASSERT(reporter, std::get<2>(t1) == 300); REPORTER_ASSERT(reporter, std::get<3>(t1) == 2000); REPORTER_ASSERT(reporter, std::get<4>(t1) == 300); } } DEF_TEST(SkMakeZip, reporter) { uint16_t A[] = {1, 2, 3, 4}; const float B[] = {10.f, 20.f, 30.f, 40.f}; const std::vector C = {{20, 30, 40, 50}}; std::array D = {{100, 200, 300, 400}}; SkSpan S = SkSpan(C); uint16_t* P = &A[0]; { // Check make zip auto zz = SkMakeZip(&A[0], B, C, D, S, P); int i = 0; for (auto [a, b, c, d, s, p] : zz) { REPORTER_ASSERT(reporter, a == A[i]); REPORTER_ASSERT(reporter, b == B[i]); REPORTER_ASSERT(reporter, c == C[i]); REPORTER_ASSERT(reporter, d == D[i]); REPORTER_ASSERT(reporter, s == S[i]); REPORTER_ASSERT(reporter, p == P[i]); i++; } REPORTER_ASSERT(reporter, i = 4); } { // Check SkMakeZip in ranged for check OneSize calc of B. int i = 0; for (auto [a, b, c, d, s] : SkMakeZip(&A[0], B, C, D, S)) { REPORTER_ASSERT(reporter, a == A[i]); REPORTER_ASSERT(reporter, b == B[i]); REPORTER_ASSERT(reporter, c == C[i]); REPORTER_ASSERT(reporter, d == D[i]); REPORTER_ASSERT(reporter, s == S[i]); i++; } REPORTER_ASSERT(reporter, i = 4); } { // Check SkMakeZip in ranged for OneSize of C int i = 0; for (auto [a, b, c, d, s] : SkMakeZip(&A[0], &B[0], C, D, S)) { REPORTER_ASSERT(reporter, a == A[i]); REPORTER_ASSERT(reporter, b == B[i]); REPORTER_ASSERT(reporter, c == C[i]); REPORTER_ASSERT(reporter, d == D[i]); REPORTER_ASSERT(reporter, s == S[i]); i++; } REPORTER_ASSERT(reporter, i = 4); } { // Check SkMakeZip in ranged for OneSize for S int i = 0; for (auto [s, a, b, c, d] : SkMakeZip(S, A, B, C, D)) { REPORTER_ASSERT(reporter, a == A[i]); REPORTER_ASSERT(reporter, b == B[i]); REPORTER_ASSERT(reporter, c == C[i]); REPORTER_ASSERT(reporter, d == D[i]); REPORTER_ASSERT(reporter, s == S[i]); i++; } REPORTER_ASSERT(reporter, i = 4); } { // Check SkMakeZip in ranged for int i = 0; for (auto [c, s, a, b, d] : SkMakeZip(C, S, A, B, D)) { REPORTER_ASSERT(reporter, a == A[i]); REPORTER_ASSERT(reporter, b == B[i]); REPORTER_ASSERT(reporter, c == C[i]); REPORTER_ASSERT(reporter, d == D[i]); REPORTER_ASSERT(reporter, s == S[i]); i++; } REPORTER_ASSERT(reporter, i = 4); } { // Check SkEnumerate and SkMakeZip in ranged for auto zz = SkMakeZip(A, B, C, D, S); for (auto [i, a, b, c, d, s] : SkMakeEnumerate(zz)) { REPORTER_ASSERT(reporter, a == A[i]); REPORTER_ASSERT(reporter, b == B[i]); REPORTER_ASSERT(reporter, c == C[i]); REPORTER_ASSERT(reporter, d == D[i]); REPORTER_ASSERT(reporter, s == S[i]); } } { // Check SkEnumerate and SkMakeZip in ranged for const auto& zz = SkMakeZip(A, B, C, D, S); for (auto [i, a, b, c, d, s] : SkMakeEnumerate(zz)) { REPORTER_ASSERT(reporter, a == A[i]); REPORTER_ASSERT(reporter, b == B[i]); REPORTER_ASSERT(reporter, c == C[i]); REPORTER_ASSERT(reporter, d == D[i]); REPORTER_ASSERT(reporter, s == S[i]); } } { // Check SkEnumerate and SkMakeZip in ranged for for (auto [i, a, b, c, d, s] : SkMakeEnumerate(SkMakeZip(A, B, C, D, S))) { REPORTER_ASSERT(reporter, a == A[i]); REPORTER_ASSERT(reporter, b == B[i]); REPORTER_ASSERT(reporter, c == C[i]); REPORTER_ASSERT(reporter, d == D[i]); REPORTER_ASSERT(reporter, s == S[i]); } } { std::vectorv; auto z = SkMakeZip(v); REPORTER_ASSERT(reporter, z.empty()); } { constexpr static uint16_t cA[] = {1, 2, 3, 4}; // Not constexpr in stdc++11 library. //constexpr static std::array cD = {{100, 200, 300, 400}}; constexpr static const uint16_t* cP = &cA[0]; constexpr auto z = SkMakeZip(cA, cP); REPORTER_ASSERT(reporter, !z.empty()); } }