/* * Copyright 2019 Google LLC * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "bench/Benchmark.h" #include "bench/ResultsWriter.h" #include "bench/SkSLBench.h" #include "include/core/SkCanvas.h" #include "src/gpu/ganesh/GrCaps.h" #include "src/gpu/ganesh/GrRecordingContextPriv.h" #include "src/gpu/ganesh/mock/GrMockCaps.h" #include "src/sksl/SkSLCompiler.h" #include "src/sksl/SkSLDSLParser.h" #include "src/sksl/codegen/SkSLVMCodeGenerator.h" #include class SkSLCompilerStartupBench : public Benchmark { protected: const char* onGetName() override { return "sksl_compiler_startup"; } bool isSuitableFor(Backend backend) override { return backend == kNonRendering_Backend; } void onDraw(int loops, SkCanvas*) override { GrShaderCaps caps; for (int i = 0; i < loops; i++) { SkSL::Compiler compiler(&caps); } } }; DEF_BENCH(return new SkSLCompilerStartupBench();) enum class Output { kNone, kGLSL, kMetal, kSPIRV, kSkVM, // raw SkVM bytecode kSkVMOpt, // optimized SkVM bytecode kSkVMJIT, // optimized native assembly code }; class SkSLCompileBench : public Benchmark { public: static const char* output_string(Output output) { switch (output) { case Output::kNone: return ""; case Output::kGLSL: return "glsl_"; case Output::kMetal: return "metal_"; case Output::kSPIRV: return "spirv_"; case Output::kSkVM: return "skvm_"; case Output::kSkVMOpt: return "skvm_opt_"; case Output::kSkVMJIT: return "skvm_jit_"; } SkUNREACHABLE; } SkSLCompileBench(std::string name, const char* src, bool optimize, Output output) : fName(std::string("sksl_") + (optimize ? "" : "unoptimized_") + output_string(output) + name) , fSrc(src) , fCaps(GrContextOptions(), GrMockOptions()) , fCompiler(fCaps.shaderCaps()) , fOutput(output) { fSettings.fOptimize = optimize; // The test programs we compile don't follow Vulkan rules and thus produce invalid // SPIR-V. This is harmless, so long as we don't try to validate them. fSettings.fValidateSPIRV = false; this->fixUpSource(); } protected: const char* onGetName() override { return fName.c_str(); } bool isSuitableFor(Backend backend) override { return backend == kNonRendering_Backend; } bool usesRuntimeShader() const { return fOutput >= Output::kSkVM; } void fixUpSource() { auto fixup = [this](const char* input, const char* replacement) { fSrc = std::regex_replace(fSrc, std::regex(input), replacement); }; // Runtime shaders which have slightly different conventions than fragment shaders. // Perform a handful of fixups to compensate. These are hand-tuned for our current set of // test shaders and will probably need to be updated if we add more. if (this->usesRuntimeShader()) { fixup(R"(void main\(\))", "half4 main(float2 xy)"); fixup(R"(sk_FragColor =)", "return"); fixup(R"(sk_FragCoord)", "_FragCoord"); fixup(R"(out half4 sk_FragColor;)", ""); fixup(R"(uniform sampler2D )", "uniform shader "); fixup(R"((flat |noperspective |)in )", "uniform "); fixup(R"(sample\(([A-Za-z0-9_]+), ([A-Za-z0-9_]+)\))", "$01.eval($02)"); fSrc = "#version 300\nuniform float4 _FragCoord;\n" + fSrc; } } void onDraw(int loops, SkCanvas* canvas) override { const SkSL::ProgramKind kind = this->usesRuntimeShader() ? SkSL::ProgramKind::kRuntimeShader : SkSL::ProgramKind::kFragment; for (int i = 0; i < loops; i++) { std::unique_ptr program = fCompiler.convertProgram(kind, fSrc, fSettings); if (fCompiler.errorCount()) { SK_ABORT("shader compilation failed: %s\n", fCompiler.errorText().c_str()); } std::string result; switch (fOutput) { case Output::kNone: break; case Output::kGLSL: SkAssertResult(fCompiler.toGLSL(*program, &result)); break; case Output::kMetal: SkAssertResult(fCompiler.toMetal(*program, &result)); break; case Output::kSPIRV: SkAssertResult(fCompiler.toSPIRV(*program, &result)); break; case Output::kSkVM: case Output::kSkVMOpt: case Output::kSkVMJIT: SkAssertResult(CompileToSkVM(*program, fOutput)); break; } } } static bool CompileToSkVM(const SkSL::Program& program, Output mode) { const bool optimize = (mode >= Output::kSkVMOpt); const bool allowJIT = (mode >= Output::kSkVMJIT); skvm::Builder builder{skvm::Features{}}; if (!SkSL::testingOnly_ProgramToSkVMShader(program, &builder, /*debugTrace=*/nullptr)) { return false; } if (optimize) { builder.done("SkSLBench", allowJIT); } return true; } private: std::string fName; std::string fSrc; GrMockCaps fCaps; SkSL::Compiler fCompiler; SkSL::Program::Settings fSettings; Output fOutput; using INHERITED = Benchmark; }; /////////////////////////////////////////////////////////////////////////////// #define COMPILER_BENCH(name, text) \ static constexpr char name ## _SRC[] = text; \ DEF_BENCH(return new SkSLCompileBench(#name, name ## _SRC, /*optimize=*/false, Output::kNone);) \ DEF_BENCH(return new SkSLCompileBench(#name, name ## _SRC, /*optimize=*/true, Output::kNone);) \ DEF_BENCH(return new SkSLCompileBench(#name, name ## _SRC, /*optimize=*/true, Output::kGLSL);) \ DEF_BENCH(return new SkSLCompileBench(#name, name ## _SRC, /*optimize=*/true, Output::kMetal);) \ DEF_BENCH(return new SkSLCompileBench(#name, name ## _SRC, /*optimize=*/true, Output::kSPIRV);) \ DEF_BENCH(return new SkSLCompileBench(#name, name ## _SRC, /*optimize=*/true, Output::kSkVM);) \ DEF_BENCH(return new SkSLCompileBench(#name, name ## _SRC, /*optimize=*/true, Output::kSkVMOpt);) \ DEF_BENCH(return new SkSLCompileBench(#name, name ## _SRC, /*optimize=*/true, Output::kSkVMJIT);) // This fragment shader is from the third tile on the top row of GM_gradients_2pt_conical_outside. // To get an ES2 compatible shader, nonconstantArrayIndexSupport in GrShaderCaps is forced off. COMPILER_BENCH(large, R"( uniform float3x3 umatrix_S1_c0; uniform half4 uthresholds1_7_S1_c1_c0_c0; uniform half4 uthresholds9_13_S1_c1_c0_c0; uniform float4 uscale_S1_c1_c0_c0[4]; uniform float4 ubias_S1_c1_c0_c0[4]; uniform half uinvR1_S1_c1_c0_c1_c0; uniform half ufx_S1_c1_c0_c1_c0; uniform float3x3 umatrix_S1_c1_c0_c1; uniform half4 uleftBorderColor_S1_c1_c0; uniform half4 urightBorderColor_S1_c1_c0; uniform half urange_S1; uniform sampler2D uTextureSampler_0_S1; flat in half4 vcolor_S0; noperspective in float2 vTransformedCoords_8_S0; out half4 sk_FragColor; half4 TextureEffect_S1_c0_c0(half4 _input, float2 _coords) { return sample(uTextureSampler_0_S1, _coords).000r; } half4 MatrixEffect_S1_c0(half4 _input, float2 _coords) { return TextureEffect_S1_c0_c0(_input, float3x2(umatrix_S1_c0) * _coords.xy1); } half4 UnrolledBinaryColorizer_S1_c1_c0_c0(half4 _input, float2 _coords) { half4 _tmp_0_inColor = _input; float2 _tmp_1_coords = _coords; half t = half(_tmp_1_coords.x); float4 s; float4 b; { if (t < uthresholds1_7_S1_c1_c0_c0.y) { if (t < uthresholds1_7_S1_c1_c0_c0.x) { s = uscale_S1_c1_c0_c0[0]; b = ubias_S1_c1_c0_c0[0]; } else { s = uscale_S1_c1_c0_c0[1]; b = ubias_S1_c1_c0_c0[1]; } } else { if (t < uthresholds1_7_S1_c1_c0_c0.z) { s = uscale_S1_c1_c0_c0[2]; b = ubias_S1_c1_c0_c0[2]; } else { s = uscale_S1_c1_c0_c0[3]; b = ubias_S1_c1_c0_c0[3]; } } } return half4(half4(float(t) * s + b)); } half4 TwoPointConicalFocalLayout_S1_c1_c0_c1_c0(half4 _input) { half4 _tmp_2_inColor = _input; float2 _tmp_3_coords = vTransformedCoords_8_S0; float t = -1.0; half v = 1.0; float x_t = -1.0; if (bool(int(0))) { x_t = dot(_tmp_3_coords, _tmp_3_coords) / _tmp_3_coords.x; } else if (bool(int(0))) { x_t = length(_tmp_3_coords) - _tmp_3_coords.x * float(uinvR1_S1_c1_c0_c1_c0); } else { float temp = _tmp_3_coords.x * _tmp_3_coords.x - _tmp_3_coords.y * _tmp_3_coords.y; if (temp >= 0.0) { if (bool(int(0)) || !bool(int(1))) { x_t = -sqrt(temp) - _tmp_3_coords.x * float(uinvR1_S1_c1_c0_c1_c0); } else { x_t = sqrt(temp) - _tmp_3_coords.x * float(uinvR1_S1_c1_c0_c1_c0); } } } if (!bool(int(0))) { if (x_t <= 0.0) { v = -1.0; } } if (bool(int(1))) { if (bool(int(0))) { t = x_t; } else { t = x_t + float(ufx_S1_c1_c0_c1_c0); } } else { if (bool(int(0))) { t = -x_t; } else { t = -x_t + float(ufx_S1_c1_c0_c1_c0); } } if (bool(int(0))) { t = 1.0 - t; } return half4(half4(half(t), v, 0.0, 0.0)); } half4 MatrixEffect_S1_c1_c0_c1(half4 _input) { return TwoPointConicalFocalLayout_S1_c1_c0_c1_c0(_input); } half4 ClampedGradient_S1_c1_c0(half4 _input) { half4 _tmp_4_inColor = _input; half4 t = MatrixEffect_S1_c1_c0_c1(_tmp_4_inColor); half4 outColor; if (!bool(int(0)) && t.y < 0.0) { outColor = half4(0.0); } else if (t.x < 0.0) { outColor = uleftBorderColor_S1_c1_c0; } else if (t.x > 1.0) { outColor = urightBorderColor_S1_c1_c0; } else { outColor = UnrolledBinaryColorizer_S1_c1_c0_c0(_tmp_4_inColor, float2(half2(t.x, 0.0))); } if (bool(int(0))) { outColor.xyz *= outColor.w; } return half4(outColor); } half4 DisableCoverageAsAlpha_S1_c1(half4 _input) { _input = ClampedGradient_S1_c1_c0(_input); half4 _tmp_5_inColor = _input; return half4(_input); } half4 Dither_S1(half4 _input) { _input = DisableCoverageAsAlpha_S1_c1(_input); half4 _tmp_6_inColor = _input; half value = MatrixEffect_S1_c0(_tmp_6_inColor, sk_FragCoord.xy).w - 0.5; return half4(half4(clamp(_input.xyz + value * urange_S1, 0.0, _input.w), _input.w)); } void main() { // Stage 0, QuadPerEdgeAAGeometryProcessor half4 outputColor_S0; outputColor_S0 = vcolor_S0; const half4 outputCoverage_S0 = half4(1); half4 output_S1; output_S1 = Dither_S1(outputColor_S0); { // Xfer Processor: Porter Duff sk_FragColor = output_S1 * outputCoverage_S0; } } )"); // This fragment shader is taken from GM_BlurDrawImage. COMPILER_BENCH(medium, R"( uniform float3x3 umatrix_S1_c0; uniform float3x3 umatrix_S2_c0_c0; uniform float4 urect_S2_c0; uniform sampler2D uTextureSampler_0_S1; uniform sampler2D uTextureSampler_0_S2; flat in half4 vcolor_S0; noperspective in float2 vTransformedCoords_3_S0; out half4 sk_FragColor; half4 TextureEffect_S1_c0_c0(half4 _input) { return sample(uTextureSampler_0_S1, vTransformedCoords_3_S0); } half4 MatrixEffect_S1_c0(half4 _input) { return TextureEffect_S1_c0_c0(_input); } half4 DisableCoverageAsAlpha_S1(half4 _input) { _input = MatrixEffect_S1_c0(_input); half4 _tmp_0_inColor = _input; return half4(_input); } half4 TextureEffect_S2_c0_c0_c0(half4 _input, float2 _coords) { return sample(uTextureSampler_0_S2, _coords).000r; } half4 MatrixEffect_S2_c0_c0(half4 _input, float2 _coords) { return TextureEffect_S2_c0_c0_c0(_input, float3x2(umatrix_S2_c0_c0) * _coords.xy1); } half4 RectBlur_S2_c0(half4 _input, float2 _coords) { half4 _tmp_1_inColor = _input; float2 _tmp_2_coords = _coords; half xCoverage; half yCoverage; if (bool(int(1))) { half2 xy = max(half2(urect_S2_c0.xy - _tmp_2_coords), half2(_tmp_2_coords - urect_S2_c0.zw)); xCoverage = MatrixEffect_S2_c0_c0(_tmp_1_inColor, float2(half2(xy.x, 0.5))).w; yCoverage = MatrixEffect_S2_c0_c0(_tmp_1_inColor, float2(half2(xy.y, 0.5))).w; } else { half4 rect = half4(half2(urect_S2_c0.xy - _tmp_2_coords), half2(_tmp_2_coords - urect_S2_c0.zw)); xCoverage = (1.0 - MatrixEffect_S2_c0_c0(_tmp_1_inColor, float2(half2(rect.x, 0.5))).w) - MatrixEffect_S2_c0_c0(_tmp_1_inColor, float2(half2(rect.z, 0.5))).w; yCoverage = (1.0 - MatrixEffect_S2_c0_c0(_tmp_1_inColor, float2(half2(rect.y, 0.5))).w) - MatrixEffect_S2_c0_c0(_tmp_1_inColor, float2(half2(rect.w, 0.5))).w; } return half4((_input * xCoverage) * yCoverage); } half4 DeviceSpace_S2(half4 _input) { return RectBlur_S2_c0(_input, sk_FragCoord.xy); } void main() { // Stage 0, QuadPerEdgeAAGeometryProcessor half4 outputColor_S0; outputColor_S0 = vcolor_S0; const half4 outputCoverage_S0 = half4(1); half4 output_S1; output_S1 = DisableCoverageAsAlpha_S1(outputColor_S0); half4 output_S2; output_S2 = DeviceSpace_S2(outputCoverage_S0); { // Xfer Processor: Porter Duff sk_FragColor = output_S1 * output_S2; } } )"); // This fragment shader is taken from GM_lcdtext. COMPILER_BENCH(small, R"( uniform sampler2D uTextureSampler_0_S0; noperspective in float2 vTextureCoords_S0; flat in float vTexIndex_S0; noperspective in half4 vinColor_S0; out half4 sk_FragColor; void main() { // Stage 0, BitmapText half4 outputColor_S0; outputColor_S0 = vinColor_S0; half4 texColor; { texColor = sample(uTextureSampler_0_S0, vTextureCoords_S0).rrrr; } half4 outputCoverage_S0 = texColor; { // Xfer Processor: Porter Duff sk_FragColor = outputColor_S0 * outputCoverage_S0; } } )"); COMPILER_BENCH(tiny, "void main() { sk_FragColor = half4(1); }"); #if defined(SK_BUILD_FOR_UNIX) #include // These benchmarks aren't timed, they produce memory usage statistics. They run standalone, and // directly add their results to the nanobench log. void RunSkSLMemoryBenchmarks(NanoJSONResultsWriter* log) { auto heap_bytes_used = []() { return mallinfo().uordblks; }; auto bench = [log](const char* name, int bytes) { log->beginObject(name); // test log->beginObject("meta"); // config log->appendS32("bytes", bytes); // sub_result log->endObject(); // config log->endObject(); // test }; // Heap used by a default compiler (with no modules loaded) { int before = heap_bytes_used(); GrShaderCaps caps; SkSL::Compiler compiler(&caps); int after = heap_bytes_used(); bench("sksl_compiler_baseline", after - before); } // Heap used by a compiler with the two main GPU modules (fragment + vertex) loaded { int before = heap_bytes_used(); GrShaderCaps caps; SkSL::Compiler compiler(&caps); compiler.moduleForProgramKind(SkSL::ProgramKind::kVertex); compiler.moduleForProgramKind(SkSL::ProgramKind::kFragment); int after = heap_bytes_used(); bench("sksl_compiler_gpu", after - before); } // Heap used by a compiler with the two main Graphite modules (fragment + vertex) loaded { int before = heap_bytes_used(); GrShaderCaps caps; SkSL::Compiler compiler(&caps); compiler.moduleForProgramKind(SkSL::ProgramKind::kGraphiteVertex); compiler.moduleForProgramKind(SkSL::ProgramKind::kGraphiteFragment); int after = heap_bytes_used(); bench("sksl_compiler_graphite", after - before); } // Heap used by a compiler with the runtime shader, color filter and blending modules loaded { int before = heap_bytes_used(); GrShaderCaps caps; SkSL::Compiler compiler(&caps); compiler.moduleForProgramKind(SkSL::ProgramKind::kRuntimeColorFilter); compiler.moduleForProgramKind(SkSL::ProgramKind::kRuntimeShader); compiler.moduleForProgramKind(SkSL::ProgramKind::kRuntimeBlender); int after = heap_bytes_used(); bench("sksl_compiler_runtimeeffect", after - before); } } #else void RunSkSLMemoryBenchmarks(NanoJSONResultsWriter*) {} #endif