/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef GrPaint_DEFINED #define GrPaint_DEFINED #include "GrColor.h" #include "GrProcessorStage.h" #include "SkXfermode.h" /** * The paint describes how color and coverage are computed at each pixel by GrContext draw * functions and the how color is blended with the destination pixel. * * The paint allows installation of custom color and coverage stages. New types of stages are * created by subclassing GrProcessor. * * The primitive color computation starts with the color specified by setColor(). This color is the * input to the first color stage. Each color stage feeds its output to the next color stage. The * final color stage's output color is input to the color filter specified by * setXfermodeColorFilter which produces the final source color, S. * * Fractional pixel coverage follows a similar flow. The coverage is initially the value specified * by setCoverage(). This is input to the first coverage stage. Coverage stages are chained * together in the same manner as color stages. The output of the last stage is modulated by any * fractional coverage produced by anti-aliasing. This last step produces the final coverage, C. * * setBlendFunc() specifies blending coefficients for S (described above) and D, the initial value * of the destination pixel, labeled Bs and Bd respectively. The final value of the destination * pixel is then D' = (1-C)*D + C*(Bd*D + Bs*S). * * Note that the coverage is applied after the blend. This is why they are computed as distinct * values. * * TODO: Encapsulate setXfermodeColorFilter in a GrProcessor and remove from GrPaint. */ class GrPaint { public: GrPaint() { this->reset(); } GrPaint(const GrPaint& paint) { *this = paint; } ~GrPaint() {} /** * Sets the blending coefficients to use to blend the final primitive color with the * destination color. Defaults to kOne for src and kZero for dst (i.e. src mode). */ void setBlendFunc(GrBlendCoeff srcCoeff, GrBlendCoeff dstCoeff) { fSrcBlendCoeff = srcCoeff; fDstBlendCoeff = dstCoeff; } GrBlendCoeff getSrcBlendCoeff() const { return fSrcBlendCoeff; } GrBlendCoeff getDstBlendCoeff() const { return fDstBlendCoeff; } /** * The initial color of the drawn primitive. Defaults to solid white. */ void setColor(GrColor color) { fColor = color; } GrColor getColor() const { return fColor; } /** * Should primitives be anti-aliased or not. Defaults to false. */ void setAntiAlias(bool aa) { fAntiAlias = aa; } bool isAntiAlias() const { return fAntiAlias; } /** * Should dithering be applied. Defaults to false. */ void setDither(bool dither) { fDither = dither; } bool isDither() const { return fDither; } /** * Appends an additional color processor to the color computation. */ const GrFragmentProcessor* addColorProcessor(const GrFragmentProcessor* fp) { SkASSERT(fp); SkNEW_APPEND_TO_TARRAY(&fColorStages, GrFragmentStage, (fp)); return fp; } /** * Appends an additional coverage processor to the coverage computation. */ const GrFragmentProcessor* addCoverageProcessor(const GrFragmentProcessor* fp) { SkASSERT(fp); SkNEW_APPEND_TO_TARRAY(&fCoverageStages, GrFragmentStage, (fp)); return fp; } /** * Helpers for adding color or coverage effects that sample a texture. The matrix is applied * to the src space position to compute texture coordinates. */ void addColorTextureProcessor(GrTexture*, const SkMatrix&); void addCoverageTextureProcessor(GrTexture*, const SkMatrix&); void addColorTextureProcessor(GrTexture*, const SkMatrix&, const GrTextureParams&); void addCoverageTextureProcessor(GrTexture*, const SkMatrix&, const GrTextureParams&); int numColorStages() const { return fColorStages.count(); } int numCoverageStages() const { return fCoverageStages.count(); } int numTotalStages() const { return this->numColorStages() + this->numCoverageStages(); } const GrFragmentStage& getColorStage(int s) const { return fColorStages[s]; } const GrFragmentStage& getCoverageStage(int s) const { return fCoverageStages[s]; } GrPaint& operator=(const GrPaint& paint) { fSrcBlendCoeff = paint.fSrcBlendCoeff; fDstBlendCoeff = paint.fDstBlendCoeff; fAntiAlias = paint.fAntiAlias; fDither = paint.fDither; fColor = paint.fColor; fColorStages = paint.fColorStages; fCoverageStages = paint.fCoverageStages; return *this; } /** * Resets the paint to the defaults. */ void reset() { this->resetBlend(); this->resetOptions(); this->resetColor(); this->resetStages(); } /** * Determines whether the drawing with this paint is opaque with respect to both color blending * and fractional coverage. It does not consider whether AA has been enabled on the paint or * not. Depending upon whether multisampling or coverage-based AA is in use, AA may make the * result only apply to the interior of primitives. * */ bool isOpaque() const; /** * Returns true if isOpaque would return true and the paint represents a solid constant color * draw. If the result is true, constantColor will be updated to contain the constant color. */ bool isOpaqueAndConstantColor(GrColor* constantColor) const; private: /** * Helper for isOpaque and isOpaqueAndConstantColor. */ bool getOpaqueAndKnownColor(GrColor* solidColor, uint32_t* solidColorKnownComponents) const; /** * Called when the source coord system from which geometry is rendered changes. It ensures that * the local coordinates seen by effects remains unchanged. oldToNew gives the transformation * from the previous coord system to the new coord system. */ void localCoordChange(const SkMatrix& oldToNew) { for (int i = 0; i < fColorStages.count(); ++i) { fColorStages[i].localCoordChange(oldToNew); } for (int i = 0; i < fCoverageStages.count(); ++i) { fCoverageStages[i].localCoordChange(oldToNew); } } bool localCoordChangeInverse(const SkMatrix& newToOld) { SkMatrix oldToNew; bool computed = false; for (int i = 0; i < fColorStages.count(); ++i) { if (!computed && !newToOld.invert(&oldToNew)) { return false; } else { computed = true; } fColorStages[i].localCoordChange(oldToNew); } for (int i = 0; i < fCoverageStages.count(); ++i) { if (!computed && !newToOld.invert(&oldToNew)) { return false; } else { computed = true; } fCoverageStages[i].localCoordChange(oldToNew); } return true; } friend class GrContext; // To access above two functions friend class GrStencilAndCoverTextContext; // To access above two functions SkSTArray<4, GrFragmentStage> fColorStages; SkSTArray<2, GrFragmentStage> fCoverageStages; GrBlendCoeff fSrcBlendCoeff; GrBlendCoeff fDstBlendCoeff; bool fAntiAlias; bool fDither; GrColor fColor; void resetBlend() { fSrcBlendCoeff = kOne_GrBlendCoeff; fDstBlendCoeff = kZero_GrBlendCoeff; } void resetOptions() { fAntiAlias = false; fDither = false; } void resetColor() { fColor = GrColorPackRGBA(0xff, 0xff, 0xff, 0xff); } void resetStages() { fColorStages.reset(); fCoverageStages.reset(); } }; #endif