#include "DMSrcSink.h" #include "SamplePipeControllers.h" #include "SkCommonFlags.h" #include "SkCodec.h" #include "SkDocument.h" #include "SkError.h" #include "SkMultiPictureDraw.h" #include "SkNullCanvas.h" #include "SkOSFile.h" #include "SkPictureRecorder.h" #include "SkRandom.h" #include "SkSVGCanvas.h" #include "SkStream.h" #include "SkXMLWriter.h" DEFINE_bool(codec, false, "Use SkCodec instead of SkImageDecoder"); namespace DM { GMSrc::GMSrc(skiagm::GMRegistry::Factory factory) : fFactory(factory) {} Error GMSrc::draw(SkCanvas* canvas) const { SkAutoTDelete gm(fFactory(NULL)); canvas->concat(gm->getInitialTransform()); gm->draw(canvas); return ""; } SkISize GMSrc::size() const { SkAutoTDelete gm(fFactory(NULL)); return gm->getISize(); } Name GMSrc::name() const { SkAutoTDelete gm(fFactory(NULL)); return gm->getName(); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ ImageSrc::ImageSrc(Path path, int divisor) : fPath(path), fDivisor(divisor) {} Error ImageSrc::draw(SkCanvas* canvas) const { SkAutoTUnref encoded(SkData::NewFromFileName(fPath.c_str())); if (!encoded) { return SkStringPrintf("Couldn't read %s.", fPath.c_str()); } const SkColorType dstColorType = canvas->imageInfo().colorType(); if (fDivisor == 0) { // Decode the full image. SkBitmap bitmap; if (FLAGS_codec) { SkAutoTDelete codec(SkCodec::NewFromData(encoded)); if (!codec) { return SkStringPrintf("Couldn't decode %s.", fPath.c_str()); } SkImageInfo info; if (!codec->getInfo(&info)) { return SkStringPrintf("Couldn't getInfo %s.", fPath.c_str()); } info = info.makeColorType(dstColorType); if (info.alphaType() == kUnpremul_SkAlphaType) { // FIXME: Currently we cannot draw unpremultiplied sources. info = info.makeAlphaType(kPremul_SkAlphaType); } if (!bitmap.tryAllocPixels(info)) { return SkStringPrintf("Image(%s) is too large (%d x %d)\n", fPath.c_str(), info.width(), info.height()); } SkAutoLockPixels alp(bitmap); const SkImageGenerator::Result result = codec->getPixels(info, bitmap.getPixels(), bitmap.rowBytes()); if (result != SkImageGenerator::kSuccess) { return SkStringPrintf("Couldn't getPixels %s.", fPath.c_str()); } } else { if (!SkImageDecoder::DecodeMemory(encoded->data(), encoded->size(), &bitmap, dstColorType, SkImageDecoder::kDecodePixels_Mode)) { return SkStringPrintf("Couldn't decode %s.", fPath.c_str()); } } encoded.reset((SkData*)NULL); // Might as well drop this when we're done with it. canvas->drawBitmap(bitmap, 0,0); return ""; } // Decode subsets. This is a little involved. SkAutoTDelete stream(new SkMemoryStream(encoded)); SkAutoTDelete decoder(SkImageDecoder::Factory(stream.get())); if (!decoder) { return SkStringPrintf("Can't find a good decoder for %s.", fPath.c_str()); } stream->rewind(); int w,h; if (!decoder->buildTileIndex(stream.detach(), &w, &h) || w*h == 1) { return ""; // Not an error. Subset decoding is not always supported. } // Divide the image into subsets that cover the entire image. if (fDivisor > w || fDivisor > h) { return SkStringPrintf("divisor %d is too big for %s with dimensions (%d x %d)", fDivisor, fPath.c_str(), w, h); } const int subsetWidth = w / fDivisor, subsetHeight = h / fDivisor; for (int y = 0; y < h; y += subsetHeight) { for (int x = 0; x < w; x += subsetWidth) { SkBitmap subset; SkIRect rect = SkIRect::MakeXYWH(x, y, subsetWidth, subsetHeight); if (!decoder->decodeSubset(&subset, rect, dstColorType)) { return SkStringPrintf("Could not decode subset (%d, %d, %d, %d).", x, y, x+subsetWidth, y+subsetHeight); } canvas->drawBitmap(subset, SkIntToScalar(x), SkIntToScalar(y)); } } return ""; } SkISize ImageSrc::size() const { SkAutoTUnref encoded(SkData::NewFromFileName(fPath.c_str())); SkBitmap bitmap; if (!encoded || !SkImageDecoder::DecodeMemory(encoded->data(), encoded->size(), &bitmap, kUnknown_SkColorType, SkImageDecoder::kDecodeBounds_Mode)) { return SkISize::Make(0,0); } return bitmap.dimensions(); } Name ImageSrc::name() const { return SkOSPath::Basename(fPath.c_str()); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ static const SkRect kSKPViewport = {0,0, 1000,1000}; SKPSrc::SKPSrc(Path path) : fPath(path) {} Error SKPSrc::draw(SkCanvas* canvas) const { SkAutoTDelete stream(SkStream::NewFromFile(fPath.c_str())); if (!stream) { return SkStringPrintf("Couldn't read %s.", fPath.c_str()); } SkAutoTUnref pic(SkPicture::CreateFromStream(stream)); if (!pic) { return SkStringPrintf("Couldn't decode %s as a picture.", fPath.c_str()); } stream.reset((SkStream*)NULL); // Might as well drop this when we're done with it. canvas->clipRect(kSKPViewport); canvas->drawPicture(pic); return ""; } SkISize SKPSrc::size() const { // This may be unnecessarily large. return kSKPViewport.roundOut().size(); } Name SKPSrc::name() const { return SkOSPath::Basename(fPath.c_str()); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ Error NullSink::draw(const Src& src, SkBitmap*, SkWStream*, SkString*) const { SkAutoTDelete canvas(SkCreateNullCanvas()); return src.draw(canvas); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ DEFINE_bool(gpuStats, false, "Append GPU stats to the log for each GPU task?"); GPUSink::GPUSink(GrContextFactory::GLContextType ct, GrGLStandard api, int samples, bool dfText, bool threaded) : fContextType(ct) , fGpuAPI(api) , fSampleCount(samples) , fUseDFText(dfText) , fThreaded(threaded) {} int GPUSink::enclave() const { return fThreaded ? kAnyThread_Enclave : kGPU_Enclave; } void PreAbandonGpuContextErrorHandler(SkError, void*) {} Error GPUSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString* log) const { GrContextFactory factory; const SkISize size = src.size(); const SkImageInfo info = SkImageInfo::Make(size.width(), size.height(), kN32_SkColorType, kPremul_SkAlphaType); SkAutoTUnref surface( NewGpuSurface(&factory, fContextType, fGpuAPI, info, fSampleCount, fUseDFText)); if (!surface) { return "Could not create a surface."; } if (FLAGS_preAbandonGpuContext) { SkSetErrorCallback(&PreAbandonGpuContextErrorHandler, NULL); factory.abandonContexts(); } SkCanvas* canvas = surface->getCanvas(); Error err = src.draw(canvas); if (!err.isEmpty()) { return err; } canvas->flush(); if (FLAGS_gpuStats) { canvas->getGrContext()->dumpCacheStats(log); canvas->getGrContext()->dumpGpuStats(log); } dst->allocPixels(info); canvas->readPixels(dst, 0, 0); if (FLAGS_abandonGpuContext) { factory.abandonContexts(); } return ""; } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ PDFSink::PDFSink() {} Error PDFSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { // Print the given DM:Src to a PDF, breaking on 8.5x11 pages. SkAutoTUnref doc(SkDocument::CreatePDF(dst)); int width = src.size().width(), height = src.size().height(); const int kLetterWidth = 612, // 8.5 * 72 kLetterHeight = 792; // 11 * 72 const SkRect letter = SkRect::MakeWH(SkIntToScalar(kLetterWidth), SkIntToScalar(kLetterHeight)); int xPages = ((width - 1) / kLetterWidth) + 1; int yPages = ((height - 1) / kLetterHeight) + 1; for (int y = 0; y < yPages; ++y) { for (int x = 0; x < xPages; ++x) { int w = SkTMin(kLetterWidth, width - (x * kLetterWidth)); int h = SkTMin(kLetterHeight, height - (y * kLetterHeight)); SkCanvas* canvas = doc->beginPage(SkIntToScalar(w), SkIntToScalar(h)); canvas->clipRect(letter); canvas->translate(-letter.width() * x, -letter.height() * y); Error err = src.draw(canvas); if (!err.isEmpty()) { return err; } doc->endPage(); } } doc->close(); dst->flush(); return ""; } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ SKPSink::SKPSink() {} Error SKPSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { SkSize size; size = src.size(); SkPictureRecorder recorder; Error err = src.draw(recorder.beginRecording(size.width(), size.height())); if (!err.isEmpty()) { return err; } SkAutoTUnref pic(recorder.endRecording()); pic->serialize(dst); return ""; } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ SVGSink::SVGSink() {} Error SVGSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { SkAutoTDelete xmlWriter(SkNEW_ARGS(SkXMLStreamWriter, (dst))); SkAutoTUnref canvas(SkSVGCanvas::Create( SkRect::MakeWH(SkIntToScalar(src.size().width()), SkIntToScalar(src.size().height())), xmlWriter)); return src.draw(canvas); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ RasterSink::RasterSink(SkColorType colorType) : fColorType(colorType) {} Error RasterSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString*) const { const SkISize size = src.size(); // If there's an appropriate alpha type for this color type, use it, otherwise use premul. SkAlphaType alphaType = kPremul_SkAlphaType; (void)SkColorTypeValidateAlphaType(fColorType, alphaType, &alphaType); dst->allocPixels(SkImageInfo::Make(size.width(), size.height(), fColorType, alphaType)); dst->eraseColor(SK_ColorTRANSPARENT); SkCanvas canvas(*dst); return src.draw(&canvas); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ static SkISize auto_compute_translate(SkMatrix* matrix, int srcW, int srcH) { SkRect bounds = SkRect::MakeIWH(srcW, srcH); matrix->mapRect(&bounds); matrix->postTranslate(-bounds.x(), -bounds.y()); return SkISize::Make(SkScalarRoundToInt(bounds.width()), SkScalarRoundToInt(bounds.height())); } ViaMatrix::ViaMatrix(SkMatrix matrix, Sink* sink) : fMatrix(matrix), fSink(sink) {} Error ViaMatrix::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { // We turn our arguments into a Src, then draw that Src into our Sink to fill bitmap or stream. struct ProxySrc : public Src { const Src& fSrc; SkMatrix fMatrix; SkISize fSize; ProxySrc(const Src& src, SkMatrix matrix) : fSrc(src), fMatrix(matrix) { fSize = auto_compute_translate(&fMatrix, src.size().width(), src.size().height()); } Error draw(SkCanvas* canvas) const SK_OVERRIDE { canvas->concat(fMatrix); return fSrc.draw(canvas); } SkISize size() const SK_OVERRIDE { return fSize; } Name name() const SK_OVERRIDE { sk_throw(); return ""; } // No one should be calling this. } proxy(src, fMatrix); return fSink->draw(proxy, bitmap, stream, log); } // Undoes any flip or 90 degree rotate without changing the scale of the bitmap. // This should be pixel-preserving. ViaUpright::ViaUpright(SkMatrix matrix, Sink* sink) : fMatrix(matrix), fSink(sink) {} Error ViaUpright::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { Error err = fSink->draw(src, bitmap, stream, log); if (!err.isEmpty()) { return err; } SkMatrix inverse; if (!fMatrix.rectStaysRect() || !fMatrix.invert(&inverse)) { return "Cannot upright --matrix."; } SkMatrix upright = SkMatrix::I(); upright.setScaleX(SkScalarSignAsScalar(inverse.getScaleX())); upright.setScaleY(SkScalarSignAsScalar(inverse.getScaleY())); upright.setSkewX(SkScalarSignAsScalar(inverse.getSkewX())); upright.setSkewY(SkScalarSignAsScalar(inverse.getSkewY())); SkBitmap uprighted; SkISize size = auto_compute_translate(&upright, bitmap->width(), bitmap->height()); uprighted.allocPixels(bitmap->info().makeWH(size.width(), size.height())); SkCanvas canvas(uprighted); canvas.concat(upright); SkPaint paint; paint.setXfermodeMode(SkXfermode::kSrc_Mode); canvas.drawBitmap(*bitmap, 0, 0, &paint); *bitmap = uprighted; bitmap->lockPixels(); return ""; } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ ViaPipe::ViaPipe(Sink* sink) : fSink(sink) {} Error ViaPipe::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { // We turn ourselves into another Src that draws our argument into bitmap/stream via pipe. struct ProxySrc : public Src { const Src& fSrc; ProxySrc(const Src& src) : fSrc(src) {} Error draw(SkCanvas* canvas) const SK_OVERRIDE { SkISize size = this->size(); PipeController controller(canvas, &SkImageDecoder::DecodeMemory); SkGPipeWriter pipe; const uint32_t kFlags = 0; // We mirror SkDeferredCanvas, which doesn't use any flags. return fSrc.draw(pipe.startRecording(&controller, kFlags, size.width(), size.height())); } SkISize size() const SK_OVERRIDE { return fSrc.size(); } Name name() const SK_OVERRIDE { sk_throw(); return ""; } // No one should be calling this. } proxy(src); return fSink->draw(proxy, bitmap, stream, log); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ ViaSerialization::ViaSerialization(Sink* sink) : fSink(sink) {} Error ViaSerialization::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { // Record our Src into a picture. SkSize size; size = src.size(); SkPictureRecorder recorder; Error err = src.draw(recorder.beginRecording(size.width(), size.height())); if (!err.isEmpty()) { return err; } SkAutoTUnref pic(recorder.endRecording()); // Serialize it and then deserialize it. SkDynamicMemoryWStream wStream; pic->serialize(&wStream); SkAutoTDelete rStream(wStream.detachAsStream()); SkAutoTUnref deserialized(SkPicture::CreateFromStream(rStream)); // Turn that deserialized picture into a Src, draw it into our Sink to fill bitmap or stream. struct ProxySrc : public Src { const SkPicture* fPic; const SkISize fSize; ProxySrc(const SkPicture* pic, SkISize size) : fPic(pic), fSize(size) {} Error draw(SkCanvas* canvas) const SK_OVERRIDE { canvas->drawPicture(fPic); return ""; } SkISize size() const SK_OVERRIDE { return fSize; } Name name() const SK_OVERRIDE { sk_throw(); return ""; } // No one should be calling this. } proxy(deserialized, src.size()); return fSink->draw(proxy, bitmap, stream, log); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ ViaTiles::ViaTiles(int w, int h, SkBBHFactory* factory, Sink* sink) : fW(w) , fH(h) , fFactory(factory) , fSink(sink) {} Error ViaTiles::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { // Record our Src into a picture. SkSize size; size = src.size(); SkPictureRecorder recorder; Error err = src.draw(recorder.beginRecording(size.width(), size.height(), fFactory.get())); if (!err.isEmpty()) { return err; } SkAutoTUnref pic(recorder.endRecording()); // Turn that picture into a Src that draws into our Sink via tiles + MPD. struct ProxySrc : public Src { const int fW, fH; const SkPicture* fPic; const SkISize fSize; ProxySrc(int w, int h, const SkPicture* pic, SkISize size) : fW(w), fH(h), fPic(pic), fSize(size) {} Error draw(SkCanvas* canvas) const SK_OVERRIDE { const int xTiles = (fSize.width() + fW - 1) / fW, yTiles = (fSize.height() + fH - 1) / fH; SkMultiPictureDraw mpd(xTiles*yTiles); SkTDArray surfaces; surfaces.setReserve(xTiles*yTiles); SkImageInfo info = canvas->imageInfo().makeWH(fW, fH); for (int j = 0; j < yTiles; j++) { for (int i = 0; i < xTiles; i++) { // This lets our ultimate Sink determine the best kind of surface. // E.g., if it's a GpuSink, the surfaces and images are textures. SkSurface* s = canvas->newSurface(info); if (!s) { s = SkSurface::NewRaster(info); // Some canvases can't create surfaces. } surfaces.push(s); SkCanvas* c = s->getCanvas(); c->translate(SkIntToScalar(-i * fW), SkIntToScalar(-j * fH)); // Line up the canvas with this tile. mpd.add(c, fPic); } } mpd.draw(); for (int j = 0; j < yTiles; j++) { for (int i = 0; i < xTiles; i++) { SkAutoTUnref image(surfaces[i+xTiles*j]->newImageSnapshot()); canvas->drawImage(image, SkIntToScalar(i*fW), SkIntToScalar(j*fH)); } } surfaces.unrefAll(); return ""; } SkISize size() const SK_OVERRIDE { return fSize; } Name name() const SK_OVERRIDE { sk_throw(); return ""; } // No one should be calling this. } proxy(fW, fH, pic, src.size()); return fSink->draw(proxy, bitmap, stream, log); } } // namespace DM