/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "gm.h" #include "SkBlurMask.h" #include "SkBlurMaskFilter.h" #include "SkCanvas.h" #include "SkGradientShader.h" #include "SkImage.h" #include "SkUtils.h" #if SK_SUPPORT_GPU #include "GrContext.h" #include "GrContextOptions.h" #include "SkGr.h" #endif /** Holds either a bitmap or image to be rendered and a rect that indicates what part of the bitmap or image should be tested by the GM. The area outside of the rect is present to check for bleed due to filtering/blurring. */ struct TestPixels { enum Type { kBitmap, kImage }; Type fType; SkBitmap fBitmap; SkAutoTUnref fImage; SkIRect fRect; // The region of the bitmap/image that should be rendered. }; /** Creates a bitmap with two one-pixel rings around a checkerboard. The checkerboard is 2x2 logically where each check has as many pixels as is necessary to fill the interior. The rect to draw is set to the checkerboard portion. */ template bool make_ringed_bitmap(GrContext*, TestPixels* result, int width, int height, SkColorType ct, SkAlphaType at, PIXEL_TYPE outerRingColor, PIXEL_TYPE innerRingColor, PIXEL_TYPE checkColor1, PIXEL_TYPE checkColor2) { SkASSERT(0 == width % 2 && 0 == height % 2); SkASSERT(width >= 6 && height >= 6); result->fType = TestPixels::kBitmap; SkImageInfo info = SkImageInfo::Make(width, height, ct, at); size_t rowBytes = SkAlign4(info.minRowBytes()); result->fBitmap.allocPixels(info, rowBytes); PIXEL_TYPE* scanline = (PIXEL_TYPE*)result->fBitmap.getAddr(0, 0); for (int x = 0; x < width; ++x) { scanline[x] = outerRingColor; } scanline = (PIXEL_TYPE*)result->fBitmap.getAddr(0, 1); scanline[0] = outerRingColor; for (int x = 1; x < width - 1; ++x) { scanline[x] = innerRingColor; } scanline[width - 1] = outerRingColor; for (int y = 2; y < height / 2; ++y) { scanline = (PIXEL_TYPE*)result->fBitmap.getAddr(0, y); scanline[0] = outerRingColor; scanline[1] = innerRingColor; for (int x = 2; x < width / 2; ++x) { scanline[x] = checkColor1; } for (int x = width / 2; x < width - 2; ++x) { scanline[x] = checkColor2; } scanline[width - 2] = innerRingColor; scanline[width - 1] = outerRingColor; } for (int y = height / 2; y < height - 2; ++y) { scanline = (PIXEL_TYPE*)result->fBitmap.getAddr(0, y); scanline[0] = outerRingColor; scanline[1] = innerRingColor; for (int x = 2; x < width / 2; ++x) { scanline[x] = checkColor2; } for (int x = width / 2; x < width - 2; ++x) { scanline[x] = checkColor1; } scanline[width - 2] = innerRingColor; scanline[width - 1] = outerRingColor; } scanline = (PIXEL_TYPE*)result->fBitmap.getAddr(0, height - 2); scanline[0] = outerRingColor; for (int x = 1; x < width - 1; ++x) { scanline[x] = innerRingColor; } scanline[width - 1] = outerRingColor; scanline = (PIXEL_TYPE*)result->fBitmap.getAddr(0, height - 1); for (int x = 0; x < width; ++x) { scanline[x] = outerRingColor; } result->fBitmap.setImmutable(); result->fRect.set(2, 2, width - 2, height - 2); return true; } /** Create a black and white checked texture with 2 1-pixel rings around the outside edge. The inner ring is red and the outer ring is blue. */ static bool make_ringed_color_bitmap(GrContext* ctx, TestPixels* result, int width, int height) { static const SkPMColor kBlue = SkPreMultiplyColor(SK_ColorBLUE); static const SkPMColor kRed = SkPreMultiplyColor(SK_ColorRED); static const SkPMColor kBlack = SkPreMultiplyColor(SK_ColorBLACK); static const SkPMColor kWhite = SkPreMultiplyColor(SK_ColorWHITE); return make_ringed_bitmap(ctx, result, width, height, kBGRA_8888_SkColorType, kPremul_SkAlphaType, kBlue, kRed, kBlack, kWhite); } /** Makes a alpha bitmap with 1 wide rect/ring of 0s, an inset of 1s, and the interior is a 2x2 checker board of 3/4 and 1/2. The inner checkers are large enough to fill the interior with the 2x2 checker grid. */ static bool make_ringed_alpha_bitmap(GrContext* ctx, TestPixels* result, int width, int height) { static const uint8_t kZero = 0x00; static const uint8_t kHalf = 0x80; static const uint8_t k3Q = 0xC0; static const uint8_t kOne = 0xFF; return make_ringed_bitmap(ctx, result, width, height, kAlpha_8_SkColorType, kPremul_SkAlphaType, kZero, kOne, k3Q, kHalf); } /** Helper to reuse above functions to produce images rather than bmps */ static void bmp_to_image(TestPixels* result) { SkASSERT(TestPixels::kBitmap == result->fType); result->fImage.reset(SkImage::NewFromBitmap(result->fBitmap)); SkASSERT(result->fImage); result->fType = TestPixels::kImage; result->fBitmap.reset(); } /** Color image case. */ bool make_ringed_color_image(GrContext* ctx, TestPixels* result, int width, int height) { if (make_ringed_color_bitmap(ctx, result, width, height)) { bmp_to_image(result); return true; } return false; } /** Alpha image case. */ bool make_ringed_alpha_image(GrContext* ctx, TestPixels* result, int width, int height) { if (make_ringed_alpha_bitmap(ctx, result, width, height)) { bmp_to_image(result); return true; } return false; } /** Similar to make_ringed_bitmap with these modifications: - The backing store is a texture. - The texture is larger than the bitmap dimensions (it is surrounded by non-content padding on the right/bottom of the contents.) - The right/bottom sides of the rings are omitted so that the rect to draw is adjacent to the texture padding. */ template bool make_oversized_texture_bitmap(GrContext* ctx, TestPixels* result, int width, int height, GrPixelConfig config, PIXEL_TYPE outerRingColor, PIXEL_TYPE innerRingColor, PIXEL_TYPE checkColor1, PIXEL_TYPE checkColor2, PIXEL_TYPE padColor) { SkASSERT(0 == width % 2 && 0 == height % 2); SkASSERT(width >= 6 && height >= 6); #if SK_SUPPORT_GPU if (!ctx) { return false; } /** Put arbitrary pad to the right and below the bitmap content. */ static const int kXPad = 10; static const int kYPad = 17; size_t rowBytes = (width + kXPad) * sizeof(PIXEL_TYPE); SkAutoTMalloc pixels(rowBytes*(height + kYPad)); PIXEL_TYPE* scanline = pixels.get(); for (int x = 0; x < width; ++x) { scanline[x] = outerRingColor; } for (int x = width; x < width + kXPad; ++x) { scanline[x] = padColor; } scanline = (PIXEL_TYPE*)((char*)scanline + rowBytes); scanline[0] = outerRingColor; for (int x = 1; x < width; ++x) { scanline[x] = innerRingColor; } for (int x = width; x < width + kXPad; ++x) { scanline[x] = padColor; } for (int y = 2; y < height / 2 + 1; ++y) { scanline = (PIXEL_TYPE*)((char*)scanline + rowBytes); scanline[0] = outerRingColor; scanline[1] = innerRingColor; for (int x = 2; x < width / 2 + 1; ++x) { scanline[x] = checkColor1; } for (int x = width / 2 + 1; x < width; ++x) { scanline[x] = checkColor2; } for (int x = width; x < width + kXPad; ++x) { scanline[x] = padColor; } } for (int y = height / 2 + 1; y < height; ++y) { scanline = (PIXEL_TYPE*)((char*)scanline + rowBytes); scanline[0] = outerRingColor; scanline[1] = innerRingColor; for (int x = 2; x < width / 2 + 1; ++x) { scanline[x] = checkColor2; } for (int x = width / 2 + 1; x < width; ++x) { scanline[x] = checkColor1; } for (int x = width; x < width + kXPad; ++x) { scanline[x] = padColor; } } for (int y = height; y < height + kYPad; ++y) { scanline = (PIXEL_TYPE*)((char*)scanline + rowBytes); for (int x = 0; x < width + kXPad; ++x) { scanline[x] = padColor; } } GrSurfaceDesc desc; desc.fConfig = config; desc.fWidth = width + kXPad; desc.fHeight = height + kYPad; SkAutoTUnref texture(ctx->textureProvider()->createTexture( desc, SkBudgeted::kYes, pixels.get(), rowBytes)); if (!texture) { return false; } GrWrapTextureInBitmap(texture, width, height, true, &result->fBitmap); result->fType = TestPixels::kBitmap; result->fBitmap.setImmutable(); result->fRect.set(2, 2, width, height); return true; #else return false; #endif } /** Make the color version of the oversized texture-backed bitmap */ static bool make_ringed_oversized_color_texture_bitmap(GrContext* ctx, TestPixels* result, int width, int height) { static const SkPMColor kBlue = SkPreMultiplyColor(SK_ColorBLUE); static const SkPMColor kRed = SkPreMultiplyColor(SK_ColorRED); static const SkPMColor kBlack = SkPreMultiplyColor(SK_ColorBLACK); static const SkPMColor kWhite = SkPreMultiplyColor(SK_ColorWHITE); static const SkPMColor kGreen = SkPreMultiplyColor(SK_ColorGREEN); return make_oversized_texture_bitmap( ctx, result, width, height, kSkia8888_GrPixelConfig, kBlue, kRed, kBlack, kWhite, kGreen); } /** Make the alpha version of the oversized texture-backed bitmap */ static bool make_ringed_oversized_alpha_texture_bitmap(GrContext* ctx, TestPixels* result, int width, int height) { static const uint8_t kZero = 0x00; static const uint8_t kHalf = 0x80; static const uint8_t k3Q = 0xC0; static const uint8_t kOne = 0xFF; static const uint8_t k1Q = 0x40; return make_oversized_texture_bitmap( ctx, result, width, height, kAlpha_8_GrPixelConfig, kZero, kOne, k3Q, kHalf, k1Q); } static SkShader* make_shader() { static const SkPoint pts[] = { {0, 0}, {20, 20} }; static const SkColor colors[] = { SK_ColorGREEN, SK_ColorYELLOW }; return SkGradientShader::CreateLinear(pts, colors, nullptr, 2, SkShader::kMirror_TileMode); } static SkShader* make_null_shader() { return nullptr; } enum BleedTest { kUseBitmap_BleedTest, kUseTextureBitmap_BleedTest, kUseImage_BleedTest, kUseAlphaBitmap_BleedTest, kUseAlphaTextureBitmap_BleedTest, kUseAlphaImage_BleedTest, kUseAlphaBitmapShader_BleedTest, kUseAlphaTextureBitmapShader_BleedTest, kUseAlphaImageShader_BleedTest, }; const struct { const char* fName; bool (*fPixelMaker)(GrContext*, TestPixels* result, int width, int height); SkShader* (*fShaderMaker)(); } gBleedRec[] = { { "bleed", make_ringed_color_bitmap, make_null_shader }, { "bleed_texture_bmp", make_ringed_oversized_color_texture_bitmap, make_null_shader }, { "bleed_image", make_ringed_color_image, make_null_shader }, { "bleed_alpha_bmp", make_ringed_alpha_bitmap, make_null_shader }, { "bleed_alpha_texture_bmp", make_ringed_oversized_alpha_texture_bitmap, make_null_shader }, { "bleed_alpha_image", make_ringed_alpha_image, make_null_shader }, { "bleed_alpha_bmp_shader", make_ringed_alpha_bitmap, make_shader }, { "bleed_alpha_texture_bmp_shader", make_ringed_oversized_alpha_texture_bitmap, make_shader }, { "bleed_alpha_image_shader", make_ringed_alpha_image, make_shader }, }; /** This GM exercises the behavior of the drawBitmapRect & drawImageRect calls. Specifically their handling of : - SrcRectConstraint(bleed vs.no - bleed) - handling of the sub - region feature(area - of - interest) of drawBitmap* - handling of 8888 vs. A8 (including presence of a shader in the A8 case). - (gpu - only) handling of tiled vs.non - tiled drawing) - (gpu - only) texture's backing a bmp where the texture is larger than the bmp. In particular, we should never see the padding outside of an SkBitmap's sub - region (green for 8888, 1/4 for alpha). In some instances we can see the two outer rings outside of the area o interest (i.e., the inner four checks) due to AA or filtering if allowed by the SrcRectConstraint. */ class BleedGM : public skiagm::GM { public: BleedGM(BleedTest bt) : fCreatedPixels(false), fBT(bt){} protected: SkString onShortName() override { return SkString(gBleedRec[fBT].fName); } SkISize onISize() override { return SkISize::Make(1200, 1080); } void drawPixels(SkCanvas* canvas, const TestPixels& pixels, const SkRect& src, const SkRect& dst, const SkPaint* paint, SkCanvas::SrcRectConstraint constraint) { if (TestPixels::kBitmap == pixels.fType) { canvas->drawBitmapRect(pixels.fBitmap, src, dst, paint, constraint); } else { canvas->drawImageRect(pixels.fImage, src, dst, paint, constraint); } } // Draw the area of interest of the small image void drawCase1(SkCanvas* canvas, int transX, int transY, bool aa, SkCanvas::SrcRectConstraint constraint, SkFilterQuality filter) { SkRect src = SkRect::Make(fSmallTestPixels.fRect); SkRect dst = SkRect::MakeXYWH(SkIntToScalar(transX), SkIntToScalar(transY), SkIntToScalar(kBlockSize), SkIntToScalar(kBlockSize)); SkPaint paint; paint.setFilterQuality(filter); paint.setShader(fShader); paint.setColor(SK_ColorBLUE); paint.setAntiAlias(aa); this->drawPixels(canvas, fSmallTestPixels, src, dst, &paint, constraint); } // Draw the area of interest of the large image void drawCase2(SkCanvas* canvas, int transX, int transY, bool aa, SkCanvas::SrcRectConstraint constraint, SkFilterQuality filter) { SkRect src = SkRect::Make(fBigTestPixels.fRect); SkRect dst = SkRect::MakeXYWH(SkIntToScalar(transX), SkIntToScalar(transY), SkIntToScalar(kBlockSize), SkIntToScalar(kBlockSize)); SkPaint paint; paint.setFilterQuality(filter); paint.setShader(fShader); paint.setColor(SK_ColorBLUE); paint.setAntiAlias(aa); this->drawPixels(canvas, fBigTestPixels, src, dst, &paint, constraint); } // Draw upper-left 1/4 of the area of interest of the large image void drawCase3(SkCanvas* canvas, int transX, int transY, bool aa, SkCanvas::SrcRectConstraint constraint, SkFilterQuality filter) { SkRect src = SkRect::MakeXYWH(SkIntToScalar(fBigTestPixels.fRect.fLeft), SkIntToScalar(fBigTestPixels.fRect.fTop), fBigTestPixels.fRect.width()/2.f, fBigTestPixels.fRect.height()/2.f); SkRect dst = SkRect::MakeXYWH(SkIntToScalar(transX), SkIntToScalar(transY), SkIntToScalar(kBlockSize), SkIntToScalar(kBlockSize)); SkPaint paint; paint.setFilterQuality(filter); paint.setShader(fShader); paint.setColor(SK_ColorBLUE); paint.setAntiAlias(aa); this->drawPixels(canvas, fBigTestPixels, src, dst, &paint, constraint); } // Draw the area of interest of the small image with a normal blur void drawCase4(SkCanvas* canvas, int transX, int transY, bool aa, SkCanvas::SrcRectConstraint constraint, SkFilterQuality filter) { SkRect src = SkRect::Make(fSmallTestPixels.fRect); SkRect dst = SkRect::MakeXYWH(SkIntToScalar(transX), SkIntToScalar(transY), SkIntToScalar(kBlockSize), SkIntToScalar(kBlockSize)); SkPaint paint; paint.setFilterQuality(filter); SkMaskFilter* mf = SkBlurMaskFilter::Create(kNormal_SkBlurStyle, SkBlurMask::ConvertRadiusToSigma(3)); paint.setMaskFilter(mf)->unref(); paint.setShader(fShader); paint.setColor(SK_ColorBLUE); paint.setAntiAlias(aa); this->drawPixels(canvas, fSmallTestPixels, src, dst, &paint, constraint); } // Draw the area of interest of the small image with a outer blur void drawCase5(SkCanvas* canvas, int transX, int transY, bool aa, SkCanvas::SrcRectConstraint constraint, SkFilterQuality filter) { SkRect src = SkRect::Make(fSmallTestPixels.fRect); SkRect dst = SkRect::MakeXYWH(SkIntToScalar(transX), SkIntToScalar(transY), SkIntToScalar(kBlockSize), SkIntToScalar(kBlockSize)); SkPaint paint; paint.setFilterQuality(filter); SkMaskFilter* mf = SkBlurMaskFilter::Create(kOuter_SkBlurStyle, SkBlurMask::ConvertRadiusToSigma(7)); paint.setMaskFilter(mf)->unref(); paint.setShader(fShader); paint.setColor(SK_ColorBLUE); paint.setAntiAlias(aa); this->drawPixels(canvas, fSmallTestPixels, src, dst, &paint, constraint); } void onDraw(SkCanvas* canvas) override { // We don't create pixels in an onOnceBeforeDraw() override because we want access to // GrContext. GrContext* context = canvas->getGrContext(); #if SK_SUPPORT_GPU // Workaround for SampleApp. if (GrTexture* tex = fBigTestPixels.fBitmap.getTexture()) { if (tex->wasDestroyed()) { fCreatedPixels = false; } } #endif bool madePixels = fCreatedPixels; if (!madePixels) { madePixels = gBleedRec[fBT].fPixelMaker(context, &fSmallTestPixels, kSmallTextureSize, kSmallTextureSize); madePixels &= gBleedRec[fBT].fPixelMaker(context, &fBigTestPixels, 2 * kMaxTileSize, 2 * kMaxTileSize); fCreatedPixels = madePixels; } // Assume that if we coulnd't make the bitmap/image it's because it's a GPU test on a // non-GPU backend. if (!madePixels) { skiagm::GM::DrawGpuOnlyMessage(canvas); return; } fShader.reset(gBleedRec[fBT].fShaderMaker()); canvas->clear(SK_ColorGRAY); SkTDArray matrices; // Draw with identity *matrices.append() = SkMatrix::I(); // Draw with rotation and scale down in x, up in y. SkMatrix m; static const SkScalar kBottom = SkIntToScalar(kRow4Y + kBlockSize + kBlockSpacing); m.setTranslate(0, kBottom); m.preRotate(15.f, 0, kBottom + kBlockSpacing); m.preScale(0.71f, 1.22f); *matrices.append() = m; // Align the next set with the middle of the previous in y, translated to the right in x. SkPoint corners[] = {{0, 0}, { 0, kBottom }, { kWidth, kBottom }, {kWidth, 0} }; matrices[matrices.count()-1].mapPoints(corners, 4); SkScalar y = (corners[0].fY + corners[1].fY + corners[2].fY + corners[3].fY) / 4; SkScalar x = SkTMax(SkTMax(corners[0].fX, corners[1].fX), SkTMax(corners[2].fX, corners[3].fX)); m.setTranslate(x, y); m.preScale(0.2f, 0.2f); *matrices.append() = m; SkScalar maxX = 0; for (int antiAlias = 0; antiAlias < 2; ++antiAlias) { canvas->save(); canvas->translate(maxX, 0); for (int m = 0; m < matrices.count(); ++m) { canvas->save(); canvas->concat(matrices[m]); bool aa = SkToBool(antiAlias); // First draw a column with no bleeding and no filtering this->drawCase1(canvas, kCol0X, kRow0Y, aa, SkCanvas::kStrict_SrcRectConstraint, kNone_SkFilterQuality); this->drawCase2(canvas, kCol0X, kRow1Y, aa, SkCanvas::kStrict_SrcRectConstraint, kNone_SkFilterQuality); this->drawCase3(canvas, kCol0X, kRow2Y, aa, SkCanvas::kStrict_SrcRectConstraint, kNone_SkFilterQuality); this->drawCase4(canvas, kCol0X, kRow3Y, aa, SkCanvas::kStrict_SrcRectConstraint, kNone_SkFilterQuality); this->drawCase5(canvas, kCol0X, kRow4Y, aa, SkCanvas::kStrict_SrcRectConstraint, kNone_SkFilterQuality); // Then draw a column with no bleeding and low filtering this->drawCase1(canvas, kCol1X, kRow0Y, aa, SkCanvas::kStrict_SrcRectConstraint, kLow_SkFilterQuality); this->drawCase2(canvas, kCol1X, kRow1Y, aa, SkCanvas::kStrict_SrcRectConstraint, kLow_SkFilterQuality); this->drawCase3(canvas, kCol1X, kRow2Y, aa, SkCanvas::kStrict_SrcRectConstraint, kLow_SkFilterQuality); this->drawCase4(canvas, kCol1X, kRow3Y, aa, SkCanvas::kStrict_SrcRectConstraint, kLow_SkFilterQuality); this->drawCase5(canvas, kCol1X, kRow4Y, aa, SkCanvas::kStrict_SrcRectConstraint, kLow_SkFilterQuality); // Then draw a column with no bleeding and high filtering this->drawCase1(canvas, kCol2X, kRow0Y, aa, SkCanvas::kStrict_SrcRectConstraint, kHigh_SkFilterQuality); this->drawCase2(canvas, kCol2X, kRow1Y, aa, SkCanvas::kStrict_SrcRectConstraint, kHigh_SkFilterQuality); this->drawCase3(canvas, kCol2X, kRow2Y, aa, SkCanvas::kStrict_SrcRectConstraint, kHigh_SkFilterQuality); this->drawCase4(canvas, kCol2X, kRow3Y, aa, SkCanvas::kStrict_SrcRectConstraint, kHigh_SkFilterQuality); this->drawCase5(canvas, kCol2X, kRow4Y, aa, SkCanvas::kStrict_SrcRectConstraint, kHigh_SkFilterQuality); // Then draw a column with bleeding and no filtering (bleed should have no effect w/out blur) this->drawCase1(canvas, kCol3X, kRow0Y, aa, SkCanvas::kFast_SrcRectConstraint, kNone_SkFilterQuality); this->drawCase2(canvas, kCol3X, kRow1Y, aa, SkCanvas::kFast_SrcRectConstraint, kNone_SkFilterQuality); this->drawCase3(canvas, kCol3X, kRow2Y, aa, SkCanvas::kFast_SrcRectConstraint, kNone_SkFilterQuality); this->drawCase4(canvas, kCol3X, kRow3Y, aa, SkCanvas::kFast_SrcRectConstraint, kNone_SkFilterQuality); this->drawCase5(canvas, kCol3X, kRow4Y, aa, SkCanvas::kFast_SrcRectConstraint, kNone_SkFilterQuality); // Then draw a column with bleeding and low filtering this->drawCase1(canvas, kCol4X, kRow0Y, aa, SkCanvas::kFast_SrcRectConstraint, kLow_SkFilterQuality); this->drawCase2(canvas, kCol4X, kRow1Y, aa, SkCanvas::kFast_SrcRectConstraint, kLow_SkFilterQuality); this->drawCase3(canvas, kCol4X, kRow2Y, aa, SkCanvas::kFast_SrcRectConstraint, kLow_SkFilterQuality); this->drawCase4(canvas, kCol4X, kRow3Y, aa, SkCanvas::kFast_SrcRectConstraint, kLow_SkFilterQuality); this->drawCase5(canvas, kCol4X, kRow4Y, aa, SkCanvas::kFast_SrcRectConstraint, kLow_SkFilterQuality); // Finally draw a column with bleeding and high filtering this->drawCase1(canvas, kCol5X, kRow0Y, aa, SkCanvas::kFast_SrcRectConstraint, kHigh_SkFilterQuality); this->drawCase2(canvas, kCol5X, kRow1Y, aa, SkCanvas::kFast_SrcRectConstraint, kHigh_SkFilterQuality); this->drawCase3(canvas, kCol5X, kRow2Y, aa, SkCanvas::kFast_SrcRectConstraint, kHigh_SkFilterQuality); this->drawCase4(canvas, kCol5X, kRow3Y, aa, SkCanvas::kFast_SrcRectConstraint, kHigh_SkFilterQuality); this->drawCase5(canvas, kCol5X, kRow4Y, aa, SkCanvas::kFast_SrcRectConstraint, kHigh_SkFilterQuality); SkPoint corners[] = { { 0, 0 },{ 0, kBottom },{ kWidth, kBottom },{ kWidth, 0 } }; matrices[m].mapPoints(corners, 4); SkScalar x = kBlockSize + SkTMax(SkTMax(corners[0].fX, corners[1].fX), SkTMax(corners[2].fX, corners[3].fX)); maxX = SkTMax(maxX, x); canvas->restore(); } canvas->restore(); } } #if SK_SUPPORT_GPU void modifyGrContextOptions(GrContextOptions* options) override { options->fMaxTileSizeOverride = kMaxTileSize; } #endif private: static const int kBlockSize = 70; static const int kBlockSpacing = 12; static const int kCol0X = kBlockSpacing; static const int kCol1X = 2*kBlockSpacing + kBlockSize; static const int kCol2X = 3*kBlockSpacing + 2*kBlockSize; static const int kCol3X = 4*kBlockSpacing + 3*kBlockSize; static const int kCol4X = 5*kBlockSpacing + 4*kBlockSize; static const int kCol5X = 6*kBlockSpacing + 5*kBlockSize; static const int kWidth = 7*kBlockSpacing + 6*kBlockSize; static const int kRow0Y = kBlockSpacing; static const int kRow1Y = 2*kBlockSpacing + kBlockSize; static const int kRow2Y = 3*kBlockSpacing + 2*kBlockSize; static const int kRow3Y = 4*kBlockSpacing + 3*kBlockSize; static const int kRow4Y = 5*kBlockSpacing + 4*kBlockSize; static const int kSmallTextureSize = 6; static const int kMaxTileSize = 32; bool fCreatedPixels; TestPixels fBigTestPixels; TestPixels fSmallTestPixels; SkAutoTUnref fShader; const BleedTest fBT; typedef GM INHERITED; }; DEF_GM( return new BleedGM(kUseBitmap_BleedTest); ) DEF_GM( return new BleedGM(kUseTextureBitmap_BleedTest); ) DEF_GM( return new BleedGM(kUseImage_BleedTest); ) DEF_GM( return new BleedGM(kUseAlphaBitmap_BleedTest); ) DEF_GM( return new BleedGM(kUseAlphaTextureBitmap_BleedTest); ) DEF_GM( return new BleedGM(kUseAlphaImage_BleedTest); ) DEF_GM( return new BleedGM(kUseAlphaBitmapShader_BleedTest); ) DEF_GM( return new BleedGM(kUseAlphaTextureBitmapShader_BleedTest); ) DEF_GM( return new BleedGM(kUseAlphaImageShader_BleedTest); )