/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkMatrix44_DEFINED #define SkMatrix44_DEFINED #include "SkMatrix.h" #include "SkScalar.h" #include <atomic> #include <cstring> #ifdef SK_MSCALAR_IS_DOUBLE #ifdef SK_MSCALAR_IS_FLOAT #error "can't define MSCALAR both as DOUBLE and FLOAT" #endif typedef double SkMScalar; static inline double SkFloatToMScalar(float x) { return static_cast<double>(x); } static inline float SkMScalarToFloat(double x) { return static_cast<float>(x); } static inline double SkDoubleToMScalar(double x) { return x; } static inline double SkMScalarToDouble(double x) { return x; } static inline double SkMScalarAbs(double x) { return fabs(x); } static const SkMScalar SK_MScalarPI = 3.141592653589793; #define SkMScalarFloor(x) sk_double_floor(x) #define SkMScalarCeil(x) sk_double_ceil(x) #define SkMScalarRound(x) sk_double_round(x) #define SkMScalarFloorToInt(x) sk_double_floor2int(x) #define SkMScalarCeilToInt(x) sk_double_ceil2int(x) #define SkMScalarRoundToInt(x) sk_double_round2int(x) #elif defined SK_MSCALAR_IS_FLOAT #ifdef SK_MSCALAR_IS_DOUBLE #error "can't define MSCALAR both as DOUBLE and FLOAT" #endif typedef float SkMScalar; static inline float SkFloatToMScalar(float x) { return x; } static inline float SkMScalarToFloat(float x) { return x; } static inline float SkDoubleToMScalar(double x) { return sk_double_to_float(x); } static inline double SkMScalarToDouble(float x) { return static_cast<double>(x); } static inline float SkMScalarAbs(float x) { return sk_float_abs(x); } static const SkMScalar SK_MScalarPI = 3.14159265f; #define SkMScalarFloor(x) sk_float_floor(x) #define SkMScalarCeil(x) sk_float_ceil(x) #define SkMScalarRound(x) sk_float_round(x) #define SkMScalarFloorToInt(x) sk_float_floor2int(x) #define SkMScalarCeilToInt(x) sk_float_ceil2int(x) #define SkMScalarRoundToInt(x) sk_float_round2int(x) #endif #define SkIntToMScalar(n) static_cast<SkMScalar>(n) #define SkMScalarToScalar(x) SkMScalarToFloat(x) #define SkScalarToMScalar(x) SkFloatToMScalar(x) static const SkMScalar SK_MScalar1 = 1; /////////////////////////////////////////////////////////////////////////////// struct SkVector4 { SkScalar fData[4]; SkVector4() { this->set(0, 0, 0, 1); } SkVector4(const SkVector4& src) { memcpy(fData, src.fData, sizeof(fData)); } SkVector4(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) { fData[0] = x; fData[1] = y; fData[2] = z; fData[3] = w; } SkVector4& operator=(const SkVector4& src) { memcpy(fData, src.fData, sizeof(fData)); return *this; } bool operator==(const SkVector4& v) { return fData[0] == v.fData[0] && fData[1] == v.fData[1] && fData[2] == v.fData[2] && fData[3] == v.fData[3]; } bool operator!=(const SkVector4& v) { return !(*this == v); } bool equals(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) { return fData[0] == x && fData[1] == y && fData[2] == z && fData[3] == w; } void set(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) { fData[0] = x; fData[1] = y; fData[2] = z; fData[3] = w; } }; /** \class SkMatrix44 The SkMatrix44 class holds a 4x4 matrix. SkMatrix44 is not thread safe unless you've first called SkMatrix44::getType(). */ class SK_API SkMatrix44 { public: enum Uninitialized_Constructor { kUninitialized_Constructor }; enum Identity_Constructor { kIdentity_Constructor }; SkMatrix44(Uninitialized_Constructor) {} constexpr SkMatrix44(Identity_Constructor) : fMat{{ 1, 0, 0, 0, }, { 0, 1, 0, 0, }, { 0, 0, 1, 0, }, { 0, 0, 0, 1, }} , fTypeMask(kIdentity_Mask) {} SK_ATTR_DEPRECATED("use the constructors that take an enum") SkMatrix44() { this->setIdentity(); } SkMatrix44(const SkMatrix44& src) { memcpy(fMat, src.fMat, sizeof(fMat)); fTypeMask.store(src.fTypeMask, std::memory_order_relaxed); } SkMatrix44(const SkMatrix44& a, const SkMatrix44& b) { this->setConcat(a, b); } SkMatrix44& operator=(const SkMatrix44& src) { if (&src != this) { memcpy(fMat, src.fMat, sizeof(fMat)); fTypeMask.store(src.fTypeMask, std::memory_order_relaxed); } return *this; } bool operator==(const SkMatrix44& other) const; bool operator!=(const SkMatrix44& other) const { return !(other == *this); } /* When converting from SkMatrix44 to SkMatrix, the third row and * column is dropped. When converting from SkMatrix to SkMatrix44 * the third row and column remain as identity: * [ a b c ] [ a b 0 c ] * [ d e f ] -> [ d e 0 f ] * [ g h i ] [ 0 0 1 0 ] * [ g h 0 i ] */ SkMatrix44(const SkMatrix&); SkMatrix44& operator=(const SkMatrix& src); operator SkMatrix() const; /** * Return a reference to a const identity matrix */ static const SkMatrix44& I(); enum TypeMask { kIdentity_Mask = 0, kTranslate_Mask = 0x01, //!< set if the matrix has translation kScale_Mask = 0x02, //!< set if the matrix has any scale != 1 kAffine_Mask = 0x04, //!< set if the matrix skews or rotates kPerspective_Mask = 0x08 //!< set if the matrix is in perspective }; /** * Returns a bitfield describing the transformations the matrix may * perform. The bitfield is computed conservatively, so it may include * false positives. For example, when kPerspective_Mask is true, all * other bits may be set to true even in the case of a pure perspective * transform. */ inline TypeMask getType() const { if (fTypeMask.load(std::memory_order_relaxed) & kUnknown_Mask) { fTypeMask.store(this->computeTypeMask(), std::memory_order_relaxed); } SkASSERT(!(fTypeMask & kUnknown_Mask)); return (TypeMask)fTypeMask.load(std::memory_order_relaxed); } /** * Return true if the matrix is identity. */ inline bool isIdentity() const { return kIdentity_Mask == this->getType(); } /** * Return true if the matrix contains translate or is identity. */ inline bool isTranslate() const { return !(this->getType() & ~kTranslate_Mask); } /** * Return true if the matrix only contains scale or translate or is identity. */ inline bool isScaleTranslate() const { return !(this->getType() & ~(kScale_Mask | kTranslate_Mask)); } /** * Returns true if the matrix only contains scale or is identity. */ inline bool isScale() const { return !(this->getType() & ~kScale_Mask); } inline bool hasPerspective() const { return SkToBool(this->getType() & kPerspective_Mask); } void setIdentity(); inline void reset() { this->setIdentity();} /** * get a value from the matrix. The row,col parameters work as follows: * (0, 0) scale-x * (0, 3) translate-x * (3, 0) perspective-x */ inline SkMScalar get(int row, int col) const { SkASSERT((unsigned)row <= 3); SkASSERT((unsigned)col <= 3); return fMat[col][row]; } /** * set a value in the matrix. The row,col parameters work as follows: * (0, 0) scale-x * (0, 3) translate-x * (3, 0) perspective-x */ inline void set(int row, int col, SkMScalar value) { SkASSERT((unsigned)row <= 3); SkASSERT((unsigned)col <= 3); fMat[col][row] = value; this->dirtyTypeMask(); } inline double getDouble(int row, int col) const { return SkMScalarToDouble(this->get(row, col)); } inline void setDouble(int row, int col, double value) { this->set(row, col, SkDoubleToMScalar(value)); } inline float getFloat(int row, int col) const { return SkMScalarToFloat(this->get(row, col)); } inline void setFloat(int row, int col, float value) { this->set(row, col, SkFloatToMScalar(value)); } /** These methods allow one to efficiently read matrix entries into an * array. The given array must have room for exactly 16 entries. Whenever * possible, they will try to use memcpy rather than an entry-by-entry * copy. * * Col major indicates that consecutive elements of columns will be stored * contiguously in memory. Row major indicates that consecutive elements * of rows will be stored contiguously in memory. */ void asColMajorf(float[]) const; void asColMajord(double[]) const; void asRowMajorf(float[]) const; void asRowMajord(double[]) const; /** These methods allow one to efficiently set all matrix entries from an * array. The given array must have room for exactly 16 entries. Whenever * possible, they will try to use memcpy rather than an entry-by-entry * copy. * * Col major indicates that input memory will be treated as if consecutive * elements of columns are stored contiguously in memory. Row major * indicates that input memory will be treated as if consecutive elements * of rows are stored contiguously in memory. */ void setColMajorf(const float[]); void setColMajord(const double[]); void setRowMajorf(const float[]); void setRowMajord(const double[]); #ifdef SK_MSCALAR_IS_FLOAT void setColMajor(const SkMScalar data[]) { this->setColMajorf(data); } void setRowMajor(const SkMScalar data[]) { this->setRowMajorf(data); } #else void setColMajor(const SkMScalar data[]) { this->setColMajord(data); } void setRowMajor(const SkMScalar data[]) { this->setRowMajord(data); } #endif /* This sets the top-left of the matrix and clears the translation and * perspective components (with [3][3] set to 1). m_ij is interpreted * as the matrix entry at row = i, col = j. */ void set3x3(SkMScalar m_00, SkMScalar m_10, SkMScalar m_20, SkMScalar m_01, SkMScalar m_11, SkMScalar m_21, SkMScalar m_02, SkMScalar m_12, SkMScalar m_22); void set3x3RowMajorf(const float[]); void setTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz); void preTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz); void postTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz); void setScale(SkMScalar sx, SkMScalar sy, SkMScalar sz); void preScale(SkMScalar sx, SkMScalar sy, SkMScalar sz); void postScale(SkMScalar sx, SkMScalar sy, SkMScalar sz); inline void setScale(SkMScalar scale) { this->setScale(scale, scale, scale); } inline void preScale(SkMScalar scale) { this->preScale(scale, scale, scale); } inline void postScale(SkMScalar scale) { this->postScale(scale, scale, scale); } void setRotateDegreesAbout(SkMScalar x, SkMScalar y, SkMScalar z, SkMScalar degrees) { this->setRotateAbout(x, y, z, degrees * SK_MScalarPI / 180); } /** Rotate about the vector [x,y,z]. If that vector is not unit-length, it will be automatically resized. */ void setRotateAbout(SkMScalar x, SkMScalar y, SkMScalar z, SkMScalar radians); /** Rotate about the vector [x,y,z]. Does not check the length of the vector, assuming it is unit-length. */ void setRotateAboutUnit(SkMScalar x, SkMScalar y, SkMScalar z, SkMScalar radians); void setConcat(const SkMatrix44& a, const SkMatrix44& b); inline void preConcat(const SkMatrix44& m) { this->setConcat(*this, m); } inline void postConcat(const SkMatrix44& m) { this->setConcat(m, *this); } friend SkMatrix44 operator*(const SkMatrix44& a, const SkMatrix44& b) { return SkMatrix44(a, b); } /** If this is invertible, return that in inverse and return true. If it is not invertible, return false and leave the inverse parameter in an unspecified state. */ bool invert(SkMatrix44* inverse) const; /** Transpose this matrix in place. */ void transpose(); /** Apply the matrix to the src vector, returning the new vector in dst. It is legal for src and dst to point to the same memory. */ void mapScalars(const SkScalar src[4], SkScalar dst[4]) const; inline void mapScalars(SkScalar vec[4]) const { this->mapScalars(vec, vec); } SK_ATTR_DEPRECATED("use mapScalars") void map(const SkScalar src[4], SkScalar dst[4]) const { this->mapScalars(src, dst); } SK_ATTR_DEPRECATED("use mapScalars") void map(SkScalar vec[4]) const { this->mapScalars(vec, vec); } #ifdef SK_MSCALAR_IS_DOUBLE void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const; #elif defined SK_MSCALAR_IS_FLOAT inline void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const { this->mapScalars(src, dst); } #endif inline void mapMScalars(SkMScalar vec[4]) const { this->mapMScalars(vec, vec); } friend SkVector4 operator*(const SkMatrix44& m, const SkVector4& src) { SkVector4 dst; m.mapScalars(src.fData, dst.fData); return dst; } /** * map an array of [x, y, 0, 1] through the matrix, returning an array * of [x', y', z', w']. * * @param src2 array of [x, y] pairs, with implied z=0 and w=1 * @param count number of [x, y] pairs in src2 * @param dst4 array of [x', y', z', w'] quads as the output. */ void map2(const float src2[], int count, float dst4[]) const; void map2(const double src2[], int count, double dst4[]) const; /** Returns true if transformating an axis-aligned square in 2d by this matrix will produce another 2d axis-aligned square; typically means the matrix is a scale with perhaps a 90-degree rotation. A 3d rotation through 90 degrees into a perpendicular plane collapses a square to a line, but is still considered to be axis-aligned. By default, tolerates very slight error due to float imprecisions; a 90-degree rotation can still end up with 10^-17 of "non-axis-aligned" result. */ bool preserves2dAxisAlignment(SkMScalar epsilon = SK_ScalarNearlyZero) const; void dump() const; double determinant() const; private: /* This is indexed by [col][row]. */ SkMScalar fMat[4][4]; mutable std::atomic<unsigned> fTypeMask; static constexpr int kUnknown_Mask = 0x80; static constexpr int kAllPublic_Masks = 0xF; void as3x4RowMajorf(float[]) const; void set3x4RowMajorf(const float[]); SkMScalar transX() const { return fMat[3][0]; } SkMScalar transY() const { return fMat[3][1]; } SkMScalar transZ() const { return fMat[3][2]; } SkMScalar scaleX() const { return fMat[0][0]; } SkMScalar scaleY() const { return fMat[1][1]; } SkMScalar scaleZ() const { return fMat[2][2]; } SkMScalar perspX() const { return fMat[0][3]; } SkMScalar perspY() const { return fMat[1][3]; } SkMScalar perspZ() const { return fMat[2][3]; } int computeTypeMask() const; inline void dirtyTypeMask() { fTypeMask.store(kUnknown_Mask, std::memory_order_relaxed); } inline void setTypeMask(int mask) { SkASSERT(0 == (~(kAllPublic_Masks | kUnknown_Mask) & mask)); fTypeMask.store(mask, std::memory_order_relaxed); } /** * Does not take the time to 'compute' the typemask. Only returns true if * we already know that this matrix is identity. */ inline bool isTriviallyIdentity() const { return 0 == fTypeMask.load(std::memory_order_relaxed); } inline const SkMScalar* values() const { return &fMat[0][0]; } friend class SkColorSpace; friend class SkColorSpace_XYZ; }; #endif