/* * Copyright 2022 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkColorSpace.h" #include "include/gpu/GrDirectContext.h" #include "src/gpu/ganesh/GrDirectContextPriv.h" #include "src/gpu/ganesh/GrGpu.h" #include "src/gpu/ganesh/GrGpuBuffer.h" #include "src/gpu/ganesh/GrResourceProvider.h" #include "src/gpu/ganesh/glsl/GrGLSLFragmentShaderBuilder.h" #include "src/gpu/ganesh/ops/GrMeshDrawOp.h" #include "src/gpu/ganesh/ops/GrSimpleMeshDrawOpHelper.h" #include "src/gpu/ganesh/v1/SurfaceDrawContext_v1.h" #include "tests/Test.h" #include "tools/gpu/GrContextFactory.h" // Simple op that draws a vertex buffer with float2 positions as green triangles. We use this to // draw GrGpuBuffers to test that the buffer contains the expected values as not all contexts will // support buffer mapping. class TestVertexOp final : public GrMeshDrawOp { public: static GrOp::Owner Make(GrRecordingContext* context, sk_sp buffer, int baseVertex, int vertexCount, const SkRect& bounds) { return GrOp::Make(context, std::move(buffer), baseVertex, vertexCount, bounds); } const char* name() const override { return "TestVertexOp"; } FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; } GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip, GrClampType clampType) override { static constexpr SkPMColor4f kGreen{0, 1, 0, 1}; SkPMColor4f color = kGreen; auto analysis = fProcessorSet.finalize(GrProcessorAnalysisColor::Opaque::kYes, GrProcessorAnalysisCoverage::kNone, clip, &GrUserStencilSettings::kUnused, caps, clampType, &color); SkASSERT(color == kGreen); return analysis; } void visitProxies(const GrVisitProxyFunc& func) const override { if (fProgramInfo) { fProgramInfo->visitFPProxies(func); } } private: DEFINE_OP_CLASS_ID TestVertexOp(sk_sp buffer, int baseVertex, int vertexCount, const SkRect& bounds) : GrMeshDrawOp(ClassID()) , fBuffer(std::move(buffer)) , fProcessorSet(SkBlendMode::kSrc) , fBaseVertex(baseVertex) , fVertexCount(vertexCount) { this->setBounds(bounds, HasAABloat::kNo, GrOp::IsHairline::kNo); } GrProgramInfo* programInfo() override { return fProgramInfo; } void onCreateProgramInfo(const GrCaps* caps, SkArenaAlloc* arena, const GrSurfaceProxyView& writeView, bool usesMSAASurface, GrAppliedClip&& appliedClip, const GrDstProxyView& dstProxyView, GrXferBarrierFlags renderPassXferBarriers, GrLoadOp colorLoadOp) override { fProgramInfo = GrSimpleMeshDrawOpHelper::CreateProgramInfo( caps, arena, writeView, usesMSAASurface, std::move(appliedClip), dstProxyView, &fGP, std::move(fProcessorSet), GrPrimitiveType::kTriangles, renderPassXferBarriers, colorLoadOp, GrPipeline::InputFlags::kNone); } class GP : public GrGeometryProcessor { public: GP() : GrGeometryProcessor(kTestFP_ClassID) { this->setVertexAttributesWithImplicitOffsets(&kPos, 1); } const char* name() const override { return "TestVertexOp::GP"; } std::unique_ptr makeProgramImpl(const GrShaderCaps&) const override { class Impl : public ProgramImpl { public: void setData(const GrGLSLProgramDataManager&, const GrShaderCaps&, const GrGeometryProcessor&) override {} private: void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override { const auto& gp = args.fGeomProc.cast(); args.fVaryingHandler->emitAttributes(gp); args.fFragBuilder->codeAppendf("half4 %s = half4(0, 1, 0, 1);", args.fOutputColor); args.fFragBuilder->codeAppendf("const half4 %s = half4(1);", args.fOutputCoverage); WriteOutputPosition(args.fVertBuilder, gpArgs, kPos.name()); } UniformHandle fLocalMatrixUni; }; return std::make_unique(); } void addToKey(const GrShaderCaps &caps, skgpu::KeyBuilder *builder) const override {} private: static constexpr Attribute kPos = {"pos", kFloat2_GrVertexAttribType, SkSLType::kFloat2}; }; void onPrepareDraws(GrMeshDrawTarget* target) override { fMesh = target->allocMesh(); fMesh->set(fBuffer, fVertexCount, fBaseVertex); } void onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) override { if (!fProgramInfo) { this->createProgramInfo(flushState); } flushState->bindPipelineAndScissorClip(*fProgramInfo, chainBounds); flushState->bindTextures(fProgramInfo->geomProc(), nullptr, fProgramInfo->pipeline()); flushState->drawMesh(*fMesh); } sk_sp fBuffer; GP fGP; GrProcessorSet fProcessorSet; int fBaseVertex; int fVertexCount; GrProgramInfo* fProgramInfo = nullptr; GrSimpleMesh* fMesh = nullptr; friend class ::GrOp; }; DEF_GPUTEST_FOR_RENDERING_CONTEXTS(GrGpuBufferTransferTest, reporter, ctxInfo) { if (!ctxInfo.directContext()->priv().caps()->transferFromBufferToBufferSupport()) { return; } GrDirectContext* dc = ctxInfo.directContext(); GrResourceProvider* rp = ctxInfo.directContext()->priv().resourceProvider(); GrGpu* gpu = ctxInfo.directContext()->priv().getGpu(); auto create_cpu_to_gpu_buffer = [&](int baseVertex) { // Ensure any extra vertices are offscreen int totalVertices = baseVertex + 6; auto points = std::make_unique(totalVertices); SkPoint offscreenPt{-10000, -10000}; std::fill_n(points.get(), totalVertices, offscreenPt); // set the quad at the desired base vertex static constexpr SkPoint kUnitQuad[] {{0, 0}, {0, 1}, {1, 0}, {1, 0}, {0, 1}, {1, 1}}; std::copy_n(kUnitQuad, 6, points.get() + baseVertex); return rp->createBuffer(points.get(), totalVertices*sizeof(SkPoint), GrGpuBufferType::kXferCpuToGpu, kDynamic_GrAccessPattern); }; auto create_vertex_buffer = [&](sk_sp srcBuffer, int srcBaseVertex, int vbBaseVertex, bool minSizedTransfers) { // make initialization data of offscreen points. int dstVertexCount = vbBaseVertex + 6; auto points = std::make_unique(dstVertexCount); SkPoint offscreenPt{-10000, -10000}; std::fill_n(points.get(), dstVertexCount, offscreenPt); sk_sp vb = rp->createBuffer(points.get(), dstVertexCount*sizeof(SkPoint), GrGpuBufferType::kVertex, kDynamic_GrAccessPattern); // copy actual quad data from the source buffer to our new vb. static constexpr size_t kTotalSize = 6*sizeof(SkPoint); size_t srcOffset = srcBaseVertex*sizeof(SkPoint); size_t vbOffset = vbBaseVertex*sizeof(SkPoint); size_t alignment = gpu->caps()->transferFromBufferToBufferAlignment(); SkASSERT(kTotalSize % alignment == 0); SkASSERT(sizeof(SkPoint) % alignment == 0); if (minSizedTransfers) { for (size_t n = kTotalSize/alignment, i = 0; i < n; ++i) { gpu->transferFromBufferToBuffer(srcBuffer, srcOffset + i*alignment, vb, vbOffset + i*alignment, alignment); } } else { gpu->transferFromBufferToBuffer(srcBuffer, srcOffset, vb, vbOffset, kTotalSize); } return vb; }; auto sdc = skgpu::v1::SurfaceDrawContext::Make(dc, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kExact, {1, 1}, SkSurfaceProps{}, std::string_view{}); if (!sdc) { ERRORF(reporter, "Could not create draw context"); return; } auto pm = GrPixmap::Allocate(sdc->imageInfo().makeColorType(GrColorType::kRGBA_F32)); for (bool minSizedTransfers : {false, true}) { for (int srcBaseVertex : {0, 5}) { auto src = create_cpu_to_gpu_buffer(srcBaseVertex); if (!src) { ERRORF(reporter, "Could not create src buffer"); return; } for (int vbBaseVertex : {0, 2}) { auto vb = create_vertex_buffer(src, srcBaseVertex, vbBaseVertex, minSizedTransfers); if (!vb) { ERRORF(reporter, "Could not create vertex buffer"); return; } static constexpr SkColor4f kRed{1, 0, 0, 1}; static constexpr SkRect kBounds{0, 0, 1, 1}; sdc->clear(kRed); sdc->addDrawOp(nullptr, TestVertexOp::Make(dc, vb, vbBaseVertex, /*vertexCount=*/6, kBounds)); auto color = static_cast(pm.addr()); *color = kRed.premul(); if (!sdc->readPixels(dc, pm, {0, 0})) { ERRORF(reporter, "Read back failed."); return; } static constexpr SkPMColor4f kGreen{0, 1, 0, 1}; REPORTER_ASSERT(reporter, *color == kGreen, "src base vertex: %d, " "vb base vertex: %d, " "minSizedTransfers: %d", srcBaseVertex, vbBaseVertex, minSizedTransfers); } } } } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(GrGpuBufferUpdateDataTest, reporter, ctxInfo) { GrDirectContext* dc = ctxInfo.directContext(); GrGpu* gpu = ctxInfo.directContext()->priv().getGpu(); static constexpr SkPoint kUnitQuad[] {{0, 0}, {0, 1}, {1, 0}, {1, 0}, {0, 1}, {1, 1}}; auto sdc = skgpu::v1::SurfaceDrawContext::Make(dc, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kExact, {1, 1}, SkSurfaceProps{}, std::string_view{}); if (!sdc) { ERRORF(reporter, "Could not create draw context"); return; } auto pm = GrPixmap::Allocate(sdc->imageInfo().makeColorType(GrColorType::kRGBA_F32)); for (bool piecewise : {false, true}) { size_t alignment = piecewise ? gpu->caps()->bufferUpdateDataPreserveAlignment() : 1; for (size_t offset : {size_t{0}, 4*sizeof(SkPoint), size_t{1}, size_t{27}}) { // For non-discarding updates we may not be able to actually put the data at an // arbitrary offset. if (alignment > 1) { offset = SkAlignTo(offset, alignment); } for (auto accessPattern : {kStatic_GrAccessPattern, // kStream_GrAccessPattern, GrVkGpu asserts on this for VBs. kDynamic_GrAccessPattern}) { // Go direct to GrGpu to avoid caching/size adjustments at GrResourceProvider level. // We add an extra size(SkPoint) to ensure that everything fits when we align the // first point's location in the vb below. auto vb = gpu->createBuffer(sizeof(kUnitQuad) + offset + sizeof(SkPoint), GrGpuBufferType::kVertex, accessPattern); if (!vb) { ERRORF(reporter, "Could not create vertex buffer"); return; } const void* src = kUnitQuad; size_t updateSize = sizeof(kUnitQuad); // The vertices in the VB must be aligned to the size of a vertex (because our draw // call takes a base vertex index rather than a byte offset). So if we want our // upload to begin at a non-aligned byte we shift the data in the src buffer so that // it falls at a vertex alignment in the vb. std::unique_ptr tempSrc; size_t baseVertex = offset/sizeof(SkPoint); if (size_t r = offset%sizeof(SkPoint); r != 0) { size_t pad = sizeof(SkPoint) - r; updateSize += pad; if (alignment > 1) { updateSize = SkAlignTo(updateSize, alignment); } ++baseVertex; tempSrc.reset(new char[updateSize]); std::memcpy(tempSrc.get() + pad, kUnitQuad, sizeof(kUnitQuad)); src = tempSrc.get(); } if (piecewise) { // This is the minimum size we can transfer at once. size_t pieceSize = alignment; // Upload each piece from a buffer where the byte before and after the uploaded // bytes are not the same values as want adjacent to the piece in the buffer. // Thus, if updateData() transfers extra bytes around the source we should get a // bad buffer. auto piece = std::make_unique(pieceSize + 2); piece[0] = piece[pieceSize + 1] = 0xFF; for (size_t o = 0; o < updateSize; o += pieceSize) { memcpy(&piece[1], SkTAddOffset(src, o), pieceSize); if (!vb->updateData(&piece[1], offset + o, pieceSize, /*preserve=*/true)) { ERRORF(reporter, "GrGpuBuffer::updateData returned false."); return; } } } else if (!vb->updateData(src, offset, updateSize, /*preserve=*/false)) { ERRORF(reporter, "GrGpuBuffer::updateData returned false."); return; } static constexpr SkColor4f kRed{1, 0, 0, 1}; static constexpr SkRect kBounds{0, 0, 1, 1}; sdc->clear(kRed); sdc->addDrawOp(nullptr, TestVertexOp::Make(dc, vb, baseVertex, std::size(kUnitQuad), kBounds)); auto color = static_cast(pm.addr()); *color = kRed.premul(); if (!sdc->readPixels(dc, pm, {0, 0})) { ERRORF(reporter, "Read back failed."); return; } static constexpr SkPMColor4f kGreen{0, 1, 0, 1}; REPORTER_ASSERT(reporter, *color == kGreen, "piecewise: %d, offset: %zu", piecewise, offset); } } } }