/* * Copyright 2018 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "DDLPromiseImageHelper.h" #include "GrContext.h" #include "GrContextPriv.h" #include "GrGpu.h" #include "SkCachedData.h" #include "SkDeferredDisplayListRecorder.h" #include "SkImage_Base.h" #include "SkYUVAIndex.h" #include "SkYUVASizeInfo.h" DDLPromiseImageHelper::PromiseImageCallbackContext::~PromiseImageCallbackContext() { SkASSERT(fDoneCnt == fNumImages); SkASSERT(!fUnreleasedFulfills); SkASSERT(fTotalReleases == fTotalFulfills); SkASSERT(!fTotalFulfills || fDoneCnt); if (fPromiseImageTexture) { GrGpu* gpu = fContext->priv().getGpu(); gpu->deleteTestingOnlyBackendTexture(fPromiseImageTexture->backendTexture()); } } void DDLPromiseImageHelper::PromiseImageCallbackContext::setBackendTexture( const GrBackendTexture& backendTexture) { SkASSERT(!fUnreleasedFulfills); if (fPromiseImageTexture) { GrGpu* gpu = fContext->priv().getGpu(); gpu->deleteTestingOnlyBackendTexture(fPromiseImageTexture->backendTexture()); } fPromiseImageTexture = SkPromiseImageTexture::Make(backendTexture); } /////////////////////////////////////////////////////////////////////////////////////////////////// DDLPromiseImageHelper::~DDLPromiseImageHelper() {} sk_sp DDLPromiseImageHelper::deflateSKP(const SkPicture* inputPicture) { SkSerialProcs procs; procs.fImageCtx = this; procs.fImageProc = [](SkImage* image, void* ctx) -> sk_sp { auto helper = static_cast(ctx); int id = helper->findOrDefineImage(image); if (id >= 0) { SkASSERT(helper->isValidID(id)); return SkData::MakeWithCopy(&id, sizeof(id)); } return nullptr; }; return inputPicture->serialize(&procs); } // needed until we have SkRG_88_ColorType; static GrBackendTexture create_yuva_texture(GrGpu* gpu, const SkPixmap& pm, const SkYUVAIndex yuvaIndices[4], int texIndex) { SkASSERT(texIndex >= 0 && texIndex <= 3); int channelCount = 0; for (int i = 0; i < SkYUVAIndex::kIndexCount; ++i) { if (yuvaIndices[i].fIndex == texIndex) { ++channelCount; } } // Need to create an RG texture for two-channel planes GrBackendTexture tex; if (2 == channelCount) { SkASSERT(kRGBA_8888_SkColorType == pm.colorType()); SkAutoTMalloc pixels(2 * pm.width()*pm.height()); char* currPixel = pixels; for (int y = 0; y < pm.height(); ++y) { for (int x = 0; x < pm.width(); ++x) { SkColor color = pm.getColor(x, y); currPixel[0] = SkColorGetR(color); currPixel[1] = SkColorGetG(color); currPixel += 2; } } tex = gpu->createTestingOnlyBackendTexture( pixels, pm.width(), pm.height(), GrColorType::kRG_88, false, GrMipMapped::kNo, 2 * pm.width()); } else { tex = gpu->createTestingOnlyBackendTexture( pm.addr(), pm.width(), pm.height(), pm.colorType(), false, GrMipMapped::kNo, pm.rowBytes()); } return tex; } void DDLPromiseImageHelper::uploadAllToGPU(GrContext* context) { GrGpu* gpu = context->priv().getGpu(); SkASSERT(gpu); for (int i = 0; i < fImageInfo.count(); ++i) { const PromiseImageInfo& info = fImageInfo[i]; // DDL TODO: how can we tell if we need mipmapping! if (info.isYUV()) { int numPixmaps; SkAssertResult(SkYUVAIndex::AreValidIndices(info.yuvaIndices(), &numPixmaps)); for (int j = 0; j < numPixmaps; ++j) { const SkPixmap& yuvPixmap = info.yuvPixmap(j); sk_sp callbackContext( new PromiseImageCallbackContext(context)); callbackContext->setBackendTexture(create_yuva_texture(gpu, yuvPixmap, info.yuvaIndices(), j)); SkASSERT(callbackContext->promiseImageTexture()); fImageInfo[i].setCallbackContext(j, std::move(callbackContext)); } } else { sk_sp callbackContext( new PromiseImageCallbackContext(context)); const SkBitmap& bm = info.normalBitmap(); callbackContext->setBackendTexture(gpu->createTestingOnlyBackendTexture( bm.getPixels(), bm.width(), bm.height(), bm.colorType(), false, GrMipMapped::kNo, bm.rowBytes())); // The GMs sometimes request too large an image //SkAssertResult(callbackContext->backendTexture().isValid()); fImageInfo[i].setCallbackContext(0, std::move(callbackContext)); } } } void DDLPromiseImageHelper::replaceEveryOtherPromiseTexture(GrContext* context) { GrGpu* gpu = context->priv().getGpu(); SkASSERT(gpu); for (int i = 0; i < fImageInfo.count(); i += 2) { PromiseImageInfo& info = fImageInfo[i]; // DDL TODO: how can we tell if we need mipmapping! if (info.isYUV()) { int numPixmaps; SkAssertResult(SkYUVAIndex::AreValidIndices(info.yuvaIndices(), &numPixmaps)); for (int j = 0; j < numPixmaps; ++j) { const SkPixmap& yuvPixmap = info.yuvPixmap(j); info.callbackContext(j)->setBackendTexture( create_yuva_texture(gpu, yuvPixmap, info.yuvaIndices(), j)); SkASSERT(info.callbackContext(j)->promiseImageTexture()); } } else { const SkBitmap& bm = info.normalBitmap(); info.callbackContext(0)->setBackendTexture(gpu->createTestingOnlyBackendTexture( bm.getPixels(), bm.width(), bm.height(), bm.colorType(), false, GrMipMapped::kNo, bm.rowBytes())); // The GMs sometimes request too large an image // SkAssertResult(callbackContext->backendTexture().isValid()); } } } sk_sp DDLPromiseImageHelper::reinflateSKP( SkDeferredDisplayListRecorder* recorder, SkData* compressedPictureData, SkTArray>* promiseImages) const { PerRecorderContext perRecorderContext { recorder, this, promiseImages }; SkDeserialProcs procs; procs.fImageCtx = (void*) &perRecorderContext; procs.fImageProc = PromiseImageCreator; return SkPicture::MakeFromData(compressedPictureData, &procs); } // This generates promise images to replace the indices in the compressed picture. This // reconstitution is performed separately in each thread so we end up with multiple // promise images referring to the same GrBackendTexture. sk_sp DDLPromiseImageHelper::PromiseImageCreator(const void* rawData, size_t length, void* ctxIn) { PerRecorderContext* perRecorderContext = static_cast(ctxIn); const DDLPromiseImageHelper* helper = perRecorderContext->fHelper; SkDeferredDisplayListRecorder* recorder = perRecorderContext->fRecorder; SkASSERT(length == sizeof(int)); const int* indexPtr = static_cast(rawData); SkASSERT(helper->isValidID(*indexPtr)); const DDLPromiseImageHelper::PromiseImageInfo& curImage = helper->getInfo(*indexPtr); if (!curImage.promiseTexture(0)) { SkASSERT(!curImage.isYUV()); // We weren't able to make a backend texture for this SkImage. In this case we create // a separate bitmap-backed image for each thread. SkASSERT(curImage.normalBitmap().isImmutable()); return SkImage::MakeFromBitmap(curImage.normalBitmap()); } SkASSERT(curImage.index() == *indexPtr); sk_sp image; if (curImage.isYUV()) { GrBackendFormat backendFormats[SkYUVASizeInfo::kMaxCount]; void* contexts[SkYUVASizeInfo::kMaxCount] = { nullptr, nullptr, nullptr, nullptr }; SkISize sizes[SkYUVASizeInfo::kMaxCount]; // TODO: store this value somewhere? int textureCount; SkAssertResult(SkYUVAIndex::AreValidIndices(curImage.yuvaIndices(), &textureCount)); for (int i = 0; i < textureCount; ++i) { const GrBackendTexture& backendTex = curImage.promiseTexture(i)->backendTexture(); backendFormats[i] = backendTex.getBackendFormat(); SkASSERT(backendFormats[i].isValid()); contexts[i] = curImage.refCallbackContext(i).release(); sizes[i].set(curImage.yuvPixmap(i).width(), curImage.yuvPixmap(i).height()); } for (int i = textureCount; i < SkYUVASizeInfo::kMaxCount; ++i) { sizes[i] = SkISize::MakeEmpty(); } image = recorder->makeYUVAPromiseTexture(curImage.yuvColorSpace(), backendFormats, sizes, curImage.yuvaIndices(), curImage.overallWidth(), curImage.overallHeight(), GrSurfaceOrigin::kTopLeft_GrSurfaceOrigin, curImage.refOverallColorSpace(), DDLPromiseImageHelper::PromiseImageFulfillProc, DDLPromiseImageHelper::PromiseImageReleaseProc, DDLPromiseImageHelper::PromiseImageDoneProc, contexts, helper->fDelayReleaseCallback); for (int i = 0; i < textureCount; ++i) { curImage.callbackContext(i)->wasAddedToImage(); } } else { const GrBackendTexture& backendTex = curImage.promiseTexture(0)->backendTexture(); GrBackendFormat backendFormat = backendTex.getBackendFormat(); SkASSERT(backendFormat.isValid()); // Each DDL recorder gets its own ref on the promise callback context for the // promise images it creates. // DDL TODO: sort out mipmapping image = recorder->makePromiseTexture(backendFormat, curImage.overallWidth(), curImage.overallHeight(), GrMipMapped::kNo, GrSurfaceOrigin::kTopLeft_GrSurfaceOrigin, curImage.overallColorType(), curImage.overallAlphaType(), curImage.refOverallColorSpace(), DDLPromiseImageHelper::PromiseImageFulfillProc, DDLPromiseImageHelper::PromiseImageReleaseProc, DDLPromiseImageHelper::PromiseImageDoneProc, (void*)curImage.refCallbackContext(0).release(), helper->fDelayReleaseCallback); curImage.callbackContext(0)->wasAddedToImage(); } perRecorderContext->fPromiseImages->push_back(image); SkASSERT(image); return image; } int DDLPromiseImageHelper::findImage(SkImage* image) const { for (int i = 0; i < fImageInfo.count(); ++i) { if (fImageInfo[i].originalUniqueID() == image->uniqueID()) { // trying to dedup here SkASSERT(fImageInfo[i].index() == i); SkASSERT(this->isValidID(i) && this->isValidID(fImageInfo[i].index())); return i; } } return -1; } int DDLPromiseImageHelper::addImage(SkImage* image) { SkImage_Base* ib = as_IB(image); SkImageInfo overallII = SkImageInfo::Make(image->width(), image->height(), image->colorType(), image->alphaType(), image->refColorSpace()); PromiseImageInfo& newImageInfo = fImageInfo.emplace_back(fImageInfo.count(), image->uniqueID(), overallII); SkYUVASizeInfo yuvaSizeInfo; SkYUVAIndex yuvaIndices[SkYUVAIndex::kIndexCount]; SkYUVColorSpace yuvColorSpace; const void* planes[SkYUVASizeInfo::kMaxCount]; sk_sp yuvData = ib->getPlanes(&yuvaSizeInfo, yuvaIndices, &yuvColorSpace, planes); if (yuvData) { newImageInfo.setYUVData(std::move(yuvData), yuvaIndices, yuvColorSpace); // determine colortypes from index data // for testing we only ever use A8 or RGBA8888 SkColorType colorTypes[SkYUVASizeInfo::kMaxCount] = { kUnknown_SkColorType, kUnknown_SkColorType, kUnknown_SkColorType, kUnknown_SkColorType }; for (int yuvIndex = 0; yuvIndex < SkYUVAIndex::kIndexCount; ++yuvIndex) { int texIdx = yuvaIndices[yuvIndex].fIndex; if (texIdx < 0) { SkASSERT(SkYUVAIndex::kA_Index == yuvIndex); continue; } if (kUnknown_SkColorType == colorTypes[texIdx]) { colorTypes[texIdx] = kAlpha_8_SkColorType; } else { colorTypes[texIdx] = kRGBA_8888_SkColorType; } } for (int i = 0; i < SkYUVASizeInfo::kMaxCount; ++i) { if (yuvaSizeInfo.fSizes[i].isEmpty()) { SkASSERT(!yuvaSizeInfo.fWidthBytes[i] && kUnknown_SkColorType == colorTypes[i]); continue; } SkImageInfo planeII = SkImageInfo::Make(yuvaSizeInfo.fSizes[i].fWidth, yuvaSizeInfo.fSizes[i].fHeight, colorTypes[i], kUnpremul_SkAlphaType); newImageInfo.addYUVPlane(i, planeII, planes[i], yuvaSizeInfo.fWidthBytes[i]); } } else { sk_sp rasterImage = image->makeRasterImage(); // force decoding of lazy images SkBitmap tmp; tmp.allocPixels(overallII); if (!rasterImage->readPixels(tmp.pixmap(), 0, 0)) { return -1; } tmp.setImmutable(); newImageInfo.setNormalBitmap(tmp); } // In either case newImageInfo's PromiseImageCallbackContext is filled in by uploadAllToGPU return fImageInfo.count()-1; } int DDLPromiseImageHelper::findOrDefineImage(SkImage* image) { int preExistingID = this->findImage(image); if (preExistingID >= 0) { SkASSERT(this->isValidID(preExistingID)); return preExistingID; } int newID = this->addImage(image); SkASSERT(this->isValidID(newID)); return newID; }