/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkCanvas.h" #include "include/core/SkFont.h" #include "include/core/SkPaint.h" #include "include/core/SkRRect.h" #include "include/core/SkSize.h" #include "include/core/SkStream.h" #include "include/core/SkStrokeRec.h" #include "include/core/SkSurface.h" #include "include/private/SkIDChangeListener.h" #include "include/private/SkTo.h" #include "include/utils/SkNullCanvas.h" #include "include/utils/SkParse.h" #include "include/utils/SkParsePath.h" #include "include/utils/SkRandom.h" #include "src/core/SkAutoMalloc.h" #include "src/core/SkGeometry.h" #include "src/core/SkPathPriv.h" #include "src/core/SkReader32.h" #include "src/core/SkWriter32.h" #include "tests/Test.h" #include #include #include static void set_radii(SkVector radii[4], int index, float rad) { sk_bzero(radii, sizeof(SkVector) * 4); radii[index].set(rad, rad); } static void test_add_rrect(skiatest::Reporter* reporter, const SkRect& bounds, const SkVector radii[4]) { SkRRect rrect; rrect.setRectRadii(bounds, radii); REPORTER_ASSERT(reporter, bounds == rrect.rect()); SkPath path; // this line should not assert in the debug build (from validate) path.addRRect(rrect); REPORTER_ASSERT(reporter, bounds == path.getBounds()); } static void test_skbug_3469(skiatest::Reporter* reporter) { SkPath path; path.moveTo(20, 20); path.quadTo(20, 50, 80, 50); path.quadTo(20, 50, 20, 80); REPORTER_ASSERT(reporter, !path.isConvex()); } static void test_skbug_3239(skiatest::Reporter* reporter) { const float min = SkBits2Float(0xcb7f16c8); /* -16717512.000000 */ const float max = SkBits2Float(0x4b7f1c1d); /* 16718877.000000 */ const float big = SkBits2Float(0x4b7f1bd7); /* 16718807.000000 */ const float rad = 33436320; const SkRect rectx = SkRect::MakeLTRB(min, min, max, big); const SkRect recty = SkRect::MakeLTRB(min, min, big, max); SkVector radii[4]; for (int i = 0; i < 4; ++i) { set_radii(radii, i, rad); test_add_rrect(reporter, rectx, radii); test_add_rrect(reporter, recty, radii); } } static void make_path_crbug364224(SkPath* path) { path->reset(); path->moveTo(3.747501373f, 2.724499941f); path->lineTo(3.747501373f, 3.75f); path->cubicTo(3.747501373f, 3.88774991f, 3.635501385f, 4.0f, 3.497501373f, 4.0f); path->lineTo(0.7475013733f, 4.0f); path->cubicTo(0.6095013618f, 4.0f, 0.4975013733f, 3.88774991f, 0.4975013733f, 3.75f); path->lineTo(0.4975013733f, 1.0f); path->cubicTo(0.4975013733f, 0.8622499704f, 0.6095013618f, 0.75f, 0.7475013733f,0.75f); path->lineTo(3.497501373f, 0.75f); path->cubicTo(3.50275135f, 0.75f, 3.5070014f, 0.7527500391f, 3.513001442f, 0.753000021f); path->lineTo(3.715001345f, 0.5512499809f); path->cubicTo(3.648251295f, 0.5194999576f, 3.575501442f, 0.4999999702f, 3.497501373f, 0.4999999702f); path->lineTo(0.7475013733f, 0.4999999702f); path->cubicTo(0.4715013802f, 0.4999999702f, 0.2475013733f, 0.7239999771f, 0.2475013733f, 1.0f); path->lineTo(0.2475013733f, 3.75f); path->cubicTo(0.2475013733f, 4.026000023f, 0.4715013504f, 4.25f, 0.7475013733f, 4.25f); path->lineTo(3.497501373f, 4.25f); path->cubicTo(3.773501396f, 4.25f, 3.997501373f, 4.026000023f, 3.997501373f, 3.75f); path->lineTo(3.997501373f, 2.474750042f); path->lineTo(3.747501373f, 2.724499941f); path->close(); } static void make_path_crbug364224_simplified(SkPath* path) { path->moveTo(3.747501373f, 2.724499941f); path->cubicTo(3.648251295f, 0.5194999576f, 3.575501442f, 0.4999999702f, 3.497501373f, 0.4999999702f); path->close(); } static void test_sect_with_horizontal_needs_pinning() { // Test that sect_with_horizontal in SkLineClipper.cpp needs to pin after computing the // intersection. SkPath path; path.reset(); path.moveTo(-540000, -720000); path.lineTo(-9.10000017e-05f, 9.99999996e-13f); path.lineTo(1, 1); // Without the pinning code in sect_with_horizontal(), this would assert in the lineclipper SkPaint paint; SkSurface::MakeRasterN32Premul(10, 10)->getCanvas()->drawPath(path, paint); } static void test_path_crbug364224() { SkPath path; SkPaint paint; auto surface(SkSurface::MakeRasterN32Premul(84, 88)); SkCanvas* canvas = surface->getCanvas(); make_path_crbug364224_simplified(&path); canvas->drawPath(path, paint); make_path_crbug364224(&path); canvas->drawPath(path, paint); } static void test_draw_AA_path(int width, int height, const SkPath& path) { auto surface(SkSurface::MakeRasterN32Premul(width, height)); SkCanvas* canvas = surface->getCanvas(); SkPaint paint; paint.setAntiAlias(true); canvas->drawPath(path, paint); } // this is a unit test instead of a GM because it doesn't draw anything static void test_fuzz_crbug_638223() { SkPath path; path.moveTo(SkBits2Float(0x47452a00), SkBits2Float(0x43211d01)); // 50474, 161.113f path.conicTo(SkBits2Float(0x401c0000), SkBits2Float(0x40680000), SkBits2Float(0x02c25a81), SkBits2Float(0x981a1fa0), SkBits2Float(0x6bf9abea)); // 2.4375f, 3.625f, 2.85577e-37f, -1.992e-24f, 6.03669e+26f test_draw_AA_path(250, 250, path); } static void test_fuzz_crbug_643933() { SkPath path; path.moveTo(0, 0); path.conicTo(SkBits2Float(0x002001f2), SkBits2Float(0x4161ffff), // 2.93943e-39f, 14.125f SkBits2Float(0x49f7224d), SkBits2Float(0x45eec8df), // 2.02452e+06f, 7641.11f SkBits2Float(0x721aee0c)); // 3.0687e+30f test_draw_AA_path(250, 250, path); path.reset(); path.moveTo(0, 0); path.conicTo(SkBits2Float(0x00007ff2), SkBits2Float(0x4169ffff), // 4.58981e-41f, 14.625f SkBits2Float(0x43ff2261), SkBits2Float(0x41eeea04), // 510.269f, 29.8643f SkBits2Float(0x5d06eff8)); // 6.07704e+17f test_draw_AA_path(250, 250, path); } static void test_fuzz_crbug_647922() { SkPath path; path.moveTo(0, 0); path.conicTo(SkBits2Float(0x00003939), SkBits2Float(0x42487fff), // 2.05276e-41f, 50.125f SkBits2Float(0x48082361), SkBits2Float(0x4408e8e9), // 139406, 547.639f SkBits2Float(0x4d1ade0f)); // 1.6239e+08f test_draw_AA_path(250, 250, path); } static void test_fuzz_crbug_662780() { auto surface(SkSurface::MakeRasterN32Premul(250, 250)); SkCanvas* canvas = surface->getCanvas(); SkPaint paint; paint.setAntiAlias(true); SkPath path; path.moveTo(SkBits2Float(0x41000000), SkBits2Float(0x431e0000)); // 8, 158 path.lineTo(SkBits2Float(0x41000000), SkBits2Float(0x42f00000)); // 8, 120 // 8, 8, 8.00002f, 8, 0.707107f path.conicTo(SkBits2Float(0x41000000), SkBits2Float(0x41000000), SkBits2Float(0x41000010), SkBits2Float(0x41000000), SkBits2Float(0x3f3504f3)); path.lineTo(SkBits2Float(0x439a0000), SkBits2Float(0x41000000)); // 308, 8 // 308, 8, 308, 8, 0.707107f path.conicTo(SkBits2Float(0x439a0000), SkBits2Float(0x41000000), SkBits2Float(0x439a0000), SkBits2Float(0x41000000), SkBits2Float(0x3f3504f3)); path.lineTo(SkBits2Float(0x439a0000), SkBits2Float(0x431e0000)); // 308, 158 // 308, 158, 308, 158, 0.707107f path.conicTo(SkBits2Float(0x439a0000), SkBits2Float(0x431e0000), SkBits2Float(0x439a0000), SkBits2Float(0x431e0000), SkBits2Float(0x3f3504f3)); path.lineTo(SkBits2Float(0x41000000), SkBits2Float(0x431e0000)); // 8, 158 // 8, 158, 8, 158, 0.707107f path.conicTo(SkBits2Float(0x41000000), SkBits2Float(0x431e0000), SkBits2Float(0x41000000), SkBits2Float(0x431e0000), SkBits2Float(0x3f3504f3)); path.close(); canvas->clipPath(path, true); canvas->drawRect(SkRect::MakeWH(250, 250), paint); } static void test_mask_overflow() { SkPath path; path.moveTo(SkBits2Float(0x43e28000), SkBits2Float(0x43aa8000)); // 453, 341 path.lineTo(SkBits2Float(0x43de6000), SkBits2Float(0x43aa8000)); // 444.75f, 341 // 440.47f, 341, 437, 344.47f, 437, 348.75f path.cubicTo(SkBits2Float(0x43dc3c29), SkBits2Float(0x43aa8000), SkBits2Float(0x43da8000), SkBits2Float(0x43ac3c29), SkBits2Float(0x43da8000), SkBits2Float(0x43ae6000)); path.lineTo(SkBits2Float(0x43da8000), SkBits2Float(0x43b18000)); // 437, 355 path.lineTo(SkBits2Float(0x43e28000), SkBits2Float(0x43b18000)); // 453, 355 path.lineTo(SkBits2Float(0x43e28000), SkBits2Float(0x43aa8000)); // 453, 341 test_draw_AA_path(500, 500, path); } static void test_fuzz_crbug_668907() { SkPath path; path.moveTo(SkBits2Float(0x46313741), SkBits2Float(0x3b00e540)); // 11341.8f, 0.00196679f path.quadTo(SkBits2Float(0x41410041), SkBits2Float(0xc1414141), SkBits2Float(0x41414141), SkBits2Float(0x414100ff)); // 12.0626f, -12.0784f, 12.0784f, 12.0627f path.lineTo(SkBits2Float(0x46313741), SkBits2Float(0x3b00e540)); // 11341.8f, 0.00196679f path.close(); test_draw_AA_path(400, 500, path); } /** * In debug mode, this path was causing an assertion to fail in * SkPathStroker::preJoinTo() and, in Release, the use of an unitialized value. */ static void make_path_crbugskia2820(SkPath* path, skiatest::Reporter* reporter) { SkPoint orig, p1, p2, p3; orig = SkPoint::Make(1.f, 1.f); p1 = SkPoint::Make(1.f - SK_ScalarNearlyZero, 1.f); p2 = SkPoint::Make(1.f, 1.f + SK_ScalarNearlyZero); p3 = SkPoint::Make(2.f, 2.f); path->reset(); path->moveTo(orig); path->cubicTo(p1, p2, p3); path->close(); } static void test_path_crbugskia2820(skiatest::Reporter* reporter) {//GrContext* context) { SkPath path; make_path_crbugskia2820(&path, reporter); SkStrokeRec stroke(SkStrokeRec::kFill_InitStyle); stroke.setStrokeStyle(2 * SK_Scalar1); stroke.applyToPath(&path, path); } static void test_path_crbugskia5995() { SkPath path; path.moveTo(SkBits2Float(0x40303030), SkBits2Float(0x3e303030)); // 2.75294f, 0.172059f path.quadTo(SkBits2Float(0x41d63030), SkBits2Float(0x30303030), SkBits2Float(0x41013030), SkBits2Float(0x00000000)); // 26.7735f, 6.40969e-10f, 8.07426f, 0 path.moveTo(SkBits2Float(0x00000000), SkBits2Float(0x00000000)); // 0, 0 test_draw_AA_path(500, 500, path); } static void make_path0(SkPath* path) { // from * https://code.google.com/p/skia/issues/detail?id=1706 path->moveTo(146.939f, 1012.84f); path->lineTo(181.747f, 1009.18f); path->lineTo(182.165f, 1013.16f); path->lineTo(147.357f, 1016.82f); path->lineTo(146.939f, 1012.84f); path->close(); } static void make_path1(SkPath* path) { path->addRect(SkRect::MakeXYWH(10, 10, 10, 1)); } typedef void (*PathProc)(SkPath*); /* * Regression test: we used to crash (overwrite internal storage) during * construction of the region when the path was INVERSE. That is now fixed, * so test these regions (which used to assert/crash). * * https://code.google.com/p/skia/issues/detail?id=1706 */ static void test_path_to_region(skiatest::Reporter* reporter) { PathProc procs[] = { make_path0, make_path1, }; SkRegion clip; clip.setRect({0, 0, 1255, 1925}); for (size_t i = 0; i < SK_ARRAY_COUNT(procs); ++i) { SkPath path; procs[i](&path); SkRegion rgn; rgn.setPath(path, clip); path.toggleInverseFillType(); rgn.setPath(path, clip); } } #ifdef SK_BUILD_FOR_WIN #define SUPPRESS_VISIBILITY_WARNING #else #define SUPPRESS_VISIBILITY_WARNING __attribute__((visibility("hidden"))) #endif static void test_path_close_issue1474(skiatest::Reporter* reporter) { // This test checks that r{Line,Quad,Conic,Cubic}To following a close() // are relative to the point we close to, not relative to the point we close from. SkPath path; SkPoint last; // Test rLineTo(). path.rLineTo(0, 100); path.rLineTo(100, 0); path.close(); // Returns us back to 0,0. path.rLineTo(50, 50); // This should go to 50,50. path.getLastPt(&last); REPORTER_ASSERT(reporter, 50 == last.fX); REPORTER_ASSERT(reporter, 50 == last.fY); // Test rQuadTo(). path.rewind(); path.rLineTo(0, 100); path.rLineTo(100, 0); path.close(); path.rQuadTo(50, 50, 75, 75); path.getLastPt(&last); REPORTER_ASSERT(reporter, 75 == last.fX); REPORTER_ASSERT(reporter, 75 == last.fY); // Test rConicTo(). path.rewind(); path.rLineTo(0, 100); path.rLineTo(100, 0); path.close(); path.rConicTo(50, 50, 85, 85, 2); path.getLastPt(&last); REPORTER_ASSERT(reporter, 85 == last.fX); REPORTER_ASSERT(reporter, 85 == last.fY); // Test rCubicTo(). path.rewind(); path.rLineTo(0, 100); path.rLineTo(100, 0); path.close(); path.rCubicTo(50, 50, 85, 85, 95, 95); path.getLastPt(&last); REPORTER_ASSERT(reporter, 95 == last.fX); REPORTER_ASSERT(reporter, 95 == last.fY); } static void test_gen_id(skiatest::Reporter* reporter) { SkPath a, b; REPORTER_ASSERT(reporter, a.getGenerationID() == b.getGenerationID()); a.moveTo(0, 0); const uint32_t z = a.getGenerationID(); REPORTER_ASSERT(reporter, z != b.getGenerationID()); a.reset(); REPORTER_ASSERT(reporter, a.getGenerationID() == b.getGenerationID()); a.moveTo(1, 1); const uint32_t y = a.getGenerationID(); REPORTER_ASSERT(reporter, z != y); b.moveTo(2, 2); const uint32_t x = b.getGenerationID(); REPORTER_ASSERT(reporter, x != y && x != z); a.swap(b); REPORTER_ASSERT(reporter, b.getGenerationID() == y && a.getGenerationID() == x); b = a; REPORTER_ASSERT(reporter, b.getGenerationID() == x); SkPath c(a); REPORTER_ASSERT(reporter, c.getGenerationID() == x); c.lineTo(3, 3); const uint32_t w = c.getGenerationID(); REPORTER_ASSERT(reporter, b.getGenerationID() == x); REPORTER_ASSERT(reporter, a.getGenerationID() == x); REPORTER_ASSERT(reporter, w != x); #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK static bool kExpectGenIDToIgnoreFill = false; #else static bool kExpectGenIDToIgnoreFill = true; #endif c.toggleInverseFillType(); const uint32_t v = c.getGenerationID(); REPORTER_ASSERT(reporter, (v == w) == kExpectGenIDToIgnoreFill); c.rewind(); REPORTER_ASSERT(reporter, v != c.getGenerationID()); } // This used to assert in the debug build, as the edges did not all line-up. static void test_bad_cubic_crbug234190() { SkPath path; path.moveTo(13.8509f, 3.16858f); path.cubicTo(-2.35893e+08f, -4.21044e+08f, -2.38991e+08f, -4.26573e+08f, -2.41016e+08f, -4.30188e+08f); test_draw_AA_path(84, 88, path); } static void test_bad_cubic_crbug229478() { const SkPoint pts[] = { { 4595.91064f, -11596.9873f }, { 4597.2168f, -11595.9414f }, { 4598.52344f, -11594.8955f }, { 4599.83008f, -11593.8496f }, }; SkPath path; path.moveTo(pts[0]); path.cubicTo(pts[1], pts[2], pts[3]); SkPaint paint; paint.setStyle(SkPaint::kStroke_Style); paint.setStrokeWidth(20); SkPath dst; // Before the fix, this would infinite-recurse, and run out of stack // because we would keep trying to subdivide a degenerate cubic segment. paint.getFillPath(path, &dst, nullptr); } static void build_path_170666(SkPath& path) { path.moveTo(17.9459f, 21.6344f); path.lineTo(139.545f, -47.8105f); path.lineTo(139.545f, -47.8105f); path.lineTo(131.07f, -47.3888f); path.lineTo(131.07f, -47.3888f); path.lineTo(122.586f, -46.9532f); path.lineTo(122.586f, -46.9532f); path.lineTo(18076.6f, 31390.9f); path.lineTo(18076.6f, 31390.9f); path.lineTo(18085.1f, 31390.5f); path.lineTo(18085.1f, 31390.5f); path.lineTo(18076.6f, 31390.9f); path.lineTo(18076.6f, 31390.9f); path.lineTo(17955, 31460.3f); path.lineTo(17955, 31460.3f); path.lineTo(17963.5f, 31459.9f); path.lineTo(17963.5f, 31459.9f); path.lineTo(17971.9f, 31459.5f); path.lineTo(17971.9f, 31459.5f); path.lineTo(17.9551f, 21.6205f); path.lineTo(17.9551f, 21.6205f); path.lineTo(9.47091f, 22.0561f); path.lineTo(9.47091f, 22.0561f); path.lineTo(17.9459f, 21.6344f); path.lineTo(17.9459f, 21.6344f); path.close();path.moveTo(0.995934f, 22.4779f); path.lineTo(0.986725f, 22.4918f); path.lineTo(0.986725f, 22.4918f); path.lineTo(17955, 31460.4f); path.lineTo(17955, 31460.4f); path.lineTo(17971.9f, 31459.5f); path.lineTo(17971.9f, 31459.5f); path.lineTo(18093.6f, 31390.1f); path.lineTo(18093.6f, 31390.1f); path.lineTo(18093.6f, 31390); path.lineTo(18093.6f, 31390); path.lineTo(139.555f, -47.8244f); path.lineTo(139.555f, -47.8244f); path.lineTo(122.595f, -46.9671f); path.lineTo(122.595f, -46.9671f); path.lineTo(0.995934f, 22.4779f); path.lineTo(0.995934f, 22.4779f); path.close(); path.moveTo(5.43941f, 25.5223f); path.lineTo(798267, -28871.1f); path.lineTo(798267, -28871.1f); path.lineTo(3.12512e+06f, -113102); path.lineTo(3.12512e+06f, -113102); path.cubicTo(5.16324e+06f, -186882, 8.15247e+06f, -295092, 1.1957e+07f, -432813); path.cubicTo(1.95659e+07f, -708257, 3.04359e+07f, -1.10175e+06f, 4.34798e+07f, -1.57394e+06f); path.cubicTo(6.95677e+07f, -2.51831e+06f, 1.04352e+08f, -3.77748e+06f, 1.39135e+08f, -5.03666e+06f); path.cubicTo(1.73919e+08f, -6.29583e+06f, 2.08703e+08f, -7.555e+06f, 2.34791e+08f, -8.49938e+06f); path.cubicTo(2.47835e+08f, -8.97157e+06f, 2.58705e+08f, -9.36506e+06f, 2.66314e+08f, -9.6405e+06f); path.cubicTo(2.70118e+08f, -9.77823e+06f, 2.73108e+08f, -9.88644e+06f, 2.75146e+08f, -9.96022e+06f); path.cubicTo(2.76165e+08f, -9.99711e+06f, 2.76946e+08f, -1.00254e+07f, 2.77473e+08f, -1.00444e+07f); path.lineTo(2.78271e+08f, -1.00733e+07f); path.lineTo(2.78271e+08f, -1.00733e+07f); path.cubicTo(2.78271e+08f, -1.00733e+07f, 2.08703e+08f, -7.555e+06f, 135.238f, 23.3517f); path.cubicTo(131.191f, 23.4981f, 125.995f, 23.7976f, 123.631f, 24.0206f); path.cubicTo(121.267f, 24.2436f, 122.631f, 24.3056f, 126.677f, 24.1591f); path.cubicTo(2.08703e+08f, -7.555e+06f, 2.78271e+08f, -1.00733e+07f, 2.78271e+08f, -1.00733e+07f); path.lineTo(2.77473e+08f, -1.00444e+07f); path.lineTo(2.77473e+08f, -1.00444e+07f); path.cubicTo(2.76946e+08f, -1.00254e+07f, 2.76165e+08f, -9.99711e+06f, 2.75146e+08f, -9.96022e+06f); path.cubicTo(2.73108e+08f, -9.88644e+06f, 2.70118e+08f, -9.77823e+06f, 2.66314e+08f, -9.6405e+06f); path.cubicTo(2.58705e+08f, -9.36506e+06f, 2.47835e+08f, -8.97157e+06f, 2.34791e+08f, -8.49938e+06f); path.cubicTo(2.08703e+08f, -7.555e+06f, 1.73919e+08f, -6.29583e+06f, 1.39135e+08f, -5.03666e+06f); path.cubicTo(1.04352e+08f, -3.77749e+06f, 6.95677e+07f, -2.51831e+06f, 4.34798e+07f, -1.57394e+06f); path.cubicTo(3.04359e+07f, -1.10175e+06f, 1.95659e+07f, -708258, 1.1957e+07f, -432814); path.cubicTo(8.15248e+06f, -295092, 5.16324e+06f, -186883, 3.12513e+06f, -113103); path.lineTo(798284, -28872); path.lineTo(798284, -28872); path.lineTo(22.4044f, 24.6677f); path.lineTo(22.4044f, 24.6677f); path.cubicTo(22.5186f, 24.5432f, 18.8134f, 24.6337f, 14.1287f, 24.8697f); path.cubicTo(9.4439f, 25.1057f, 5.55359f, 25.3978f, 5.43941f, 25.5223f); path.close(); } static void build_path_simple_170666(SkPath& path) { path.moveTo(126.677f, 24.1591f); path.cubicTo(2.08703e+08f, -7.555e+06f, 2.78271e+08f, -1.00733e+07f, 2.78271e+08f, -1.00733e+07f); } // This used to assert in the SK_DEBUG build, as the clip step would fail with // too-few interations in our cubic-line intersection code. That code now runs // 24 interations (instead of 16). static void test_crbug_170666() { SkPath path; build_path_simple_170666(path); test_draw_AA_path(1000, 1000, path); build_path_170666(path); test_draw_AA_path(1000, 1000, path); } static void test_tiny_path_convexity(skiatest::Reporter* reporter, const char* pathBug, SkScalar tx, SkScalar ty, SkScalar scale) { SkPath smallPath; SkAssertResult(SkParsePath::FromSVGString(pathBug, &smallPath)); bool smallConvex = smallPath.isConvex(); SkPath largePath; SkAssertResult(SkParsePath::FromSVGString(pathBug, &largePath)); SkMatrix matrix; matrix.reset(); matrix.preTranslate(100, 100); matrix.preScale(scale, scale); largePath.transform(matrix); bool largeConvex = largePath.isConvex(); REPORTER_ASSERT(reporter, smallConvex == largeConvex); } static void test_crbug_493450(skiatest::Reporter* reporter) { const char reducedCase[] = "M0,0" "L0.0002, 0" "L0.0002, 0.0002" "L0.0001, 0.0001" "L0,0.0002" "Z"; test_tiny_path_convexity(reporter, reducedCase, 100, 100, 100000); const char originalFiddleData[] = "M-0.3383152268862998,-0.11217565719203619L-0.33846085183212765,-0.11212264406895281" "L-0.338509393480737,-0.11210607966681395L-0.33857792286700894,-0.1121889121487573" "L-0.3383866116636664,-0.11228834570924921L-0.33842087635680235,-0.11246078673250548" "L-0.33809536177201055,-0.11245415228342878L-0.33797257995493996,-0.11216571641452182" "L-0.33802112160354925,-0.11201996164188659L-0.33819815585141844,-0.11218559834671019Z"; test_tiny_path_convexity(reporter, originalFiddleData, 280081.4116670522f, 93268.04618493588f, 826357.3384828606f); } static void test_crbug_495894(skiatest::Reporter* reporter) { const char originalFiddleData[] = "M-0.34004273849857214,-0.11332803232216355L-0.34008271397389744,-0.11324483772714951" "L-0.3401940742265893,-0.11324483772714951L-0.34017694188002134,-0.11329807920275889" "L-0.3402026403998733,-0.11333468903941245L-0.34029972369709194,-0.11334134592705701" "L-0.3403054344792813,-0.11344121970007795L-0.3403140006525653,-0.11351115418399343" "L-0.34024261587519866,-0.11353446986281181L-0.3402197727464413,-0.11360442946144192" "L-0.34013696640469604,-0.11359110237029302L-0.34009128014718143,-0.1135877707043939" "L-0.3400598708451401,-0.11360776134112742L-0.34004273849857214,-0.11355112520064405" "L-0.3400113291965308,-0.11355112520064405L-0.3399970522410575,-0.11359110237029302" "L-0.33997135372120546,-0.11355112520064405L-0.3399627875479215,-0.11353780084493197" "L-0.3399485105924481,-0.11350782354357004L-0.3400027630232468,-0.11346452910331437" "L-0.3399485105924481,-0.11340126558629839L-0.33993994441916414,-0.11340126558629839" "L-0.33988283659727087,-0.11331804756574679L-0.33989140277055485,-0.11324483772714951" "L-0.33997991989448945,-0.11324483772714951L-0.3399856306766788,-0.11324483772714951" "L-0.34002560615200417,-0.11334467443478255ZM-0.3400684370184241,-0.11338461985124307" "L-0.340154098751264,-0.11341791238732665L-0.340162664924548,-0.1134378899559977" "L-0.34017979727111597,-0.11340126558629839L-0.3401655203156427,-0.11338129083212668" "L-0.34012268944922275,-0.11332137577529414L-0.34007414780061346,-0.11334467443478255Z" "M-0.3400027630232468,-0.11290567901106024L-0.3400113291965308,-0.11298876531245433" "L-0.33997991989448945,-0.11301535852306784L-0.33990282433493346,-0.11296217481488612" "L-0.33993994441916414,-0.11288906492739594Z"; test_tiny_path_convexity(reporter, originalFiddleData, 22682.240000000005f,7819.72220766405f, 65536); } static void test_crbug_613918() { SkPath path; path.conicTo(-6.62478e-08f, 4.13885e-08f, -6.36935e-08f, 3.97927e-08f, 0.729058f); path.quadTo(2.28206e-09f, -1.42572e-09f, 3.91919e-09f, -2.44852e-09f); path.cubicTo(-16752.2f, -26792.9f, -21.4673f, 10.9347f, -8.57322f, -7.22739f); // This call could lead to an assert or uninitialized read due to a failure // to check the return value from SkCubicClipper::ChopMonoAtY. path.contains(-1.84817e-08f, 1.15465e-08f); } static void test_addrect(skiatest::Reporter* reporter) { SkPath path; path.lineTo(0, 0); path.addRect(SkRect::MakeWH(50, 100)); REPORTER_ASSERT(reporter, path.isRect(nullptr)); path.reset(); path.lineTo(FLT_EPSILON, FLT_EPSILON); path.addRect(SkRect::MakeWH(50, 100)); REPORTER_ASSERT(reporter, !path.isRect(nullptr)); path.reset(); path.quadTo(0, 0, 0, 0); path.addRect(SkRect::MakeWH(50, 100)); REPORTER_ASSERT(reporter, !path.isRect(nullptr)); path.reset(); path.conicTo(0, 0, 0, 0, 0.5f); path.addRect(SkRect::MakeWH(50, 100)); REPORTER_ASSERT(reporter, !path.isRect(nullptr)); path.reset(); path.cubicTo(0, 0, 0, 0, 0, 0); path.addRect(SkRect::MakeWH(50, 100)); REPORTER_ASSERT(reporter, !path.isRect(nullptr)); } // Make sure we stay non-finite once we get there (unless we reset or rewind). static void test_addrect_isfinite(skiatest::Reporter* reporter) { SkPath path; path.addRect(SkRect::MakeWH(50, 100)); REPORTER_ASSERT(reporter, path.isFinite()); path.moveTo(0, 0); path.lineTo(SK_ScalarInfinity, 42); REPORTER_ASSERT(reporter, !path.isFinite()); path.addRect(SkRect::MakeWH(50, 100)); REPORTER_ASSERT(reporter, !path.isFinite()); path.reset(); REPORTER_ASSERT(reporter, path.isFinite()); path.addRect(SkRect::MakeWH(50, 100)); REPORTER_ASSERT(reporter, path.isFinite()); } static void build_big_path(SkPath* path, bool reducedCase) { if (reducedCase) { path->moveTo(577330, 1971.72f); path->cubicTo(10.7082f, -116.596f, 262.057f, 45.6468f, 294.694f, 1.96237f); } else { path->moveTo(60.1631f, 7.70567f); path->quadTo(60.1631f, 7.70567f, 0.99474f, 0.901199f); path->lineTo(577379, 1977.77f); path->quadTo(577364, 1979.57f, 577325, 1980.26f); path->quadTo(577286, 1980.95f, 577245, 1980.13f); path->quadTo(577205, 1979.3f, 577187, 1977.45f); path->quadTo(577168, 1975.6f, 577183, 1973.8f); path->quadTo(577198, 1972, 577238, 1971.31f); path->quadTo(577277, 1970.62f, 577317, 1971.45f); path->quadTo(577330, 1971.72f, 577341, 1972.11f); path->cubicTo(10.7082f, -116.596f, 262.057f, 45.6468f, 294.694f, 1.96237f); path->moveTo(306.718f, -32.912f); path->cubicTo(30.531f, 10.0005f, 1502.47f, 13.2804f, 84.3088f, 9.99601f); } } static void test_clipped_cubic() { auto surface(SkSurface::MakeRasterN32Premul(640, 480)); // This path used to assert, because our cubic-chopping code incorrectly // moved control points after the chop. This test should be run in SK_DEBUG // mode to ensure that we no long assert. SkPath path; for (int doReducedCase = 0; doReducedCase <= 1; ++doReducedCase) { build_big_path(&path, SkToBool(doReducedCase)); SkPaint paint; for (int doAA = 0; doAA <= 1; ++doAA) { paint.setAntiAlias(SkToBool(doAA)); surface->getCanvas()->drawPath(path, paint); } } } static void dump_if_ne(skiatest::Reporter* reporter, const SkRect& expected, const SkRect& bounds) { if (expected != bounds) { ERRORF(reporter, "path.getBounds() returned [%g %g %g %g], but expected [%g %g %g %g]", bounds.left(), bounds.top(), bounds.right(), bounds.bottom(), expected.left(), expected.top(), expected.right(), expected.bottom()); } } static void test_bounds_crbug_513799(skiatest::Reporter* reporter) { SkPath path; #if 0 // As written these tests were failing on LLVM 4.2 MacMini Release mysteriously, so we've // rewritten them to avoid this (compiler-bug?). REPORTER_ASSERT(reporter, SkRect::MakeLTRB(0, 0, 0, 0) == path.getBounds()); path.moveTo(-5, -8); REPORTER_ASSERT(reporter, SkRect::MakeLTRB(-5, -8, -5, -8) == path.getBounds()); path.addRect(SkRect::MakeLTRB(1, 2, 3, 4)); REPORTER_ASSERT(reporter, SkRect::MakeLTRB(-5, -8, 3, 4) == path.getBounds()); path.moveTo(1, 2); REPORTER_ASSERT(reporter, SkRect::MakeLTRB(-5, -8, 3, 4) == path.getBounds()); #else dump_if_ne(reporter, SkRect::MakeLTRB(0, 0, 0, 0), path.getBounds()); path.moveTo(-5, -8); // should set the bounds dump_if_ne(reporter, SkRect::MakeLTRB(-5, -8, -5, -8), path.getBounds()); path.addRect(SkRect::MakeLTRB(1, 2, 3, 4)); // should extend the bounds dump_if_ne(reporter, SkRect::MakeLTRB(-5, -8, 3, 4), path.getBounds()); path.moveTo(1, 2); // don't expect this to have changed the bounds dump_if_ne(reporter, SkRect::MakeLTRB(-5, -8, 3, 4), path.getBounds()); #endif } #include "include/core/SkSurface.h" static void test_fuzz_crbug_627414(skiatest::Reporter* reporter) { SkPath path; path.moveTo(0, 0); path.conicTo(3.58732e-43f, 2.72084f, 3.00392f, 3.00392f, 8.46e+37f); test_draw_AA_path(100, 100, path); } // Inspired by http://ie.microsoft.com/testdrive/Performance/Chalkboard/ // which triggered an assert, from a tricky cubic. This test replicates that // example, so we can ensure that we handle it (in SkEdge.cpp), and don't // assert in the SK_DEBUG build. static void test_tricky_cubic() { const SkPoint pts[] = { { SkDoubleToScalar(18.8943768), SkDoubleToScalar(129.121277) }, { SkDoubleToScalar(18.8937435), SkDoubleToScalar(129.121689) }, { SkDoubleToScalar(18.8950119), SkDoubleToScalar(129.120422) }, { SkDoubleToScalar(18.5030727), SkDoubleToScalar(129.13121) }, }; SkPath path; path.moveTo(pts[0]); path.cubicTo(pts[1], pts[2], pts[3]); test_draw_AA_path(19, 130, path); } // Inspired by http://code.google.com/p/chromium/issues/detail?id=141651 // static void test_isfinite_after_transform(skiatest::Reporter* reporter) { SkPath path; path.quadTo(157, 366, 286, 208); path.arcTo(37, 442, 315, 163, 957494590897113.0f); SkMatrix matrix; matrix.setScale(1000*1000, 1000*1000); // Be sure that path::transform correctly updates isFinite and the bounds // if the transformation overflows. The previous bug was that isFinite was // set to true in this case, but the bounds were not set to empty (which // they should be). while (path.isFinite()) { REPORTER_ASSERT(reporter, path.getBounds().isFinite()); REPORTER_ASSERT(reporter, !path.getBounds().isEmpty()); path.transform(matrix); } REPORTER_ASSERT(reporter, path.getBounds().isEmpty()); matrix.setTranslate(SK_Scalar1, SK_Scalar1); path.transform(matrix); // we need to still be non-finite REPORTER_ASSERT(reporter, !path.isFinite()); REPORTER_ASSERT(reporter, path.getBounds().isEmpty()); } static void add_corner_arc(SkPath* path, const SkRect& rect, SkScalar xIn, SkScalar yIn, int startAngle) { SkScalar rx = std::min(rect.width(), xIn); SkScalar ry = std::min(rect.height(), yIn); SkRect arcRect; arcRect.setLTRB(-rx, -ry, rx, ry); switch (startAngle) { case 0: arcRect.offset(rect.fRight - arcRect.fRight, rect.fBottom - arcRect.fBottom); break; case 90: arcRect.offset(rect.fLeft - arcRect.fLeft, rect.fBottom - arcRect.fBottom); break; case 180: arcRect.offset(rect.fLeft - arcRect.fLeft, rect.fTop - arcRect.fTop); break; case 270: arcRect.offset(rect.fRight - arcRect.fRight, rect.fTop - arcRect.fTop); break; default: break; } path->arcTo(arcRect, SkIntToScalar(startAngle), SkIntToScalar(90), false); } static void make_arb_round_rect(SkPath* path, const SkRect& r, SkScalar xCorner, SkScalar yCorner) { // we are lazy here and use the same x & y for each corner add_corner_arc(path, r, xCorner, yCorner, 270); add_corner_arc(path, r, xCorner, yCorner, 0); add_corner_arc(path, r, xCorner, yCorner, 90); add_corner_arc(path, r, xCorner, yCorner, 180); path->close(); } // Chrome creates its own round rects with each corner possibly being different. // Performance will suffer if they are not convex. // Note: PathBench::ArbRoundRectBench performs almost exactly // the same test (but with drawing) static void test_arb_round_rect_is_convex(skiatest::Reporter* reporter) { SkRandom rand; SkRect r; for (int i = 0; i < 5000; ++i) { SkScalar size = rand.nextUScalar1() * 30; if (size < SK_Scalar1) { continue; } r.fLeft = rand.nextUScalar1() * 300; r.fTop = rand.nextUScalar1() * 300; r.fRight = r.fLeft + 2 * size; r.fBottom = r.fTop + 2 * size; SkPath temp; make_arb_round_rect(&temp, r, r.width() / 10, r.height() / 15); REPORTER_ASSERT(reporter, temp.isConvex()); } } // Chrome will sometimes create a 0 radius round rect. The degenerate // quads prevent the path from being converted to a rect // Note: PathBench::ArbRoundRectBench performs almost exactly // the same test (but with drawing) static void test_arb_zero_rad_round_rect_is_rect(skiatest::Reporter* reporter) { SkRandom rand; SkRect r; for (int i = 0; i < 5000; ++i) { SkScalar size = rand.nextUScalar1() * 30; if (size < SK_Scalar1) { continue; } r.fLeft = rand.nextUScalar1() * 300; r.fTop = rand.nextUScalar1() * 300; r.fRight = r.fLeft + 2 * size; r.fBottom = r.fTop + 2 * size; SkPath temp; make_arb_round_rect(&temp, r, 0, 0); SkRect result; REPORTER_ASSERT(reporter, temp.isRect(&result)); REPORTER_ASSERT(reporter, r == result); } } static void test_rect_isfinite(skiatest::Reporter* reporter) { const SkScalar inf = SK_ScalarInfinity; const SkScalar negInf = SK_ScalarNegativeInfinity; const SkScalar nan = SK_ScalarNaN; SkRect r; r.setEmpty(); REPORTER_ASSERT(reporter, r.isFinite()); r.setLTRB(0, 0, inf, negInf); REPORTER_ASSERT(reporter, !r.isFinite()); r.setLTRB(0, 0, nan, 0); REPORTER_ASSERT(reporter, !r.isFinite()); SkPoint pts[] = { { 0, 0 }, { SK_Scalar1, 0 }, { 0, SK_Scalar1 }, }; bool isFine = r.setBoundsCheck(pts, 3); REPORTER_ASSERT(reporter, isFine); REPORTER_ASSERT(reporter, !r.isEmpty()); pts[1].set(inf, 0); isFine = r.setBoundsCheck(pts, 3); REPORTER_ASSERT(reporter, !isFine); REPORTER_ASSERT(reporter, r.isEmpty()); pts[1].set(nan, 0); isFine = r.setBoundsCheck(pts, 3); REPORTER_ASSERT(reporter, !isFine); REPORTER_ASSERT(reporter, r.isEmpty()); } static void test_path_isfinite(skiatest::Reporter* reporter) { const SkScalar inf = SK_ScalarInfinity; const SkScalar negInf = SK_ScalarNegativeInfinity; const SkScalar nan = SK_ScalarNaN; SkPath path; REPORTER_ASSERT(reporter, path.isFinite()); path.reset(); REPORTER_ASSERT(reporter, path.isFinite()); path.reset(); path.moveTo(SK_Scalar1, 0); REPORTER_ASSERT(reporter, path.isFinite()); path.reset(); path.moveTo(inf, negInf); REPORTER_ASSERT(reporter, !path.isFinite()); path.reset(); path.moveTo(nan, 0); REPORTER_ASSERT(reporter, !path.isFinite()); } static void test_isfinite(skiatest::Reporter* reporter) { test_rect_isfinite(reporter); test_path_isfinite(reporter); } static void test_islastcontourclosed(skiatest::Reporter* reporter) { SkPath path; REPORTER_ASSERT(reporter, !path.isLastContourClosed()); path.moveTo(0, 0); REPORTER_ASSERT(reporter, !path.isLastContourClosed()); path.close(); REPORTER_ASSERT(reporter, path.isLastContourClosed()); path.lineTo(100, 100); REPORTER_ASSERT(reporter, !path.isLastContourClosed()); path.moveTo(200, 200); REPORTER_ASSERT(reporter, !path.isLastContourClosed()); path.close(); REPORTER_ASSERT(reporter, path.isLastContourClosed()); path.moveTo(0, 0); REPORTER_ASSERT(reporter, !path.isLastContourClosed()); } // assert that we always // start with a moveTo // only have 1 moveTo // only have Lines after that // end with a single close // only have (at most) 1 close // static void test_poly(skiatest::Reporter* reporter, const SkPath& path, const SkPoint srcPts[], bool expectClose) { bool firstTime = true; bool foundClose = false; for (auto [verb, pts, w] : SkPathPriv::Iterate(path)) { switch (verb) { case SkPathVerb::kMove: REPORTER_ASSERT(reporter, firstTime); REPORTER_ASSERT(reporter, pts[0] == srcPts[0]); srcPts++; firstTime = false; break; case SkPathVerb::kLine: REPORTER_ASSERT(reporter, !firstTime); REPORTER_ASSERT(reporter, pts[1] == srcPts[0]); srcPts++; break; case SkPathVerb::kQuad: REPORTER_ASSERT(reporter, false, "unexpected quad verb"); break; case SkPathVerb::kConic: REPORTER_ASSERT(reporter, false, "unexpected conic verb"); break; case SkPathVerb::kCubic: REPORTER_ASSERT(reporter, false, "unexpected cubic verb"); break; case SkPathVerb::kClose: REPORTER_ASSERT(reporter, !firstTime); REPORTER_ASSERT(reporter, !foundClose); REPORTER_ASSERT(reporter, expectClose); foundClose = true; break; } } REPORTER_ASSERT(reporter, foundClose == expectClose); } static void test_addPoly(skiatest::Reporter* reporter) { SkPoint pts[32]; SkRandom rand; for (size_t i = 0; i < SK_ARRAY_COUNT(pts); ++i) { pts[i].fX = rand.nextSScalar1(); pts[i].fY = rand.nextSScalar1(); } for (int doClose = 0; doClose <= 1; ++doClose) { for (size_t count = 1; count <= SK_ARRAY_COUNT(pts); ++count) { SkPath path; path.addPoly(pts, SkToInt(count), SkToBool(doClose)); test_poly(reporter, path, pts, SkToBool(doClose)); } } } static void test_strokerec(skiatest::Reporter* reporter) { SkStrokeRec rec(SkStrokeRec::kFill_InitStyle); REPORTER_ASSERT(reporter, rec.isFillStyle()); rec.setHairlineStyle(); REPORTER_ASSERT(reporter, rec.isHairlineStyle()); rec.setStrokeStyle(SK_Scalar1, false); REPORTER_ASSERT(reporter, SkStrokeRec::kStroke_Style == rec.getStyle()); rec.setStrokeStyle(SK_Scalar1, true); REPORTER_ASSERT(reporter, SkStrokeRec::kStrokeAndFill_Style == rec.getStyle()); rec.setStrokeStyle(0, false); REPORTER_ASSERT(reporter, SkStrokeRec::kHairline_Style == rec.getStyle()); rec.setStrokeStyle(0, true); REPORTER_ASSERT(reporter, SkStrokeRec::kFill_Style == rec.getStyle()); } // Set this for paths that don't have a consistent direction such as a bowtie. // (cheapComputeDirection is not expected to catch these.) // Legal values are CW (0), CCW (1) and Unknown (2), leaving 3 as a convenient sentinel. const SkPathPriv::FirstDirection kDontCheckDir = static_cast(3); static void check_direction(skiatest::Reporter* reporter, const SkPath& path, SkPathPriv::FirstDirection expected) { if (expected == kDontCheckDir) { return; } SkPath copy(path); // we make a copy so that we don't cache the result on the passed in path. SkPathPriv::FirstDirection dir; if (SkPathPriv::CheapComputeFirstDirection(copy, &dir)) { REPORTER_ASSERT(reporter, dir == expected); } else { REPORTER_ASSERT(reporter, SkPathPriv::kUnknown_FirstDirection == expected); } } static void test_direction(skiatest::Reporter* reporter) { size_t i; SkPath path; REPORTER_ASSERT(reporter, !SkPathPriv::CheapComputeFirstDirection(path, nullptr)); REPORTER_ASSERT(reporter, !SkPathPriv::CheapIsFirstDirection(path, SkPathPriv::kCW_FirstDirection)); REPORTER_ASSERT(reporter, !SkPathPriv::CheapIsFirstDirection(path, SkPathPriv::kCCW_FirstDirection)); REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(path, SkPathPriv::kUnknown_FirstDirection)); static const char* gDegen[] = { "M 10 10", "M 10 10 M 20 20", "M 10 10 L 20 20", "M 10 10 L 10 10 L 10 10", "M 10 10 Q 10 10 10 10", "M 10 10 C 10 10 10 10 10 10", }; for (i = 0; i < SK_ARRAY_COUNT(gDegen); ++i) { path.reset(); bool valid = SkParsePath::FromSVGString(gDegen[i], &path); REPORTER_ASSERT(reporter, valid); REPORTER_ASSERT(reporter, !SkPathPriv::CheapComputeFirstDirection(path, nullptr)); } static const char* gCW[] = { "M 10 10 L 10 10 Q 20 10 20 20", "M 10 10 C 20 10 20 20 20 20", "M 20 10 Q 20 20 30 20 L 10 20", // test double-back at y-max // rect with top two corners replaced by cubics with identical middle // control points "M 10 10 C 10 0 10 0 20 0 L 40 0 C 50 0 50 0 50 10", "M 20 10 L 0 10 Q 10 10 20 0", // left, degenerate serif }; for (i = 0; i < SK_ARRAY_COUNT(gCW); ++i) { path.reset(); bool valid = SkParsePath::FromSVGString(gCW[i], &path); REPORTER_ASSERT(reporter, valid); check_direction(reporter, path, SkPathPriv::kCW_FirstDirection); } static const char* gCCW[] = { "M 10 10 L 10 10 Q 20 10 20 -20", "M 10 10 C 20 10 20 -20 20 -20", "M 20 10 Q 20 20 10 20 L 30 20", // test double-back at y-max // rect with top two corners replaced by cubics with identical middle // control points "M 50 10 C 50 0 50 0 40 0 L 20 0 C 10 0 10 0 10 10", "M 10 10 L 30 10 Q 20 10 10 0", // right, degenerate serif }; for (i = 0; i < SK_ARRAY_COUNT(gCCW); ++i) { path.reset(); bool valid = SkParsePath::FromSVGString(gCCW[i], &path); REPORTER_ASSERT(reporter, valid); check_direction(reporter, path, SkPathPriv::kCCW_FirstDirection); } // Test two donuts, each wound a different direction. Only the outer contour // determines the cheap direction path.reset(); path.addCircle(0, 0, SkIntToScalar(2), SkPathDirection::kCW); path.addCircle(0, 0, SkIntToScalar(1), SkPathDirection::kCCW); check_direction(reporter, path, SkPathPriv::kCW_FirstDirection); path.reset(); path.addCircle(0, 0, SkIntToScalar(1), SkPathDirection::kCW); path.addCircle(0, 0, SkIntToScalar(2), SkPathDirection::kCCW); check_direction(reporter, path, SkPathPriv::kCCW_FirstDirection); // triangle with one point really far from the origin. path.reset(); // the first point is roughly 1.05e10, 1.05e10 path.moveTo(SkBits2Float(0x501c7652), SkBits2Float(0x501c7652)); path.lineTo(110 * SK_Scalar1, -10 * SK_Scalar1); path.lineTo(-10 * SK_Scalar1, 60 * SK_Scalar1); check_direction(reporter, path, SkPathPriv::kCCW_FirstDirection); path.reset(); path.conicTo(20, 0, 20, 20, 0.5f); path.close(); check_direction(reporter, path, SkPathPriv::kCW_FirstDirection); path.reset(); path.lineTo(1, 1e7f); path.lineTo(1e7f, 2e7f); path.close(); REPORTER_ASSERT(reporter, path.isConvex()); check_direction(reporter, path, SkPathPriv::kCCW_FirstDirection); } static void add_rect(SkPath* path, const SkRect& r) { path->moveTo(r.fLeft, r.fTop); path->lineTo(r.fRight, r.fTop); path->lineTo(r.fRight, r.fBottom); path->lineTo(r.fLeft, r.fBottom); path->close(); } static void test_bounds(skiatest::Reporter* reporter) { static const SkRect rects[] = { { SkIntToScalar(10), SkIntToScalar(160), SkIntToScalar(610), SkIntToScalar(160) }, { SkIntToScalar(610), SkIntToScalar(160), SkIntToScalar(610), SkIntToScalar(199) }, { SkIntToScalar(10), SkIntToScalar(198), SkIntToScalar(610), SkIntToScalar(199) }, { SkIntToScalar(10), SkIntToScalar(160), SkIntToScalar(10), SkIntToScalar(199) }, }; SkPath path0, path1; for (size_t i = 0; i < SK_ARRAY_COUNT(rects); ++i) { path0.addRect(rects[i]); add_rect(&path1, rects[i]); } REPORTER_ASSERT(reporter, path0.getBounds() == path1.getBounds()); } static void stroke_cubic(const SkPoint pts[4]) { SkPath path; path.moveTo(pts[0]); path.cubicTo(pts[1], pts[2], pts[3]); SkPaint paint; paint.setStyle(SkPaint::kStroke_Style); paint.setStrokeWidth(SK_Scalar1 * 2); SkPath fill; paint.getFillPath(path, &fill); } // just ensure this can run w/o any SkASSERTS firing in the debug build // we used to assert due to differences in how we determine a degenerate vector // but that was fixed with the introduction of SkPoint::CanNormalize static void stroke_tiny_cubic() { SkPoint p0[] = { { 372.0f, 92.0f }, { 372.0f, 92.0f }, { 372.0f, 92.0f }, { 372.0f, 92.0f }, }; stroke_cubic(p0); SkPoint p1[] = { { 372.0f, 92.0f }, { 372.0007f, 92.000755f }, { 371.99927f, 92.003922f }, { 371.99826f, 92.003899f }, }; stroke_cubic(p1); } static void check_close(skiatest::Reporter* reporter, const SkPath& path) { for (int i = 0; i < 2; ++i) { SkPath::Iter iter(path, SkToBool(i)); SkPoint mv; SkPoint pts[4]; SkPath::Verb v; int nMT = 0; int nCL = 0; mv.set(0, 0); while (SkPath::kDone_Verb != (v = iter.next(pts))) { switch (v) { case SkPath::kMove_Verb: mv = pts[0]; ++nMT; break; case SkPath::kClose_Verb: REPORTER_ASSERT(reporter, mv == pts[0]); ++nCL; break; default: break; } } // if we force a close on the interator we should have a close // for every moveTo REPORTER_ASSERT(reporter, !i || nMT == nCL); } } static void test_close(skiatest::Reporter* reporter) { SkPath closePt; closePt.moveTo(0, 0); closePt.close(); check_close(reporter, closePt); SkPath openPt; openPt.moveTo(0, 0); check_close(reporter, openPt); SkPath empty; check_close(reporter, empty); empty.close(); check_close(reporter, empty); SkPath rect; rect.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1); check_close(reporter, rect); rect.close(); check_close(reporter, rect); SkPath quad; quad.quadTo(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1); check_close(reporter, quad); quad.close(); check_close(reporter, quad); SkPath cubic; quad.cubicTo(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1, 20 * SK_Scalar1, 20*SK_Scalar1); check_close(reporter, cubic); cubic.close(); check_close(reporter, cubic); SkPath line; line.moveTo(SK_Scalar1, SK_Scalar1); line.lineTo(10 * SK_Scalar1, 10*SK_Scalar1); check_close(reporter, line); line.close(); check_close(reporter, line); SkPath rect2; rect2.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1); rect2.close(); rect2.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1); check_close(reporter, rect2); rect2.close(); check_close(reporter, rect2); SkPath oval3; oval3.addOval(SkRect::MakeWH(SK_Scalar1*100,SK_Scalar1*100)); oval3.close(); oval3.addOval(SkRect::MakeWH(SK_Scalar1*200,SK_Scalar1*200)); check_close(reporter, oval3); oval3.close(); check_close(reporter, oval3); SkPath moves; moves.moveTo(SK_Scalar1, SK_Scalar1); moves.moveTo(5 * SK_Scalar1, SK_Scalar1); moves.moveTo(SK_Scalar1, 10 * SK_Scalar1); moves.moveTo(10 *SK_Scalar1, SK_Scalar1); check_close(reporter, moves); stroke_tiny_cubic(); } static void check_convexity(skiatest::Reporter* reporter, const SkPath& path, SkPathConvexityType expected) { SkPath copy(path); // we make a copy so that we don't cache the result on the passed in path. SkPathConvexityType c = copy.getConvexityType(); REPORTER_ASSERT(reporter, c == expected); // test points-by-array interface SkPath::Iter iter(path, true); int initialMoves = 0; SkPoint pts[4]; while (SkPath::kMove_Verb == iter.next(pts)) { ++initialMoves; } if (initialMoves > 0) { std::vector points; points.resize(path.getPoints(nullptr, 0)); (void) path.getPoints(&points.front(), points.size()); int skip = initialMoves - 1; bool isConvex = SkPathPriv::IsConvex(&points.front() + skip, points.size() - skip); REPORTER_ASSERT(reporter, isConvex == (SkPathConvexityType::kConvex == expected)); } } static void test_path_crbug389050(skiatest::Reporter* reporter) { SkPath tinyConvexPolygon; tinyConvexPolygon.moveTo(600.131559f, 800.112512f); tinyConvexPolygon.lineTo(600.161735f, 800.118627f); tinyConvexPolygon.lineTo(600.148962f, 800.142338f); tinyConvexPolygon.lineTo(600.134891f, 800.137724f); tinyConvexPolygon.close(); tinyConvexPolygon.getConvexityType(); // This is convex, but so small that it fails many of our checks, and the three "backwards" // bends convince the checker that it's concave. That's okay though, we draw it correctly. check_convexity(reporter, tinyConvexPolygon, SkPathConvexityType::kConcave); check_direction(reporter, tinyConvexPolygon, SkPathPriv::kCW_FirstDirection); SkPath platTriangle; platTriangle.moveTo(0, 0); platTriangle.lineTo(200, 0); platTriangle.lineTo(100, 0.04f); platTriangle.close(); platTriangle.getConvexityType(); check_direction(reporter, platTriangle, SkPathPriv::kCW_FirstDirection); platTriangle.reset(); platTriangle.moveTo(0, 0); platTriangle.lineTo(200, 0); platTriangle.lineTo(100, 0.03f); platTriangle.close(); platTriangle.getConvexityType(); check_direction(reporter, platTriangle, SkPathPriv::kCW_FirstDirection); } static void test_convexity2(skiatest::Reporter* reporter) { SkPath pt; pt.moveTo(0, 0); pt.close(); check_convexity(reporter, pt, SkPathConvexityType::kConvex); check_direction(reporter, pt, SkPathPriv::kUnknown_FirstDirection); SkPath line; line.moveTo(12*SK_Scalar1, 20*SK_Scalar1); line.lineTo(-12*SK_Scalar1, -20*SK_Scalar1); line.close(); check_convexity(reporter, line, SkPathConvexityType::kConvex); check_direction(reporter, line, SkPathPriv::kUnknown_FirstDirection); SkPath triLeft; triLeft.moveTo(0, 0); triLeft.lineTo(SK_Scalar1, 0); triLeft.lineTo(SK_Scalar1, SK_Scalar1); triLeft.close(); check_convexity(reporter, triLeft, SkPathConvexityType::kConvex); check_direction(reporter, triLeft, SkPathPriv::kCW_FirstDirection); SkPath triRight; triRight.moveTo(0, 0); triRight.lineTo(-SK_Scalar1, 0); triRight.lineTo(SK_Scalar1, SK_Scalar1); triRight.close(); check_convexity(reporter, triRight, SkPathConvexityType::kConvex); check_direction(reporter, triRight, SkPathPriv::kCCW_FirstDirection); SkPath square; square.moveTo(0, 0); square.lineTo(SK_Scalar1, 0); square.lineTo(SK_Scalar1, SK_Scalar1); square.lineTo(0, SK_Scalar1); square.close(); check_convexity(reporter, square, SkPathConvexityType::kConvex); check_direction(reporter, square, SkPathPriv::kCW_FirstDirection); SkPath redundantSquare; redundantSquare.moveTo(0, 0); redundantSquare.lineTo(0, 0); redundantSquare.lineTo(0, 0); redundantSquare.lineTo(SK_Scalar1, 0); redundantSquare.lineTo(SK_Scalar1, 0); redundantSquare.lineTo(SK_Scalar1, 0); redundantSquare.lineTo(SK_Scalar1, SK_Scalar1); redundantSquare.lineTo(SK_Scalar1, SK_Scalar1); redundantSquare.lineTo(SK_Scalar1, SK_Scalar1); redundantSquare.lineTo(0, SK_Scalar1); redundantSquare.lineTo(0, SK_Scalar1); redundantSquare.lineTo(0, SK_Scalar1); redundantSquare.close(); check_convexity(reporter, redundantSquare, SkPathConvexityType::kConvex); check_direction(reporter, redundantSquare, SkPathPriv::kCW_FirstDirection); SkPath bowTie; bowTie.moveTo(0, 0); bowTie.lineTo(0, 0); bowTie.lineTo(0, 0); bowTie.lineTo(SK_Scalar1, SK_Scalar1); bowTie.lineTo(SK_Scalar1, SK_Scalar1); bowTie.lineTo(SK_Scalar1, SK_Scalar1); bowTie.lineTo(SK_Scalar1, 0); bowTie.lineTo(SK_Scalar1, 0); bowTie.lineTo(SK_Scalar1, 0); bowTie.lineTo(0, SK_Scalar1); bowTie.lineTo(0, SK_Scalar1); bowTie.lineTo(0, SK_Scalar1); bowTie.close(); check_convexity(reporter, bowTie, SkPathConvexityType::kConcave); check_direction(reporter, bowTie, kDontCheckDir); SkPath spiral; spiral.moveTo(0, 0); spiral.lineTo(100*SK_Scalar1, 0); spiral.lineTo(100*SK_Scalar1, 100*SK_Scalar1); spiral.lineTo(0, 100*SK_Scalar1); spiral.lineTo(0, 50*SK_Scalar1); spiral.lineTo(50*SK_Scalar1, 50*SK_Scalar1); spiral.lineTo(50*SK_Scalar1, 75*SK_Scalar1); spiral.close(); check_convexity(reporter, spiral, SkPathConvexityType::kConcave); check_direction(reporter, spiral, kDontCheckDir); SkPath dent; dent.moveTo(0, 0); dent.lineTo(100*SK_Scalar1, 100*SK_Scalar1); dent.lineTo(0, 100*SK_Scalar1); dent.lineTo(-50*SK_Scalar1, 200*SK_Scalar1); dent.lineTo(-200*SK_Scalar1, 100*SK_Scalar1); dent.close(); check_convexity(reporter, dent, SkPathConvexityType::kConcave); check_direction(reporter, dent, SkPathPriv::kCW_FirstDirection); // https://bug.skia.org/2235 SkPath strokedSin; for (int i = 0; i < 2000; i++) { SkScalar x = SkIntToScalar(i) / 2; SkScalar y = 500 - (x + SkScalarSin(x / 100) * 40) / 3; if (0 == i) { strokedSin.moveTo(x, y); } else { strokedSin.lineTo(x, y); } } SkStrokeRec stroke(SkStrokeRec::kFill_InitStyle); stroke.setStrokeStyle(2 * SK_Scalar1); stroke.applyToPath(&strokedSin, strokedSin); check_convexity(reporter, strokedSin, SkPathConvexityType::kConcave); check_direction(reporter, strokedSin, kDontCheckDir); // http://crbug.com/412640 SkPath degenerateConcave; degenerateConcave.moveTo(148.67912f, 191.875f); degenerateConcave.lineTo(470.37695f, 7.5f); degenerateConcave.lineTo(148.67912f, 191.875f); degenerateConcave.lineTo(41.446522f, 376.25f); degenerateConcave.lineTo(-55.971577f, 460.0f); degenerateConcave.lineTo(41.446522f, 376.25f); check_convexity(reporter, degenerateConcave, SkPathConvexityType::kConcave); check_direction(reporter, degenerateConcave, SkPathPriv::kUnknown_FirstDirection); // http://crbug.com/433683 SkPath badFirstVector; badFirstVector.moveTo(501.087708f, 319.610352f); badFirstVector.lineTo(501.087708f, 319.610352f); badFirstVector.cubicTo(501.087677f, 319.610321f, 449.271606f, 258.078674f, 395.084564f, 198.711182f); badFirstVector.cubicTo(358.967072f, 159.140717f, 321.910553f, 120.650436f, 298.442322f, 101.955399f); badFirstVector.lineTo(301.557678f, 98.044601f); badFirstVector.cubicTo(325.283844f, 116.945084f, 362.615204f, 155.720825f, 398.777557f, 195.340454f); badFirstVector.cubicTo(453.031860f, 254.781662f, 504.912262f, 316.389618f, 504.912292f, 316.389648f); badFirstVector.lineTo(504.912292f, 316.389648f); badFirstVector.lineTo(501.087708f, 319.610352f); badFirstVector.close(); check_convexity(reporter, badFirstVector, SkPathConvexityType::kConcave); // http://crbug.com/993330 SkPath falseBackEdge; falseBackEdge.moveTo(-217.83430557928145f, -382.14948768484857f); falseBackEdge.lineTo(-227.73867866614847f, -399.52485512718323f); falseBackEdge.cubicTo(-158.3541047666846f, -439.0757140459542f, -79.8654464485281f, -459.875f, -1.1368683772161603e-13f, -459.875f); falseBackEdge.lineTo(-8.08037266162413e-14f, -439.875f); falseBackEdge.lineTo(-8.526512829121202e-14f, -439.87499999999994f); falseBackEdge.cubicTo(-76.39209188702645f, -439.87499999999994f, -151.46727226799754f, -419.98027663161537f, -217.83430557928145f, -382.14948768484857f); falseBackEdge.close(); check_convexity(reporter, falseBackEdge, SkPathConvexityType::kConcave); } static void test_convexity_doubleback(skiatest::Reporter* reporter) { SkPath doubleback; doubleback.lineTo(1, 1); check_convexity(reporter, doubleback, SkPathConvexityType::kConvex); doubleback.lineTo(2, 2); check_convexity(reporter, doubleback, SkPathConvexityType::kConvex); doubleback.reset(); doubleback.lineTo(1, 0); check_convexity(reporter, doubleback, SkPathConvexityType::kConvex); doubleback.lineTo(2, 0); check_convexity(reporter, doubleback, SkPathConvexityType::kConvex); doubleback.lineTo(1, 0); check_convexity(reporter, doubleback, SkPathConvexityType::kConvex); doubleback.reset(); doubleback.quadTo(1, 1, 2, 2); check_convexity(reporter, doubleback, SkPathConvexityType::kConvex); doubleback.reset(); doubleback.quadTo(1, 0, 2, 0); check_convexity(reporter, doubleback, SkPathConvexityType::kConvex); doubleback.quadTo(1, 0, 0, 0); check_convexity(reporter, doubleback, SkPathConvexityType::kConvex); } static void check_convex_bounds(skiatest::Reporter* reporter, const SkPath& p, const SkRect& bounds) { REPORTER_ASSERT(reporter, p.isConvex()); REPORTER_ASSERT(reporter, p.getBounds() == bounds); SkPath p2(p); REPORTER_ASSERT(reporter, p2.isConvex()); REPORTER_ASSERT(reporter, p2.getBounds() == bounds); SkPath other; other.swap(p2); REPORTER_ASSERT(reporter, other.isConvex()); REPORTER_ASSERT(reporter, other.getBounds() == bounds); } static void setFromString(SkPath* path, const char str[]) { bool first = true; while (str) { SkScalar x, y; str = SkParse::FindScalar(str, &x); if (nullptr == str) { break; } str = SkParse::FindScalar(str, &y); SkASSERT(str); if (first) { path->moveTo(x, y); first = false; } else { path->lineTo(x, y); } } } static void test_convexity(skiatest::Reporter* reporter) { SkPath path; check_convexity(reporter, path, SkPathConvexityType::kConvex); path.addCircle(0, 0, SkIntToScalar(10)); check_convexity(reporter, path, SkPathConvexityType::kConvex); path.addCircle(0, 0, SkIntToScalar(10)); // 2nd circle check_convexity(reporter, path, SkPathConvexityType::kConcave); path.reset(); path.addRect(0, 0, SkIntToScalar(10), SkIntToScalar(10), SkPathDirection::kCCW); check_convexity(reporter, path, SkPathConvexityType::kConvex); REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(path, SkPathPriv::kCCW_FirstDirection)); path.reset(); path.addRect(0, 0, SkIntToScalar(10), SkIntToScalar(10), SkPathDirection::kCW); check_convexity(reporter, path, SkPathConvexityType::kConvex); REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(path, SkPathPriv::kCW_FirstDirection)); path.reset(); path.quadTo(100, 100, 50, 50); // This from GM:convexpaths check_convexity(reporter, path, SkPathConvexityType::kConvex); static const struct { const char* fPathStr; SkPathConvexityType fExpectedConvexity; SkPathPriv::FirstDirection fExpectedDirection; } gRec[] = { { "", SkPathConvexityType::kConvex, SkPathPriv::kUnknown_FirstDirection }, { "0 0", SkPathConvexityType::kConvex, SkPathPriv::kUnknown_FirstDirection }, { "0 0 10 10", SkPathConvexityType::kConvex, SkPathPriv::kUnknown_FirstDirection }, { "0 0 10 10 20 20 0 0 10 10", SkPathConvexityType::kConcave, SkPathPriv::kUnknown_FirstDirection }, { "0 0 10 10 10 20", SkPathConvexityType::kConvex, SkPathPriv::kCW_FirstDirection }, { "0 0 10 10 10 0", SkPathConvexityType::kConvex, SkPathPriv::kCCW_FirstDirection }, { "0 0 10 10 10 0 0 10", SkPathConvexityType::kConcave, kDontCheckDir }, { "0 0 10 0 0 10 -10 -10", SkPathConvexityType::kConcave, SkPathPriv::kCW_FirstDirection }, }; for (size_t i = 0; i < SK_ARRAY_COUNT(gRec); ++i) { path.reset(); setFromString(&path, gRec[i].fPathStr); check_convexity(reporter, path, gRec[i].fExpectedConvexity); check_direction(reporter, path, gRec[i].fExpectedDirection); // check after setting the initial convex and direction if (kDontCheckDir != gRec[i].fExpectedDirection) { SkPath copy(path); SkPathPriv::FirstDirection dir; bool foundDir = SkPathPriv::CheapComputeFirstDirection(copy, &dir); REPORTER_ASSERT(reporter, (gRec[i].fExpectedDirection == SkPathPriv::kUnknown_FirstDirection) ^ foundDir); REPORTER_ASSERT(reporter, !foundDir || gRec[i].fExpectedDirection == dir); check_convexity(reporter, copy, gRec[i].fExpectedConvexity); } REPORTER_ASSERT(reporter, gRec[i].fExpectedConvexity == path.getConvexityType()); check_direction(reporter, path, gRec[i].fExpectedDirection); } static const SkPoint nonFinitePts[] = { { SK_ScalarInfinity, 0 }, { 0, SK_ScalarInfinity }, { SK_ScalarInfinity, SK_ScalarInfinity }, { SK_ScalarNegativeInfinity, 0}, { 0, SK_ScalarNegativeInfinity }, { SK_ScalarNegativeInfinity, SK_ScalarNegativeInfinity }, { SK_ScalarNegativeInfinity, SK_ScalarInfinity }, { SK_ScalarInfinity, SK_ScalarNegativeInfinity }, { SK_ScalarNaN, 0 }, { 0, SK_ScalarNaN }, { SK_ScalarNaN, SK_ScalarNaN }, }; const size_t nonFinitePtsCount = sizeof(nonFinitePts) / sizeof(nonFinitePts[0]); static const SkPoint axisAlignedPts[] = { { SK_ScalarMax, 0 }, { 0, SK_ScalarMax }, { SK_ScalarMin, 0 }, { 0, SK_ScalarMin }, }; const size_t axisAlignedPtsCount = sizeof(axisAlignedPts) / sizeof(axisAlignedPts[0]); for (int index = 0; index < (int) (13 * nonFinitePtsCount * axisAlignedPtsCount); ++index) { int i = (int) (index % nonFinitePtsCount); int f = (int) (index % axisAlignedPtsCount); int g = (int) ((f + 1) % axisAlignedPtsCount); path.reset(); switch (index % 13) { case 0: path.lineTo(nonFinitePts[i]); break; case 1: path.quadTo(nonFinitePts[i], nonFinitePts[i]); break; case 2: path.quadTo(nonFinitePts[i], axisAlignedPts[f]); break; case 3: path.quadTo(axisAlignedPts[f], nonFinitePts[i]); break; case 4: path.cubicTo(nonFinitePts[i], axisAlignedPts[f], axisAlignedPts[f]); break; case 5: path.cubicTo(axisAlignedPts[f], nonFinitePts[i], axisAlignedPts[f]); break; case 6: path.cubicTo(axisAlignedPts[f], axisAlignedPts[f], nonFinitePts[i]); break; case 7: path.cubicTo(nonFinitePts[i], nonFinitePts[i], axisAlignedPts[f]); break; case 8: path.cubicTo(nonFinitePts[i], axisAlignedPts[f], nonFinitePts[i]); break; case 9: path.cubicTo(axisAlignedPts[f], nonFinitePts[i], nonFinitePts[i]); break; case 10: path.cubicTo(nonFinitePts[i], nonFinitePts[i], nonFinitePts[i]); break; case 11: path.cubicTo(nonFinitePts[i], axisAlignedPts[f], axisAlignedPts[g]); break; case 12: path.moveTo(nonFinitePts[i]); break; } check_convexity(reporter, path, SkPathConvexityType::kUnknown); } for (int index = 0; index < (int) (11 * axisAlignedPtsCount); ++index) { int f = (int) (index % axisAlignedPtsCount); int g = (int) ((f + 1) % axisAlignedPtsCount); path.reset(); int curveSelect = index % 11; switch (curveSelect) { case 0: path.moveTo(axisAlignedPts[f]); break; case 1: path.lineTo(axisAlignedPts[f]); break; case 2: path.quadTo(axisAlignedPts[f], axisAlignedPts[f]); break; case 3: path.quadTo(axisAlignedPts[f], axisAlignedPts[g]); break; case 4: path.quadTo(axisAlignedPts[g], axisAlignedPts[f]); break; case 5: path.cubicTo(axisAlignedPts[f], axisAlignedPts[f], axisAlignedPts[f]); break; case 6: path.cubicTo(axisAlignedPts[f], axisAlignedPts[f], axisAlignedPts[g]); break; case 7: path.cubicTo(axisAlignedPts[f], axisAlignedPts[g], axisAlignedPts[f]); break; case 8: path.cubicTo(axisAlignedPts[f], axisAlignedPts[g], axisAlignedPts[g]); break; case 9: path.cubicTo(axisAlignedPts[g], axisAlignedPts[f], axisAlignedPts[f]); break; case 10: path.cubicTo(axisAlignedPts[g], axisAlignedPts[f], axisAlignedPts[g]); break; } if (curveSelect == 0 || curveSelect == 1 || curveSelect == 2 || curveSelect == 5) { check_convexity(reporter, path, SkPathConvexityType::kConvex); } else { SkPath copy(path); // we make a copy so that we don't cache the result on the passed in path. SkPathConvexityType c = copy.getConvexityType(); REPORTER_ASSERT(reporter, SkPathConvexityType::kUnknown == c || SkPathConvexityType::kConcave == c); } } static const SkPoint diagonalPts[] = { { SK_ScalarMax, SK_ScalarMax }, { SK_ScalarMin, SK_ScalarMin }, }; const size_t diagonalPtsCount = sizeof(diagonalPts) / sizeof(diagonalPts[0]); for (int index = 0; index < (int) (7 * diagonalPtsCount); ++index) { int f = (int) (index % diagonalPtsCount); int g = (int) ((f + 1) % diagonalPtsCount); path.reset(); int curveSelect = index % 11; switch (curveSelect) { case 0: path.moveTo(diagonalPts[f]); break; case 1: path.lineTo(diagonalPts[f]); break; case 2: path.quadTo(diagonalPts[f], diagonalPts[f]); break; case 3: path.quadTo(axisAlignedPts[f], diagonalPts[g]); break; case 4: path.quadTo(diagonalPts[g], axisAlignedPts[f]); break; case 5: path.cubicTo(diagonalPts[f], diagonalPts[f], diagonalPts[f]); break; case 6: path.cubicTo(diagonalPts[f], diagonalPts[f], axisAlignedPts[g]); break; case 7: path.cubicTo(diagonalPts[f], axisAlignedPts[g], diagonalPts[f]); break; case 8: path.cubicTo(axisAlignedPts[f], diagonalPts[g], diagonalPts[g]); break; case 9: path.cubicTo(diagonalPts[g], diagonalPts[f], axisAlignedPts[f]); break; case 10: path.cubicTo(diagonalPts[g], axisAlignedPts[f], diagonalPts[g]); break; } if (curveSelect == 0) { check_convexity(reporter, path, SkPathConvexityType::kConvex); } else { SkPath copy(path); // we make a copy so that we don't cache the result on the passed in path. SkPathConvexityType c = copy.getConvexityType(); REPORTER_ASSERT(reporter, SkPathConvexityType::kUnknown == c || SkPathConvexityType::kConcave == c); } } path.reset(); path.moveTo(SkBits2Float(0xbe9171db), SkBits2Float(0xbd7eeb5d)); // -0.284072f, -0.0622362f path.lineTo(SkBits2Float(0xbe9171db), SkBits2Float(0xbd7eea38)); // -0.284072f, -0.0622351f path.lineTo(SkBits2Float(0xbe9171a0), SkBits2Float(0xbd7ee5a7)); // -0.28407f, -0.0622307f path.lineTo(SkBits2Float(0xbe917147), SkBits2Float(0xbd7ed886)); // -0.284067f, -0.0622182f path.lineTo(SkBits2Float(0xbe917378), SkBits2Float(0xbd7ee1a9)); // -0.284084f, -0.0622269f path.lineTo(SkBits2Float(0xbe9171db), SkBits2Float(0xbd7eeb5d)); // -0.284072f, -0.0622362f path.close(); check_convexity(reporter, path, SkPathConvexityType::kConcave); } static void test_isLine(skiatest::Reporter* reporter) { SkPath path; SkPoint pts[2]; const SkScalar value = SkIntToScalar(5); REPORTER_ASSERT(reporter, !path.isLine(nullptr)); // set some non-zero values pts[0].set(value, value); pts[1].set(value, value); REPORTER_ASSERT(reporter, !path.isLine(pts)); // check that pts was untouched REPORTER_ASSERT(reporter, pts[0].equals(value, value)); REPORTER_ASSERT(reporter, pts[1].equals(value, value)); const SkScalar moveX = SkIntToScalar(1); const SkScalar moveY = SkIntToScalar(2); REPORTER_ASSERT(reporter, value != moveX && value != moveY); path.moveTo(moveX, moveY); REPORTER_ASSERT(reporter, !path.isLine(nullptr)); REPORTER_ASSERT(reporter, !path.isLine(pts)); // check that pts was untouched REPORTER_ASSERT(reporter, pts[0].equals(value, value)); REPORTER_ASSERT(reporter, pts[1].equals(value, value)); const SkScalar lineX = SkIntToScalar(2); const SkScalar lineY = SkIntToScalar(2); REPORTER_ASSERT(reporter, value != lineX && value != lineY); path.lineTo(lineX, lineY); REPORTER_ASSERT(reporter, path.isLine(nullptr)); REPORTER_ASSERT(reporter, !pts[0].equals(moveX, moveY)); REPORTER_ASSERT(reporter, !pts[1].equals(lineX, lineY)); REPORTER_ASSERT(reporter, path.isLine(pts)); REPORTER_ASSERT(reporter, pts[0].equals(moveX, moveY)); REPORTER_ASSERT(reporter, pts[1].equals(lineX, lineY)); path.lineTo(0, 0); // too many points/verbs REPORTER_ASSERT(reporter, !path.isLine(nullptr)); REPORTER_ASSERT(reporter, !path.isLine(pts)); REPORTER_ASSERT(reporter, pts[0].equals(moveX, moveY)); REPORTER_ASSERT(reporter, pts[1].equals(lineX, lineY)); path.reset(); path.quadTo(1, 1, 2, 2); REPORTER_ASSERT(reporter, !path.isLine(nullptr)); } static void test_conservativelyContains(skiatest::Reporter* reporter) { SkPath path; // kBaseRect is used to construct most our test paths: a rect, a circle, and a round-rect. static const SkRect kBaseRect = SkRect::MakeWH(SkIntToScalar(100), SkIntToScalar(100)); // A circle that bounds kBaseRect (with a significant amount of slop) SkScalar circleR = std::max(kBaseRect.width(), kBaseRect.height()); circleR *= 1.75f / 2; static const SkPoint kCircleC = {kBaseRect.centerX(), kBaseRect.centerY()}; // round-rect radii static const SkScalar kRRRadii[] = {SkIntToScalar(5), SkIntToScalar(3)}; static const struct SUPPRESS_VISIBILITY_WARNING { SkRect fQueryRect; bool fInRect; bool fInCircle; bool fInRR; bool fInCubicRR; } kQueries[] = { {kBaseRect, true, true, false, false}, // rect well inside of kBaseRect {SkRect::MakeLTRB(kBaseRect.fLeft + 0.25f*kBaseRect.width(), kBaseRect.fTop + 0.25f*kBaseRect.height(), kBaseRect.fRight - 0.25f*kBaseRect.width(), kBaseRect.fBottom - 0.25f*kBaseRect.height()), true, true, true, true}, // rects with edges off by one from kBaseRect's edges {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop, kBaseRect.width(), kBaseRect.height() + 1), false, true, false, false}, {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop, kBaseRect.width() + 1, kBaseRect.height()), false, true, false, false}, {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop, kBaseRect.width() + 1, kBaseRect.height() + 1), false, true, false, false}, {SkRect::MakeXYWH(kBaseRect.fLeft - 1, kBaseRect.fTop, kBaseRect.width(), kBaseRect.height()), false, true, false, false}, {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop - 1, kBaseRect.width(), kBaseRect.height()), false, true, false, false}, {SkRect::MakeXYWH(kBaseRect.fLeft - 1, kBaseRect.fTop, kBaseRect.width() + 2, kBaseRect.height()), false, true, false, false}, {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop - 1, kBaseRect.width() + 2, kBaseRect.height()), false, true, false, false}, // zero-w/h rects at each corner of kBaseRect {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop, 0, 0), true, true, false, false}, {SkRect::MakeXYWH(kBaseRect.fRight, kBaseRect.fTop, 0, 0), true, true, false, true}, {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fBottom, 0, 0), true, true, false, true}, {SkRect::MakeXYWH(kBaseRect.fRight, kBaseRect.fBottom, 0, 0), true, true, false, true}, // far away rect {SkRect::MakeXYWH(10 * kBaseRect.fRight, 10 * kBaseRect.fBottom, SkIntToScalar(10), SkIntToScalar(10)), false, false, false, false}, // very large rect containing kBaseRect {SkRect::MakeXYWH(kBaseRect.fLeft - 5 * kBaseRect.width(), kBaseRect.fTop - 5 * kBaseRect.height(), 11 * kBaseRect.width(), 11 * kBaseRect.height()), false, false, false, false}, // skinny rect that spans same y-range as kBaseRect {SkRect::MakeXYWH(kBaseRect.centerX(), kBaseRect.fTop, SkIntToScalar(1), kBaseRect.height()), true, true, true, true}, // short rect that spans same x-range as kBaseRect {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.centerY(), kBaseRect.width(), SkScalar(1)), true, true, true, true}, // skinny rect that spans slightly larger y-range than kBaseRect {SkRect::MakeXYWH(kBaseRect.centerX(), kBaseRect.fTop, SkIntToScalar(1), kBaseRect.height() + 1), false, true, false, false}, // short rect that spans slightly larger x-range than kBaseRect {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.centerY(), kBaseRect.width() + 1, SkScalar(1)), false, true, false, false}, }; for (int inv = 0; inv < 4; ++inv) { for (size_t q = 0; q < SK_ARRAY_COUNT(kQueries); ++q) { SkRect qRect = kQueries[q].fQueryRect; if (inv & 0x1) { using std::swap; swap(qRect.fLeft, qRect.fRight); } if (inv & 0x2) { using std::swap; swap(qRect.fTop, qRect.fBottom); } for (int d = 0; d < 2; ++d) { SkPathDirection dir = d ? SkPathDirection::kCCW : SkPathDirection::kCW; path.reset(); path.addRect(kBaseRect, dir); REPORTER_ASSERT(reporter, kQueries[q].fInRect == path.conservativelyContainsRect(qRect)); path.reset(); path.addCircle(kCircleC.fX, kCircleC.fY, circleR, dir); REPORTER_ASSERT(reporter, kQueries[q].fInCircle == path.conservativelyContainsRect(qRect)); path.reset(); path.addRoundRect(kBaseRect, kRRRadii[0], kRRRadii[1], dir); REPORTER_ASSERT(reporter, kQueries[q].fInRR == path.conservativelyContainsRect(qRect)); path.reset(); path.moveTo(kBaseRect.fLeft + kRRRadii[0], kBaseRect.fTop); path.cubicTo(kBaseRect.fLeft + kRRRadii[0] / 2, kBaseRect.fTop, kBaseRect.fLeft, kBaseRect.fTop + kRRRadii[1] / 2, kBaseRect.fLeft, kBaseRect.fTop + kRRRadii[1]); path.lineTo(kBaseRect.fLeft, kBaseRect.fBottom); path.lineTo(kBaseRect.fRight, kBaseRect.fBottom); path.lineTo(kBaseRect.fRight, kBaseRect.fTop); path.close(); REPORTER_ASSERT(reporter, kQueries[q].fInCubicRR == path.conservativelyContainsRect(qRect)); } // Slightly non-convex shape, shouldn't contain any rects. path.reset(); path.moveTo(0, 0); path.lineTo(SkIntToScalar(50), 0.05f); path.lineTo(SkIntToScalar(100), 0); path.lineTo(SkIntToScalar(100), SkIntToScalar(100)); path.lineTo(0, SkIntToScalar(100)); path.close(); REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(qRect)); } } // make sure a minimal convex shape works, a right tri with edges along pos x and y axes. path.reset(); path.moveTo(0, 0); path.lineTo(SkIntToScalar(100), 0); path.lineTo(0, SkIntToScalar(100)); // inside, on along top edge REPORTER_ASSERT(reporter, path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(50), 0, SkIntToScalar(10), SkIntToScalar(10)))); // above REPORTER_ASSERT(reporter, !path.conservativelyContainsRect( SkRect::MakeXYWH(SkIntToScalar(50), SkIntToScalar(-10), SkIntToScalar(10), SkIntToScalar(10)))); // to the left REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(-10), SkIntToScalar(5), SkIntToScalar(5), SkIntToScalar(5)))); // outside the diagonal edge REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(10), SkIntToScalar(200), SkIntToScalar(20), SkIntToScalar(5)))); // Test that multiple move commands do not cause asserts. path.moveTo(SkIntToScalar(100), SkIntToScalar(100)); REPORTER_ASSERT(reporter, path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(50), 0, SkIntToScalar(10), SkIntToScalar(10)))); // Same as above path and first test but with an extra moveTo. path.reset(); path.moveTo(100, 100); path.moveTo(0, 0); path.lineTo(SkIntToScalar(100), 0); path.lineTo(0, SkIntToScalar(100)); // Convexity logic is now more conservative, so that multiple (non-trailing) moveTos make a // path non-convex. REPORTER_ASSERT(reporter, !path.conservativelyContainsRect( SkRect::MakeXYWH(SkIntToScalar(50), 0, SkIntToScalar(10), SkIntToScalar(10)))); // Same as above path and first test but with the extra moveTo making a degenerate sub-path // following the non-empty sub-path. Verifies that this does not trigger assertions. path.reset(); path.moveTo(0, 0); path.lineTo(SkIntToScalar(100), 0); path.lineTo(0, SkIntToScalar(100)); path.moveTo(100, 100); REPORTER_ASSERT(reporter, path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(50), 0, SkIntToScalar(10), SkIntToScalar(10)))); // Test that multiple move commands do not cause asserts and that the function // is not confused by the multiple moves. path.reset(); path.moveTo(0, 0); path.lineTo(SkIntToScalar(100), 0); path.lineTo(0, SkIntToScalar(100)); path.moveTo(0, SkIntToScalar(200)); path.lineTo(SkIntToScalar(100), SkIntToScalar(200)); path.lineTo(0, SkIntToScalar(300)); REPORTER_ASSERT(reporter, !path.conservativelyContainsRect( SkRect::MakeXYWH(SkIntToScalar(50), 0, SkIntToScalar(10), SkIntToScalar(10)))); path.reset(); path.lineTo(100, 100); REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeXYWH(0, 0, 1, 1))); // An empty path should not contain any rectangle. It's questionable whether an empty path // contains an empty rectangle. However, since it is a conservative test it is ok to // return false. path.reset(); REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeWH(1,1))); REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeWH(0,0))); } static void test_isRect_open_close(skiatest::Reporter* reporter) { SkPath path; bool isClosed; path.moveTo(0, 0); path.lineTo(1, 0); path.lineTo(1, 1); path.lineTo(0, 1); path.close(); REPORTER_ASSERT(reporter, path.isRect(nullptr, &isClosed, nullptr)); REPORTER_ASSERT(reporter, isClosed); } // Simple isRect test is inline TestPath, below. // test_isRect provides more extensive testing. static void test_isRect(skiatest::Reporter* reporter) { test_isRect_open_close(reporter); // passing tests (all moveTo / lineTo... SkPoint r1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; SkPoint r2[] = {{1, 0}, {1, 1}, {0, 1}, {0, 0}}; SkPoint r3[] = {{1, 1}, {0, 1}, {0, 0}, {1, 0}}; SkPoint r4[] = {{0, 1}, {0, 0}, {1, 0}, {1, 1}}; SkPoint r5[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}}; SkPoint r6[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}}; SkPoint r7[] = {{1, 1}, {1, 0}, {0, 0}, {0, 1}}; SkPoint r8[] = {{1, 0}, {0, 0}, {0, 1}, {1, 1}}; SkPoint r9[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}}; SkPoint ra[] = {{0, 0}, {0, .5f}, {0, 1}, {.5f, 1}, {1, 1}, {1, .5f}, {1, 0}, {.5f, 0}}; SkPoint rb[] = {{0, 0}, {.5f, 0}, {1, 0}, {1, .5f}, {1, 1}, {.5f, 1}, {0, 1}, {0, .5f}}; SkPoint rc[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}}; SkPoint rd[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}, {0, 0}}; SkPoint re[] = {{0, 0}, {1, 0}, {1, 0}, {1, 1}, {0, 1}}; SkPoint rf[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, 0}}; // failing tests SkPoint f1[] = {{0, 0}, {1, 0}, {1, 1}}; // too few points SkPoint f2[] = {{0, 0}, {1, 1}, {0, 1}, {1, 0}}; // diagonal SkPoint f3[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}, {1, 0}}; // wraps SkPoint f4[] = {{0, 0}, {1, 0}, {0, 0}, {1, 0}, {1, 1}, {0, 1}}; // backs up SkPoint f5[] = {{0, 0}, {1, 0}, {1, 1}, {2, 0}}; // end overshoots SkPoint f6[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 2}}; // end overshoots SkPoint f7[] = {{0, 0}, {1, 0}, {1, 1}, {0, 2}}; // end overshoots SkPoint f8[] = {{0, 0}, {1, 0}, {1, 1}, {1, 0}}; // 'L' SkPoint f9[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, 0}, {2, 0}}; // overlaps SkPoint fa[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, -1}, {1, -1}}; // non colinear gap SkPoint fb[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, 1}}; // falls short // no close, but we should detect them as fillably the same as a rect SkPoint c1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; SkPoint c2[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}}; SkPoint c3[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}, {0, 0}}; // hit the start // like c2, but we double-back on ourselves SkPoint d1[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}, {0, 2}}; // like c2, but we overshoot the start point SkPoint d2[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, -1}}; SkPoint d3[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, -1}, {0, 0}}; struct IsRectTest { SkPoint *fPoints; int fPointCount; bool fClose; bool fIsRect; } tests[] = { { r1, SK_ARRAY_COUNT(r1), true, true }, { r2, SK_ARRAY_COUNT(r2), true, true }, { r3, SK_ARRAY_COUNT(r3), true, true }, { r4, SK_ARRAY_COUNT(r4), true, true }, { r5, SK_ARRAY_COUNT(r5), true, true }, { r6, SK_ARRAY_COUNT(r6), true, true }, { r7, SK_ARRAY_COUNT(r7), true, true }, { r8, SK_ARRAY_COUNT(r8), true, true }, { r9, SK_ARRAY_COUNT(r9), true, true }, { ra, SK_ARRAY_COUNT(ra), true, true }, { rb, SK_ARRAY_COUNT(rb), true, true }, { rc, SK_ARRAY_COUNT(rc), true, true }, { rd, SK_ARRAY_COUNT(rd), true, true }, { re, SK_ARRAY_COUNT(re), true, true }, { rf, SK_ARRAY_COUNT(rf), true, true }, { f1, SK_ARRAY_COUNT(f1), true, false }, { f2, SK_ARRAY_COUNT(f2), true, false }, { f3, SK_ARRAY_COUNT(f3), true, false }, { f4, SK_ARRAY_COUNT(f4), true, false }, { f5, SK_ARRAY_COUNT(f5), true, false }, { f6, SK_ARRAY_COUNT(f6), true, false }, { f7, SK_ARRAY_COUNT(f7), true, false }, { f8, SK_ARRAY_COUNT(f8), true, false }, { f9, SK_ARRAY_COUNT(f9), true, false }, { fa, SK_ARRAY_COUNT(fa), true, false }, { fb, SK_ARRAY_COUNT(fb), true, false }, { c1, SK_ARRAY_COUNT(c1), false, true }, { c2, SK_ARRAY_COUNT(c2), false, true }, { c3, SK_ARRAY_COUNT(c3), false, true }, { d1, SK_ARRAY_COUNT(d1), false, false }, { d2, SK_ARRAY_COUNT(d2), false, true }, { d3, SK_ARRAY_COUNT(d3), false, false }, }; const size_t testCount = SK_ARRAY_COUNT(tests); int index; for (size_t testIndex = 0; testIndex < testCount; ++testIndex) { SkPath path; path.moveTo(tests[testIndex].fPoints[0].fX, tests[testIndex].fPoints[0].fY); for (index = 1; index < tests[testIndex].fPointCount; ++index) { path.lineTo(tests[testIndex].fPoints[index].fX, tests[testIndex].fPoints[index].fY); } if (tests[testIndex].fClose) { path.close(); } REPORTER_ASSERT(reporter, tests[testIndex].fIsRect == path.isRect(nullptr)); if (tests[testIndex].fIsRect) { SkRect computed, expected; bool isClosed; SkPathDirection direction; SkPathPriv::FirstDirection cheapDirection; int pointCount = tests[testIndex].fPointCount - (d2 == tests[testIndex].fPoints); expected.setBounds(tests[testIndex].fPoints, pointCount); REPORTER_ASSERT(reporter, SkPathPriv::CheapComputeFirstDirection(path, &cheapDirection)); REPORTER_ASSERT(reporter, path.isRect(&computed, &isClosed, &direction)); REPORTER_ASSERT(reporter, expected == computed); REPORTER_ASSERT(reporter, isClosed == tests[testIndex].fClose); REPORTER_ASSERT(reporter, SkPathPriv::AsFirstDirection(direction) == cheapDirection); } else { SkRect computed; computed.setLTRB(123, 456, 789, 1011); for (auto c : {true, false}) for (auto d : {SkPathDirection::kCW, SkPathDirection::kCCW}) { bool isClosed = c; SkPathDirection direction = d; REPORTER_ASSERT(reporter, !path.isRect(&computed, &isClosed, &direction)); REPORTER_ASSERT(reporter, computed.fLeft == 123 && computed.fTop == 456); REPORTER_ASSERT(reporter, computed.fRight == 789 && computed.fBottom == 1011); REPORTER_ASSERT(reporter, isClosed == c); REPORTER_ASSERT(reporter, direction == d); } } } // fail, close then line SkPath path1; path1.moveTo(r1[0].fX, r1[0].fY); for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) { path1.lineTo(r1[index].fX, r1[index].fY); } path1.close(); path1.lineTo(1, 0); REPORTER_ASSERT(reporter, !path1.isRect(nullptr)); // fail, move in the middle path1.reset(); path1.moveTo(r1[0].fX, r1[0].fY); for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) { if (index == 2) { path1.moveTo(1, .5f); } path1.lineTo(r1[index].fX, r1[index].fY); } path1.close(); REPORTER_ASSERT(reporter, !path1.isRect(nullptr)); // fail, move on the edge path1.reset(); for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) { path1.moveTo(r1[index - 1].fX, r1[index - 1].fY); path1.lineTo(r1[index].fX, r1[index].fY); } path1.close(); REPORTER_ASSERT(reporter, !path1.isRect(nullptr)); // fail, quad path1.reset(); path1.moveTo(r1[0].fX, r1[0].fY); for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) { if (index == 2) { path1.quadTo(1, .5f, 1, .5f); } path1.lineTo(r1[index].fX, r1[index].fY); } path1.close(); REPORTER_ASSERT(reporter, !path1.isRect(nullptr)); // fail, cubic path1.reset(); path1.moveTo(r1[0].fX, r1[0].fY); for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) { if (index == 2) { path1.cubicTo(1, .5f, 1, .5f, 1, .5f); } path1.lineTo(r1[index].fX, r1[index].fY); } path1.close(); REPORTER_ASSERT(reporter, !path1.isRect(nullptr)); } static void check_simple_closed_rect(skiatest::Reporter* reporter, const SkPath& path, const SkRect& rect, SkPathDirection dir, unsigned start) { SkRect r = SkRect::MakeEmpty(); SkPathDirection d = SkPathDirection::kCCW; unsigned s = ~0U; REPORTER_ASSERT(reporter, SkPathPriv::IsSimpleClosedRect(path, &r, &d, &s)); REPORTER_ASSERT(reporter, r == rect); REPORTER_ASSERT(reporter, d == dir); REPORTER_ASSERT(reporter, s == start); } static void test_is_simple_closed_rect(skiatest::Reporter* reporter) { using std::swap; SkRect r = SkRect::MakeEmpty(); SkPathDirection d = SkPathDirection::kCCW; unsigned s = ~0U; const SkRect testRect = SkRect::MakeXYWH(10, 10, 50, 70); const SkRect emptyRect = SkRect::MakeEmpty(); SkPath path; for (int start = 0; start < 4; ++start) { for (auto dir : {SkPathDirection::kCCW, SkPathDirection::kCW}) { SkPath path; path.addRect(testRect, dir, start); check_simple_closed_rect(reporter, path, testRect, dir, start); path.close(); check_simple_closed_rect(reporter, path, testRect, dir, start); SkPath path2 = path; path2.lineTo(10, 10); REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path2, &r, &d, &s)); path2 = path; path2.moveTo(10, 10); REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path2, &r, &d, &s)); path2 = path; path2.addRect(testRect, dir, start); REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path2, &r, &d, &s)); // Make the path by hand, manually closing it. path2.reset(); SkPoint firstPt = {0.f, 0.f}; for (auto [v, verbPts, w] : SkPathPriv::Iterate(path)) { switch(v) { case SkPathVerb::kMove: firstPt = verbPts[0]; path2.moveTo(verbPts[0]); break; case SkPathVerb::kLine: path2.lineTo(verbPts[1]); break; default: break; } } // We haven't closed it yet... REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path2, &r, &d, &s)); // ... now we do and test again. path2.lineTo(firstPt); check_simple_closed_rect(reporter, path2, testRect, dir, start); // A redundant close shouldn't cause a failure. path2.close(); check_simple_closed_rect(reporter, path2, testRect, dir, start); // Degenerate point and line rects are not allowed path2.reset(); path2.addRect(emptyRect, dir, start); REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path2, &r, &d, &s)); SkRect degenRect = testRect; degenRect.fLeft = degenRect.fRight; path2.reset(); path2.addRect(degenRect, dir, start); REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path2, &r, &d, &s)); degenRect = testRect; degenRect.fTop = degenRect.fBottom; path2.reset(); path2.addRect(degenRect, dir, start); REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path2, &r, &d, &s)); // An inverted rect makes a rect path, but changes the winding dir and start point. SkPathDirection swapDir = (dir == SkPathDirection::kCW) ? SkPathDirection::kCCW : SkPathDirection::kCW; static constexpr unsigned kXSwapStarts[] = { 1, 0, 3, 2 }; static constexpr unsigned kYSwapStarts[] = { 3, 2, 1, 0 }; SkRect swapRect = testRect; swap(swapRect.fLeft, swapRect.fRight); path2.reset(); path2.addRect(swapRect, dir, start); check_simple_closed_rect(reporter, path2, testRect, swapDir, kXSwapStarts[start]); swapRect = testRect; swap(swapRect.fTop, swapRect.fBottom); path2.reset(); path2.addRect(swapRect, dir, start); check_simple_closed_rect(reporter, path2, testRect, swapDir, kYSwapStarts[start]); } } // down, up, left, close path.reset(); path.moveTo(1, 1); path.lineTo(1, 2); path.lineTo(1, 1); path.lineTo(0, 1); SkRect rect; SkPathDirection dir; unsigned start; path.close(); REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path, &rect, &dir, &start)); // right, left, up, close path.reset(); path.moveTo(1, 1); path.lineTo(2, 1); path.lineTo(1, 1); path.lineTo(1, 0); path.close(); REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path, &rect, &dir, &start)); // parallelogram with horizontal edges path.reset(); path.moveTo(1, 0); path.lineTo(3, 0); path.lineTo(2, 1); path.lineTo(0, 1); path.close(); REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path, &rect, &dir, &start)); // parallelogram with vertical edges path.reset(); path.moveTo(0, 1); path.lineTo(0, 3); path.lineTo(1, 2); path.lineTo(1, 0); path.close(); REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path, &rect, &dir, &start)); } static void test_isNestedFillRects(skiatest::Reporter* reporter) { // passing tests (all moveTo / lineTo... SkPoint r1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; // CW SkPoint r2[] = {{1, 0}, {1, 1}, {0, 1}, {0, 0}}; SkPoint r3[] = {{1, 1}, {0, 1}, {0, 0}, {1, 0}}; SkPoint r4[] = {{0, 1}, {0, 0}, {1, 0}, {1, 1}}; SkPoint r5[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}}; // CCW SkPoint r6[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}}; SkPoint r7[] = {{1, 1}, {1, 0}, {0, 0}, {0, 1}}; SkPoint r8[] = {{1, 0}, {0, 0}, {0, 1}, {1, 1}}; SkPoint r9[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}}; SkPoint ra[] = {{0, 0}, {0, .5f}, {0, 1}, {.5f, 1}, {1, 1}, {1, .5f}, {1, 0}, {.5f, 0}}; // CCW SkPoint rb[] = {{0, 0}, {.5f, 0}, {1, 0}, {1, .5f}, {1, 1}, {.5f, 1}, {0, 1}, {0, .5f}}; // CW SkPoint rc[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}}; // CW SkPoint rd[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}, {0, 0}}; // CCW SkPoint re[] = {{0, 0}, {1, 0}, {1, 0}, {1, 1}, {0, 1}}; // CW // failing tests SkPoint f1[] = {{0, 0}, {1, 0}, {1, 1}}; // too few points SkPoint f2[] = {{0, 0}, {1, 1}, {0, 1}, {1, 0}}; // diagonal SkPoint f3[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}, {1, 0}}; // wraps SkPoint f4[] = {{0, 0}, {1, 0}, {0, 0}, {1, 0}, {1, 1}, {0, 1}}; // backs up SkPoint f5[] = {{0, 0}, {1, 0}, {1, 1}, {2, 0}}; // end overshoots SkPoint f6[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 2}}; // end overshoots SkPoint f7[] = {{0, 0}, {1, 0}, {1, 1}, {0, 2}}; // end overshoots SkPoint f8[] = {{0, 0}, {1, 0}, {1, 1}, {1, 0}}; // 'L' // success, no close is OK SkPoint c1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; // close doesn't match SkPoint c2[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}}; // ditto struct IsNestedRectTest { SkPoint *fPoints; int fPointCount; SkPathPriv::FirstDirection fDirection; bool fClose; bool fIsNestedRect; // nests with path.addRect(-1, -1, 2, 2); } tests[] = { { r1, SK_ARRAY_COUNT(r1), SkPathPriv::kCW_FirstDirection , true, true }, { r2, SK_ARRAY_COUNT(r2), SkPathPriv::kCW_FirstDirection , true, true }, { r3, SK_ARRAY_COUNT(r3), SkPathPriv::kCW_FirstDirection , true, true }, { r4, SK_ARRAY_COUNT(r4), SkPathPriv::kCW_FirstDirection , true, true }, { r5, SK_ARRAY_COUNT(r5), SkPathPriv::kCCW_FirstDirection, true, true }, { r6, SK_ARRAY_COUNT(r6), SkPathPriv::kCCW_FirstDirection, true, true }, { r7, SK_ARRAY_COUNT(r7), SkPathPriv::kCCW_FirstDirection, true, true }, { r8, SK_ARRAY_COUNT(r8), SkPathPriv::kCCW_FirstDirection, true, true }, { r9, SK_ARRAY_COUNT(r9), SkPathPriv::kCCW_FirstDirection, true, true }, { ra, SK_ARRAY_COUNT(ra), SkPathPriv::kCCW_FirstDirection, true, true }, { rb, SK_ARRAY_COUNT(rb), SkPathPriv::kCW_FirstDirection, true, true }, { rc, SK_ARRAY_COUNT(rc), SkPathPriv::kCW_FirstDirection, true, true }, { rd, SK_ARRAY_COUNT(rd), SkPathPriv::kCCW_FirstDirection, true, true }, { re, SK_ARRAY_COUNT(re), SkPathPriv::kCW_FirstDirection, true, true }, { f1, SK_ARRAY_COUNT(f1), SkPathPriv::kUnknown_FirstDirection, true, false }, { f2, SK_ARRAY_COUNT(f2), SkPathPriv::kUnknown_FirstDirection, true, false }, { f3, SK_ARRAY_COUNT(f3), SkPathPriv::kUnknown_FirstDirection, true, false }, { f4, SK_ARRAY_COUNT(f4), SkPathPriv::kUnknown_FirstDirection, true, false }, { f5, SK_ARRAY_COUNT(f5), SkPathPriv::kUnknown_FirstDirection, true, false }, { f6, SK_ARRAY_COUNT(f6), SkPathPriv::kUnknown_FirstDirection, true, false }, { f7, SK_ARRAY_COUNT(f7), SkPathPriv::kUnknown_FirstDirection, true, false }, { f8, SK_ARRAY_COUNT(f8), SkPathPriv::kUnknown_FirstDirection, true, false }, { c1, SK_ARRAY_COUNT(c1), SkPathPriv::kCW_FirstDirection, false, true }, { c2, SK_ARRAY_COUNT(c2), SkPathPriv::kCW_FirstDirection, false, true }, }; const size_t testCount = SK_ARRAY_COUNT(tests); int index; for (int rectFirst = 0; rectFirst <= 1; ++rectFirst) { for (size_t testIndex = 0; testIndex < testCount; ++testIndex) { SkPath path; if (rectFirst) { path.addRect(-1, -1, 2, 2, SkPathDirection::kCW); } path.moveTo(tests[testIndex].fPoints[0].fX, tests[testIndex].fPoints[0].fY); for (index = 1; index < tests[testIndex].fPointCount; ++index) { path.lineTo(tests[testIndex].fPoints[index].fX, tests[testIndex].fPoints[index].fY); } if (tests[testIndex].fClose) { path.close(); } if (!rectFirst) { path.addRect(-1, -1, 2, 2, SkPathDirection::kCCW); } REPORTER_ASSERT(reporter, tests[testIndex].fIsNestedRect == SkPathPriv::IsNestedFillRects(path, nullptr)); if (tests[testIndex].fIsNestedRect) { SkRect expected[2], computed[2]; SkPathPriv::FirstDirection expectedDirs[2]; SkPathDirection computedDirs[2]; SkRect testBounds; testBounds.setBounds(tests[testIndex].fPoints, tests[testIndex].fPointCount); expected[0] = SkRect::MakeLTRB(-1, -1, 2, 2); expected[1] = testBounds; if (rectFirst) { expectedDirs[0] = SkPathPriv::kCW_FirstDirection; } else { expectedDirs[0] = SkPathPriv::kCCW_FirstDirection; } expectedDirs[1] = tests[testIndex].fDirection; REPORTER_ASSERT(reporter, SkPathPriv::IsNestedFillRects(path, computed, computedDirs)); REPORTER_ASSERT(reporter, expected[0] == computed[0]); REPORTER_ASSERT(reporter, expected[1] == computed[1]); REPORTER_ASSERT(reporter, expectedDirs[0] == SkPathPriv::AsFirstDirection(computedDirs[0])); REPORTER_ASSERT(reporter, expectedDirs[1] == SkPathPriv::AsFirstDirection(computedDirs[1])); } } // fail, close then line SkPath path1; if (rectFirst) { path1.addRect(-1, -1, 2, 2, SkPathDirection::kCW); } path1.moveTo(r1[0].fX, r1[0].fY); for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) { path1.lineTo(r1[index].fX, r1[index].fY); } path1.close(); path1.lineTo(1, 0); if (!rectFirst) { path1.addRect(-1, -1, 2, 2, SkPathDirection::kCCW); } REPORTER_ASSERT(reporter, !SkPathPriv::IsNestedFillRects(path1, nullptr)); // fail, move in the middle path1.reset(); if (rectFirst) { path1.addRect(-1, -1, 2, 2, SkPathDirection::kCW); } path1.moveTo(r1[0].fX, r1[0].fY); for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) { if (index == 2) { path1.moveTo(1, .5f); } path1.lineTo(r1[index].fX, r1[index].fY); } path1.close(); if (!rectFirst) { path1.addRect(-1, -1, 2, 2, SkPathDirection::kCCW); } REPORTER_ASSERT(reporter, !SkPathPriv::IsNestedFillRects(path1, nullptr)); // fail, move on the edge path1.reset(); if (rectFirst) { path1.addRect(-1, -1, 2, 2, SkPathDirection::kCW); } for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) { path1.moveTo(r1[index - 1].fX, r1[index - 1].fY); path1.lineTo(r1[index].fX, r1[index].fY); } path1.close(); if (!rectFirst) { path1.addRect(-1, -1, 2, 2, SkPathDirection::kCCW); } REPORTER_ASSERT(reporter, !SkPathPriv::IsNestedFillRects(path1, nullptr)); // fail, quad path1.reset(); if (rectFirst) { path1.addRect(-1, -1, 2, 2, SkPathDirection::kCW); } path1.moveTo(r1[0].fX, r1[0].fY); for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) { if (index == 2) { path1.quadTo(1, .5f, 1, .5f); } path1.lineTo(r1[index].fX, r1[index].fY); } path1.close(); if (!rectFirst) { path1.addRect(-1, -1, 2, 2, SkPathDirection::kCCW); } REPORTER_ASSERT(reporter, !SkPathPriv::IsNestedFillRects(path1, nullptr)); // fail, cubic path1.reset(); if (rectFirst) { path1.addRect(-1, -1, 2, 2, SkPathDirection::kCW); } path1.moveTo(r1[0].fX, r1[0].fY); for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) { if (index == 2) { path1.cubicTo(1, .5f, 1, .5f, 1, .5f); } path1.lineTo(r1[index].fX, r1[index].fY); } path1.close(); if (!rectFirst) { path1.addRect(-1, -1, 2, 2, SkPathDirection::kCCW); } REPORTER_ASSERT(reporter, !SkPathPriv::IsNestedFillRects(path1, nullptr)); // fail, not nested path1.reset(); path1.addRect(1, 1, 3, 3, SkPathDirection::kCW); path1.addRect(2, 2, 4, 4, SkPathDirection::kCW); REPORTER_ASSERT(reporter, !SkPathPriv::IsNestedFillRects(path1, nullptr)); } // pass, constructed explicitly from manually closed rects specified as moves/lines. SkPath path; path.moveTo(0, 0); path.lineTo(10, 0); path.lineTo(10, 10); path.lineTo(0, 10); path.lineTo(0, 0); path.moveTo(1, 1); path.lineTo(9, 1); path.lineTo(9, 9); path.lineTo(1, 9); path.lineTo(1, 1); REPORTER_ASSERT(reporter, SkPathPriv::IsNestedFillRects(path, nullptr)); // pass, stroke rect SkPath src, dst; src.addRect(1, 1, 7, 7, SkPathDirection::kCW); SkPaint strokePaint; strokePaint.setStyle(SkPaint::kStroke_Style); strokePaint.setStrokeWidth(2); strokePaint.getFillPath(src, &dst); REPORTER_ASSERT(reporter, SkPathPriv::IsNestedFillRects(dst, nullptr)); } static void write_and_read_back(skiatest::Reporter* reporter, const SkPath& p) { SkWriter32 writer; writer.writePath(p); size_t size = writer.bytesWritten(); SkAutoMalloc storage(size); writer.flatten(storage.get()); SkReader32 reader(storage.get(), size); SkPath readBack; REPORTER_ASSERT(reporter, readBack != p); reader.readPath(&readBack); REPORTER_ASSERT(reporter, readBack == p); REPORTER_ASSERT(reporter, readBack.getConvexityTypeOrUnknown() == p.getConvexityTypeOrUnknown()); SkRect oval0, oval1; SkPathDirection dir0, dir1; unsigned start0, start1; REPORTER_ASSERT(reporter, readBack.isOval(nullptr) == p.isOval(nullptr)); if (SkPathPriv::IsOval(p, &oval0, &dir0, &start0) && SkPathPriv::IsOval(readBack, &oval1, &dir1, &start1)) { REPORTER_ASSERT(reporter, oval0 == oval1); REPORTER_ASSERT(reporter, dir0 == dir1); REPORTER_ASSERT(reporter, start0 == start1); } REPORTER_ASSERT(reporter, readBack.isRRect(nullptr) == p.isRRect(nullptr)); SkRRect rrect0, rrect1; if (SkPathPriv::IsRRect(p, &rrect0, &dir0, &start0) && SkPathPriv::IsRRect(readBack, &rrect1, &dir1, &start1)) { REPORTER_ASSERT(reporter, rrect0 == rrect1); REPORTER_ASSERT(reporter, dir0 == dir1); REPORTER_ASSERT(reporter, start0 == start1); } const SkRect& origBounds = p.getBounds(); const SkRect& readBackBounds = readBack.getBounds(); REPORTER_ASSERT(reporter, origBounds == readBackBounds); } static void test_flattening(skiatest::Reporter* reporter) { SkPath p; static const SkPoint pts[] = { { 0, 0 }, { SkIntToScalar(10), SkIntToScalar(10) }, { SkIntToScalar(20), SkIntToScalar(10) }, { SkIntToScalar(20), 0 }, { 0, 0 }, { 0, SkIntToScalar(10) }, { SkIntToScalar(1), SkIntToScalar(10) } }; p.moveTo(pts[0]); p.lineTo(pts[1]); p.quadTo(pts[2], pts[3]); p.cubicTo(pts[4], pts[5], pts[6]); write_and_read_back(reporter, p); // create a buffer that should be much larger than the path so we don't // kill our stack if writer goes too far. char buffer[1024]; size_t size1 = p.writeToMemory(nullptr); size_t size2 = p.writeToMemory(buffer); REPORTER_ASSERT(reporter, size1 == size2); SkPath p2; size_t size3 = p2.readFromMemory(buffer, 1024); REPORTER_ASSERT(reporter, size1 == size3); REPORTER_ASSERT(reporter, p == p2); size3 = p2.readFromMemory(buffer, 0); REPORTER_ASSERT(reporter, !size3); SkPath tooShort; size3 = tooShort.readFromMemory(buffer, size1 - 1); REPORTER_ASSERT(reporter, tooShort.isEmpty()); char buffer2[1024]; size3 = p2.writeToMemory(buffer2); REPORTER_ASSERT(reporter, size1 == size3); REPORTER_ASSERT(reporter, memcmp(buffer, buffer2, size1) == 0); // test persistence of the oval flag & convexity { SkPath oval; SkRect rect = SkRect::MakeWH(10, 10); oval.addOval(rect); write_and_read_back(reporter, oval); } } static void test_transform(skiatest::Reporter* reporter) { SkPath p; #define CONIC_PERSPECTIVE_BUG_FIXED 0 static const SkPoint pts[] = { { 0, 0 }, // move { SkIntToScalar(10), SkIntToScalar(10) }, // line { SkIntToScalar(20), SkIntToScalar(10) }, { SkIntToScalar(20), 0 }, // quad { 0, 0 }, { 0, SkIntToScalar(10) }, { SkIntToScalar(1), SkIntToScalar(10) }, // cubic #if CONIC_PERSPECTIVE_BUG_FIXED { 0, 0 }, { SkIntToScalar(20), SkIntToScalar(10) }, // conic #endif }; const int kPtCount = SK_ARRAY_COUNT(pts); p.moveTo(pts[0]); p.lineTo(pts[1]); p.quadTo(pts[2], pts[3]); p.cubicTo(pts[4], pts[5], pts[6]); #if CONIC_PERSPECTIVE_BUG_FIXED p.conicTo(pts[4], pts[5], 0.5f); #endif p.close(); { SkMatrix matrix; matrix.reset(); SkPath p1; p.transform(matrix, &p1); REPORTER_ASSERT(reporter, p == p1); } { SkMatrix matrix; matrix.setScale(SK_Scalar1 * 2, SK_Scalar1 * 3); SkPath p1; // Leave p1 non-unique (i.e., the empty path) p.transform(matrix, &p1); SkPoint pts1[kPtCount]; int count = p1.getPoints(pts1, kPtCount); REPORTER_ASSERT(reporter, kPtCount == count); for (int i = 0; i < count; ++i) { SkPoint newPt = SkPoint::Make(pts[i].fX * 2, pts[i].fY * 3); REPORTER_ASSERT(reporter, newPt == pts1[i]); } } { SkMatrix matrix; matrix.reset(); matrix.setPerspX(4); SkPath p1; p1.moveTo(SkPoint::Make(0, 0)); p.transform(matrix, &p1, SkApplyPerspectiveClip::kNo); REPORTER_ASSERT(reporter, matrix.invert(&matrix)); p1.transform(matrix, nullptr, SkApplyPerspectiveClip::kNo); SkRect pBounds = p.getBounds(); SkRect p1Bounds = p1.getBounds(); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pBounds.fLeft, p1Bounds.fLeft)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pBounds.fTop, p1Bounds.fTop)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pBounds.fRight, p1Bounds.fRight)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pBounds.fBottom, p1Bounds.fBottom)); } p.reset(); p.addCircle(0, 0, 1, SkPathDirection::kCW); { SkMatrix matrix; matrix.reset(); SkPath p1; p1.moveTo(SkPoint::Make(0, 0)); p.transform(matrix, &p1); REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(p1, SkPathPriv::kCW_FirstDirection)); } { SkMatrix matrix; matrix.reset(); matrix.setScaleX(-1); SkPath p1; p1.moveTo(SkPoint::Make(0, 0)); // Make p1 unique (i.e., not empty path) p.transform(matrix, &p1); REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(p1, SkPathPriv::kCCW_FirstDirection)); } { SkMatrix matrix; matrix.setAll(1, 1, 0, 1, 1, 0, 0, 0, 1); SkPath p1; p1.moveTo(SkPoint::Make(0, 0)); // Make p1 unique (i.e., not empty path) p.transform(matrix, &p1); REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(p1, SkPathPriv::kUnknown_FirstDirection)); } { SkPath p1; p1.addRect({ 10, 20, 30, 40 }); SkPath p2; p2.addRect({ 10, 20, 30, 40 }); uint32_t id1 = p1.getGenerationID(); uint32_t id2 = p2.getGenerationID(); REPORTER_ASSERT(reporter, id1 != id2); SkMatrix matrix; matrix.setScale(2, 2); p1.transform(matrix, &p2); REPORTER_ASSERT(reporter, id1 == p1.getGenerationID()); REPORTER_ASSERT(reporter, id2 != p2.getGenerationID()); p1.transform(matrix); REPORTER_ASSERT(reporter, id1 != p1.getGenerationID()); } } static void test_zero_length_paths(skiatest::Reporter* reporter) { SkPath p; uint8_t verbs[32]; struct SUPPRESS_VISIBILITY_WARNING zeroPathTestData { const char* testPath; const size_t numResultPts; const SkRect resultBound; const SkPath::Verb* resultVerbs; const size_t numResultVerbs; }; static const SkPath::Verb resultVerbs1[] = { SkPath::kMove_Verb }; static const SkPath::Verb resultVerbs2[] = { SkPath::kMove_Verb, SkPath::kMove_Verb }; static const SkPath::Verb resultVerbs3[] = { SkPath::kMove_Verb, SkPath::kClose_Verb }; static const SkPath::Verb resultVerbs4[] = { SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb }; static const SkPath::Verb resultVerbs5[] = { SkPath::kMove_Verb, SkPath::kLine_Verb }; static const SkPath::Verb resultVerbs6[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb, SkPath::kLine_Verb }; static const SkPath::Verb resultVerbs7[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb }; static const SkPath::Verb resultVerbs8[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb }; static const SkPath::Verb resultVerbs9[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb }; static const SkPath::Verb resultVerbs10[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kMove_Verb, SkPath::kQuad_Verb }; static const SkPath::Verb resultVerbs11[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb }; static const SkPath::Verb resultVerbs12[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb }; static const SkPath::Verb resultVerbs13[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb }; static const SkPath::Verb resultVerbs14[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kMove_Verb, SkPath::kCubic_Verb }; static const SkPath::Verb resultVerbs15[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb }; static const SkPath::Verb resultVerbs16[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb }; static const struct zeroPathTestData gZeroLengthTests[] = { { "M 1 1", 1, {1, 1, 1, 1}, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, { "M 1 1 M 2 1", 2, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs2, SK_ARRAY_COUNT(resultVerbs2) }, { "M 1 1 z", 1, {1, 1, 1, 1}, resultVerbs3, SK_ARRAY_COUNT(resultVerbs3) }, { "M 1 1 z M 2 1 z", 2, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs4, SK_ARRAY_COUNT(resultVerbs4) }, { "M 1 1 L 1 1", 2, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs5, SK_ARRAY_COUNT(resultVerbs5) }, { "M 1 1 L 1 1 M 2 1 L 2 1", 4, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs6, SK_ARRAY_COUNT(resultVerbs6) }, { "M 1 1 L 1 1 z", 2, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs7, SK_ARRAY_COUNT(resultVerbs7) }, { "M 1 1 L 1 1 z M 2 1 L 2 1 z", 4, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs8, SK_ARRAY_COUNT(resultVerbs8) }, { "M 1 1 Q 1 1 1 1", 3, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs9, SK_ARRAY_COUNT(resultVerbs9) }, { "M 1 1 Q 1 1 1 1 M 2 1 Q 2 1 2 1", 6, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs10, SK_ARRAY_COUNT(resultVerbs10) }, { "M 1 1 Q 1 1 1 1 z", 3, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs11, SK_ARRAY_COUNT(resultVerbs11) }, { "M 1 1 Q 1 1 1 1 z M 2 1 Q 2 1 2 1 z", 6, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs12, SK_ARRAY_COUNT(resultVerbs12) }, { "M 1 1 C 1 1 1 1 1 1", 4, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs13, SK_ARRAY_COUNT(resultVerbs13) }, { "M 1 1 C 1 1 1 1 1 1 M 2 1 C 2 1 2 1 2 1", 8, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs14, SK_ARRAY_COUNT(resultVerbs14) }, { "M 1 1 C 1 1 1 1 1 1 z", 4, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs15, SK_ARRAY_COUNT(resultVerbs15) }, { "M 1 1 C 1 1 1 1 1 1 z M 2 1 C 2 1 2 1 2 1 z", 8, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs16, SK_ARRAY_COUNT(resultVerbs16) } }; for (size_t i = 0; i < SK_ARRAY_COUNT(gZeroLengthTests); ++i) { p.reset(); bool valid = SkParsePath::FromSVGString(gZeroLengthTests[i].testPath, &p); REPORTER_ASSERT(reporter, valid); REPORTER_ASSERT(reporter, !p.isEmpty()); REPORTER_ASSERT(reporter, gZeroLengthTests[i].numResultPts == (size_t)p.countPoints()); REPORTER_ASSERT(reporter, gZeroLengthTests[i].resultBound == p.getBounds()); REPORTER_ASSERT(reporter, gZeroLengthTests[i].numResultVerbs == (size_t)p.getVerbs(verbs, SK_ARRAY_COUNT(verbs))); for (size_t j = 0; j < gZeroLengthTests[i].numResultVerbs; ++j) { REPORTER_ASSERT(reporter, gZeroLengthTests[i].resultVerbs[j] == verbs[j]); } } } struct SegmentInfo { SkPath fPath; int fPointCount; }; #define kCurveSegmentMask (SkPath::kQuad_SegmentMask | SkPath::kCubic_SegmentMask) static void test_segment_masks(skiatest::Reporter* reporter) { SkPath p, p2; p.moveTo(0, 0); p.quadTo(100, 100, 200, 200); REPORTER_ASSERT(reporter, SkPath::kQuad_SegmentMask == p.getSegmentMasks()); REPORTER_ASSERT(reporter, !p.isEmpty()); p2 = p; REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks()); p.cubicTo(100, 100, 200, 200, 300, 300); REPORTER_ASSERT(reporter, kCurveSegmentMask == p.getSegmentMasks()); REPORTER_ASSERT(reporter, !p.isEmpty()); p2 = p; REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks()); p.reset(); p.moveTo(0, 0); p.cubicTo(100, 100, 200, 200, 300, 300); REPORTER_ASSERT(reporter, SkPath::kCubic_SegmentMask == p.getSegmentMasks()); p2 = p; REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks()); REPORTER_ASSERT(reporter, !p.isEmpty()); } static void test_iter(skiatest::Reporter* reporter) { SkPath p; SkPoint pts[4]; // Test an iterator with no path SkPath::Iter noPathIter; REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb); // Test that setting an empty path works noPathIter.setPath(p, false); REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb); // Test that close path makes no difference for an empty path noPathIter.setPath(p, true); REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb); // Test an iterator with an initial empty path SkPath::Iter iter(p, false); REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); // Test that close path makes no difference iter.setPath(p, true); REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); struct iterTestData { const char* testPath; const bool forceClose; const size_t* numResultPtsPerVerb; const SkPoint* resultPts; const SkPath::Verb* resultVerbs; const size_t numResultVerbs; }; static const SkPath::Verb resultVerbs1[] = { SkPath::kDone_Verb }; static const SkPath::Verb resultVerbs2[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kDone_Verb }; static const SkPath::Verb resultVerbs3[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kDone_Verb }; static const size_t resultPtsSizes1[] = { 0 }; static const size_t resultPtsSizes2[] = { 1, 2, 1, 1, 0 }; static const size_t resultPtsSizes3[] = { 1, 2, 1, 1, 1, 0 }; static const SkPoint* resultPts1 = nullptr; static const SkPoint resultPts2[] = { { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { 0, 0 }, { 0, 0 } }; static const SkPoint resultPts3[] = { { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { 0, 0 }, { 0, 0 } }; static const struct iterTestData gIterTests[] = { { "M 1 0", false, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, { "z", false, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, { "z", true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, { "M 1 0 L 1 0 M 0 0 z", false, resultPtsSizes2, resultPts2, resultVerbs2, SK_ARRAY_COUNT(resultVerbs2) }, { "M 1 0 L 1 0 M 0 0 z", true, resultPtsSizes3, resultPts3, resultVerbs3, SK_ARRAY_COUNT(resultVerbs3) } }; for (size_t i = 0; i < SK_ARRAY_COUNT(gIterTests); ++i) { p.reset(); bool valid = SkParsePath::FromSVGString(gIterTests[i].testPath, &p); REPORTER_ASSERT(reporter, valid); iter.setPath(p, gIterTests[i].forceClose); int j = 0, l = 0; do { REPORTER_ASSERT(reporter, iter.next(pts) == gIterTests[i].resultVerbs[j]); for (int k = 0; k < (int)gIterTests[i].numResultPtsPerVerb[j]; ++k) { REPORTER_ASSERT(reporter, pts[k] == gIterTests[i].resultPts[l++]); } } while (gIterTests[i].resultVerbs[j++] != SkPath::kDone_Verb); REPORTER_ASSERT(reporter, j == (int)gIterTests[i].numResultVerbs); } p.reset(); iter.setPath(p, false); REPORTER_ASSERT(reporter, !iter.isClosedContour()); p.lineTo(1, 1); p.close(); iter.setPath(p, false); REPORTER_ASSERT(reporter, iter.isClosedContour()); p.reset(); iter.setPath(p, true); REPORTER_ASSERT(reporter, !iter.isClosedContour()); p.lineTo(1, 1); iter.setPath(p, true); REPORTER_ASSERT(reporter, iter.isClosedContour()); p.moveTo(0, 0); p.lineTo(2, 2); iter.setPath(p, false); REPORTER_ASSERT(reporter, !iter.isClosedContour()); // this checks to see if the NaN logic is executed in SkPath::autoClose(), but does not // check to see if the result is correct. for (int setNaN = 0; setNaN < 4; ++setNaN) { p.reset(); p.moveTo(setNaN == 0 ? SK_ScalarNaN : 0, setNaN == 1 ? SK_ScalarNaN : 0); p.lineTo(setNaN == 2 ? SK_ScalarNaN : 1, setNaN == 3 ? SK_ScalarNaN : 1); iter.setPath(p, true); iter.next(pts); iter.next(pts); REPORTER_ASSERT(reporter, SkPath::kClose_Verb == iter.next(pts)); } p.reset(); p.quadTo(0, 0, 0, 0); iter.setPath(p, false); iter.next(pts); REPORTER_ASSERT(reporter, SkPath::kQuad_Verb == iter.next(pts)); p.reset(); p.conicTo(0, 0, 0, 0, 0.5f); iter.setPath(p, false); iter.next(pts); REPORTER_ASSERT(reporter, SkPath::kConic_Verb == iter.next(pts)); p.reset(); p.cubicTo(0, 0, 0, 0, 0, 0); iter.setPath(p, false); iter.next(pts); REPORTER_ASSERT(reporter, SkPath::kCubic_Verb == iter.next(pts)); p.moveTo(1, 1); // add a trailing moveto iter.setPath(p, false); iter.next(pts); REPORTER_ASSERT(reporter, SkPath::kCubic_Verb == iter.next(pts)); // The GM degeneratesegments.cpp test is more extensive // Test out mixed degenerate and non-degenerate geometry with Conics const SkVector radii[4] = { { 0, 0 }, { 0, 0 }, { 0, 0 }, { 100, 100 } }; SkRect r = SkRect::MakeWH(100, 100); SkRRect rr; rr.setRectRadii(r, radii); p.reset(); p.addRRect(rr); iter.setPath(p, false); REPORTER_ASSERT(reporter, SkPath::kMove_Verb == iter.next(pts)); REPORTER_ASSERT(reporter, SkPath::kLine_Verb == iter.next(pts)); return; REPORTER_ASSERT(reporter, SkPath::kLine_Verb == iter.next(pts)); REPORTER_ASSERT(reporter, SkPath::kConic_Verb == iter.next(pts)); REPORTER_ASSERT(reporter, SK_ScalarRoot2Over2 == iter.conicWeight()); } static void test_range_iter(skiatest::Reporter* reporter) { SkPath path; // Test an iterator with an initial empty path SkPathPriv::Iterate iterate(path); REPORTER_ASSERT(reporter, iterate.begin() == iterate.end()); // Test that a move-only path returns the move. path.moveTo(SK_Scalar1, 0); iterate = SkPathPriv::Iterate(path); SkPathPriv::RangeIter iter = iterate.begin(); { auto [verb, pts, w] = *iter++; REPORTER_ASSERT(reporter, verb == SkPathVerb::kMove); REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1); REPORTER_ASSERT(reporter, pts[0].fY == 0); } REPORTER_ASSERT(reporter, iter == iterate.end()); // No matter how many moves we add, we should get them all back path.moveTo(SK_Scalar1*2, SK_Scalar1); path.moveTo(SK_Scalar1*3, SK_Scalar1*2); iterate = SkPathPriv::Iterate(path); iter = iterate.begin(); { auto [verb, pts, w] = *iter++; REPORTER_ASSERT(reporter, verb == SkPathVerb::kMove); REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1); REPORTER_ASSERT(reporter, pts[0].fY == 0); } { auto [verb, pts, w] = *iter++; REPORTER_ASSERT(reporter, verb == SkPathVerb::kMove); REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*2); REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1); } { auto [verb, pts, w] = *iter++; REPORTER_ASSERT(reporter, verb == SkPathVerb::kMove); REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*3); REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*2); } REPORTER_ASSERT(reporter, iter == iterate.end()); // Initial close is never ever stored path.reset(); path.close(); iterate = SkPathPriv::Iterate(path); REPORTER_ASSERT(reporter, iterate.begin() == iterate.end()); // Move/close sequences path.reset(); path.close(); // Not stored, no purpose path.moveTo(SK_Scalar1, 0); path.close(); path.close(); // Not stored, no purpose path.moveTo(SK_Scalar1*2, SK_Scalar1); path.close(); path.moveTo(SK_Scalar1*3, SK_Scalar1*2); path.moveTo(SK_Scalar1*4, SK_Scalar1*3); path.close(); iterate = SkPathPriv::Iterate(path); iter = iterate.begin(); { auto [verb, pts, w] = *iter++; REPORTER_ASSERT(reporter, verb == SkPathVerb::kMove); REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1); REPORTER_ASSERT(reporter, pts[0].fY == 0); } { auto [verb, pts, w] = *iter++; REPORTER_ASSERT(reporter, verb == SkPathVerb::kClose); } { auto [verb, pts, w] = *iter++; REPORTER_ASSERT(reporter, verb == SkPathVerb::kMove); REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*2); REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1); } { auto [verb, pts, w] = *iter++; REPORTER_ASSERT(reporter, verb == SkPathVerb::kClose); } { auto [verb, pts, w] = *iter++; REPORTER_ASSERT(reporter, verb == SkPathVerb::kMove); REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*3); REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*2); } { auto [verb, pts, w] = *iter++; REPORTER_ASSERT(reporter, verb == SkPathVerb::kMove); REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*4); REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*3); } { auto [verb, pts, w] = *iter++; REPORTER_ASSERT(reporter, verb == SkPathVerb::kClose); } REPORTER_ASSERT(reporter, iter == iterate.end()); // Generate random paths and verify SkPoint randomPts[25]; for (int i = 0; i < 5; ++i) { for (int j = 0; j < 5; ++j) { randomPts[i*5+j].set(SK_Scalar1*i, SK_Scalar1*j); } } // Max of 10 segments, max 3 points per segment SkRandom rand(9876543); SkPoint expectedPts[31]; // May have leading moveTo SkPathVerb expectedVerbs[22]; // May have leading moveTo SkPathVerb nextVerb; for (int i = 0; i < 500; ++i) { path.reset(); bool lastWasClose = true; bool haveMoveTo = false; SkPoint lastMoveToPt = { 0, 0 }; int numPoints = 0; int numVerbs = (rand.nextU() >> 16) % 10; int numIterVerbs = 0; for (int j = 0; j < numVerbs; ++j) { do { nextVerb = static_cast((rand.nextU() >> 16) % SkPath::kDone_Verb); } while (lastWasClose && nextVerb == SkPathVerb::kClose); switch (nextVerb) { case SkPathVerb::kMove: expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25]; path.moveTo(expectedPts[numPoints]); lastMoveToPt = expectedPts[numPoints]; numPoints += 1; lastWasClose = false; haveMoveTo = true; break; case SkPathVerb::kLine: if (!haveMoveTo) { expectedPts[numPoints++] = lastMoveToPt; expectedVerbs[numIterVerbs++] = SkPathVerb::kMove; haveMoveTo = true; } expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25]; path.lineTo(expectedPts[numPoints]); numPoints += 1; lastWasClose = false; break; case SkPathVerb::kQuad: if (!haveMoveTo) { expectedPts[numPoints++] = lastMoveToPt; expectedVerbs[numIterVerbs++] = SkPathVerb::kMove; haveMoveTo = true; } expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25]; expectedPts[numPoints + 1] = randomPts[(rand.nextU() >> 16) % 25]; path.quadTo(expectedPts[numPoints], expectedPts[numPoints + 1]); numPoints += 2; lastWasClose = false; break; case SkPathVerb::kConic: if (!haveMoveTo) { expectedPts[numPoints++] = lastMoveToPt; expectedVerbs[numIterVerbs++] = SkPathVerb::kMove; haveMoveTo = true; } expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25]; expectedPts[numPoints + 1] = randomPts[(rand.nextU() >> 16) % 25]; path.conicTo(expectedPts[numPoints], expectedPts[numPoints + 1], rand.nextUScalar1() * 4); numPoints += 2; lastWasClose = false; break; case SkPathVerb::kCubic: if (!haveMoveTo) { expectedPts[numPoints++] = lastMoveToPt; expectedVerbs[numIterVerbs++] = SkPathVerb::kMove; haveMoveTo = true; } expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25]; expectedPts[numPoints + 1] = randomPts[(rand.nextU() >> 16) % 25]; expectedPts[numPoints + 2] = randomPts[(rand.nextU() >> 16) % 25]; path.cubicTo(expectedPts[numPoints], expectedPts[numPoints + 1], expectedPts[numPoints + 2]); numPoints += 3; lastWasClose = false; break; case SkPathVerb::kClose: path.close(); haveMoveTo = false; lastWasClose = true; break; default: SkDEBUGFAIL("unexpected verb"); } expectedVerbs[numIterVerbs++] = nextVerb; } numVerbs = numIterVerbs; numIterVerbs = 0; int numIterPts = 0; SkPoint lastMoveTo; SkPoint lastPt; lastMoveTo.set(0, 0); lastPt.set(0, 0); for (auto [nextVerb, pts, w] : SkPathPriv::Iterate(path)) { REPORTER_ASSERT(reporter, nextVerb == expectedVerbs[numIterVerbs]); numIterVerbs++; switch (nextVerb) { case SkPathVerb::kMove: REPORTER_ASSERT(reporter, numIterPts < numPoints); REPORTER_ASSERT(reporter, pts[0] == expectedPts[numIterPts]); lastPt = lastMoveTo = pts[0]; numIterPts += 1; break; case SkPathVerb::kLine: REPORTER_ASSERT(reporter, numIterPts < numPoints + 1); REPORTER_ASSERT(reporter, pts[0] == lastPt); REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]); lastPt = pts[1]; numIterPts += 1; break; case SkPathVerb::kQuad: case SkPathVerb::kConic: REPORTER_ASSERT(reporter, numIterPts < numPoints + 2); REPORTER_ASSERT(reporter, pts[0] == lastPt); REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]); REPORTER_ASSERT(reporter, pts[2] == expectedPts[numIterPts + 1]); lastPt = pts[2]; numIterPts += 2; break; case SkPathVerb::kCubic: REPORTER_ASSERT(reporter, numIterPts < numPoints + 3); REPORTER_ASSERT(reporter, pts[0] == lastPt); REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]); REPORTER_ASSERT(reporter, pts[2] == expectedPts[numIterPts + 1]); REPORTER_ASSERT(reporter, pts[3] == expectedPts[numIterPts + 2]); lastPt = pts[3]; numIterPts += 3; break; case SkPathVerb::kClose: lastPt = lastMoveTo; break; default: SkDEBUGFAIL("unexpected verb"); } } REPORTER_ASSERT(reporter, numIterPts == numPoints); REPORTER_ASSERT(reporter, numIterVerbs == numVerbs); } } static void check_for_circle(skiatest::Reporter* reporter, const SkPath& path, bool expectedCircle, SkPathPriv::FirstDirection expectedDir) { SkRect rect = SkRect::MakeEmpty(); REPORTER_ASSERT(reporter, path.isOval(&rect) == expectedCircle); SkPathDirection isOvalDir; unsigned isOvalStart; if (SkPathPriv::IsOval(path, &rect, &isOvalDir, &isOvalStart)) { REPORTER_ASSERT(reporter, rect.height() == rect.width()); REPORTER_ASSERT(reporter, SkPathPriv::AsFirstDirection(isOvalDir) == expectedDir); SkPath tmpPath; tmpPath.addOval(rect, isOvalDir, isOvalStart); REPORTER_ASSERT(reporter, path == tmpPath); } REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(path, expectedDir)); } static void test_circle_skew(skiatest::Reporter* reporter, const SkPath& path, SkPathPriv::FirstDirection dir) { SkPath tmp; SkMatrix m; m.setSkew(SkIntToScalar(3), SkIntToScalar(5)); path.transform(m, &tmp); // this matrix reverses the direction. if (SkPathPriv::kCCW_FirstDirection == dir) { dir = SkPathPriv::kCW_FirstDirection; } else { REPORTER_ASSERT(reporter, SkPathPriv::kCW_FirstDirection == dir); dir = SkPathPriv::kCCW_FirstDirection; } check_for_circle(reporter, tmp, false, dir); } static void test_circle_translate(skiatest::Reporter* reporter, const SkPath& path, SkPathPriv::FirstDirection dir) { SkPath tmp; // translate at small offset SkMatrix m; m.setTranslate(SkIntToScalar(15), SkIntToScalar(15)); path.transform(m, &tmp); check_for_circle(reporter, tmp, true, dir); tmp.reset(); m.reset(); // translate at a relatively big offset m.setTranslate(SkIntToScalar(1000), SkIntToScalar(1000)); path.transform(m, &tmp); check_for_circle(reporter, tmp, true, dir); } static void test_circle_rotate(skiatest::Reporter* reporter, const SkPath& path, SkPathPriv::FirstDirection dir) { for (int angle = 0; angle < 360; ++angle) { SkPath tmp; SkMatrix m; m.setRotate(SkIntToScalar(angle)); path.transform(m, &tmp); // TODO: a rotated circle whose rotated angle is not a multiple of 90 // degrees is not an oval anymore, this can be improved. we made this // for the simplicity of our implementation. if (angle % 90 == 0) { check_for_circle(reporter, tmp, true, dir); } else { check_for_circle(reporter, tmp, false, dir); } } } static void test_circle_mirror_x(skiatest::Reporter* reporter, const SkPath& path, SkPathPriv::FirstDirection dir) { SkPath tmp; SkMatrix m; m.reset(); m.setScaleX(-SK_Scalar1); path.transform(m, &tmp); if (SkPathPriv::kCW_FirstDirection == dir) { dir = SkPathPriv::kCCW_FirstDirection; } else { REPORTER_ASSERT(reporter, SkPathPriv::kCCW_FirstDirection == dir); dir = SkPathPriv::kCW_FirstDirection; } check_for_circle(reporter, tmp, true, dir); } static void test_circle_mirror_y(skiatest::Reporter* reporter, const SkPath& path, SkPathPriv::FirstDirection dir) { SkPath tmp; SkMatrix m; m.reset(); m.setScaleY(-SK_Scalar1); path.transform(m, &tmp); if (SkPathPriv::kCW_FirstDirection == dir) { dir = SkPathPriv::kCCW_FirstDirection; } else { REPORTER_ASSERT(reporter, SkPathPriv::kCCW_FirstDirection == dir); dir = SkPathPriv::kCW_FirstDirection; } check_for_circle(reporter, tmp, true, dir); } static void test_circle_mirror_xy(skiatest::Reporter* reporter, const SkPath& path, SkPathPriv::FirstDirection dir) { SkPath tmp; SkMatrix m; m.reset(); m.setScaleX(-SK_Scalar1); m.setScaleY(-SK_Scalar1); path.transform(m, &tmp); check_for_circle(reporter, tmp, true, dir); } static void test_circle_with_direction(skiatest::Reporter* reporter, SkPathDirection inDir) { const SkPathPriv::FirstDirection dir = SkPathPriv::AsFirstDirection(inDir); SkPath path; // circle at origin path.addCircle(0, 0, SkIntToScalar(20), inDir); check_for_circle(reporter, path, true, dir); test_circle_rotate(reporter, path, dir); test_circle_translate(reporter, path, dir); test_circle_skew(reporter, path, dir); test_circle_mirror_x(reporter, path, dir); test_circle_mirror_y(reporter, path, dir); test_circle_mirror_xy(reporter, path, dir); // circle at an offset at (10, 10) path.reset(); path.addCircle(SkIntToScalar(10), SkIntToScalar(10), SkIntToScalar(20), inDir); check_for_circle(reporter, path, true, dir); test_circle_rotate(reporter, path, dir); test_circle_translate(reporter, path, dir); test_circle_skew(reporter, path, dir); test_circle_mirror_x(reporter, path, dir); test_circle_mirror_y(reporter, path, dir); test_circle_mirror_xy(reporter, path, dir); // Try different starting points for the contour. for (unsigned start = 0; start < 4; ++start) { path.reset(); path.addOval(SkRect::MakeXYWH(20, 10, 5, 5), inDir, start); test_circle_rotate(reporter, path, dir); test_circle_translate(reporter, path, dir); test_circle_skew(reporter, path, dir); test_circle_mirror_x(reporter, path, dir); test_circle_mirror_y(reporter, path, dir); test_circle_mirror_xy(reporter, path, dir); } } static void test_circle_with_add_paths(skiatest::Reporter* reporter) { SkPath path; SkPath circle; SkPath rect; SkPath empty; const SkPathDirection kCircleDir = SkPathDirection::kCW; const SkPathDirection kCircleDirOpposite = SkPathDirection::kCCW; circle.addCircle(0, 0, SkIntToScalar(10), kCircleDir); rect.addRect(SkIntToScalar(5), SkIntToScalar(5), SkIntToScalar(20), SkIntToScalar(20), SkPathDirection::kCW); SkMatrix translate; translate.setTranslate(SkIntToScalar(12), SkIntToScalar(12)); // Although all the path concatenation related operations leave // the path a circle, most mark it as a non-circle for simplicity // empty + circle (translate) path = empty; path.addPath(circle, translate); check_for_circle(reporter, path, false, SkPathPriv::AsFirstDirection(kCircleDir)); // circle + empty (translate) path = circle; path.addPath(empty, translate); check_for_circle(reporter, path, true, SkPathPriv::AsFirstDirection(kCircleDir)); // test reverseAddPath path = circle; path.reverseAddPath(rect); check_for_circle(reporter, path, false, SkPathPriv::AsFirstDirection(kCircleDirOpposite)); } static void test_circle(skiatest::Reporter* reporter) { test_circle_with_direction(reporter, SkPathDirection::kCW); test_circle_with_direction(reporter, SkPathDirection::kCCW); // multiple addCircle() SkPath path; path.addCircle(0, 0, SkIntToScalar(10), SkPathDirection::kCW); path.addCircle(0, 0, SkIntToScalar(20), SkPathDirection::kCW); check_for_circle(reporter, path, false, SkPathPriv::kCW_FirstDirection); // some extra lineTo() would make isOval() fail path.reset(); path.addCircle(0, 0, SkIntToScalar(10), SkPathDirection::kCW); path.lineTo(0, 0); check_for_circle(reporter, path, false, SkPathPriv::kCW_FirstDirection); // not back to the original point path.reset(); path.addCircle(0, 0, SkIntToScalar(10), SkPathDirection::kCW); path.setLastPt(SkIntToScalar(5), SkIntToScalar(5)); check_for_circle(reporter, path, false, SkPathPriv::kCW_FirstDirection); test_circle_with_add_paths(reporter); // test negative radius path.reset(); path.addCircle(0, 0, -1, SkPathDirection::kCW); REPORTER_ASSERT(reporter, path.isEmpty()); } static void test_oval(skiatest::Reporter* reporter) { SkRect rect; SkMatrix m; SkPath path; unsigned start = 0; SkPathDirection dir = SkPathDirection::kCCW; rect = SkRect::MakeWH(SkIntToScalar(30), SkIntToScalar(50)); path.addOval(rect); // Defaults to dir = CW and start = 1 REPORTER_ASSERT(reporter, path.isOval(nullptr)); m.setRotate(SkIntToScalar(90)); SkPath tmp; path.transform(m, &tmp); // an oval rotated 90 degrees is still an oval. The start index changes from 1 to 2. Direction // is unchanged. REPORTER_ASSERT(reporter, SkPathPriv::IsOval(tmp, nullptr, &dir, &start)); REPORTER_ASSERT(reporter, 2 == start); REPORTER_ASSERT(reporter, SkPathDirection::kCW == dir); m.reset(); m.setRotate(SkIntToScalar(30)); tmp.reset(); path.transform(m, &tmp); // an oval rotated 30 degrees is not an oval anymore. REPORTER_ASSERT(reporter, !tmp.isOval(nullptr)); // since empty path being transformed. path.reset(); tmp.reset(); m.reset(); path.transform(m, &tmp); REPORTER_ASSERT(reporter, !tmp.isOval(nullptr)); // empty path is not an oval tmp.reset(); REPORTER_ASSERT(reporter, !tmp.isOval(nullptr)); // only has moveTo()s tmp.reset(); tmp.moveTo(0, 0); tmp.moveTo(SkIntToScalar(10), SkIntToScalar(10)); REPORTER_ASSERT(reporter, !tmp.isOval(nullptr)); // mimic WebKit's calling convention, // call moveTo() first and then call addOval() path.reset(); path.moveTo(0, 0); path.addOval(rect); REPORTER_ASSERT(reporter, path.isOval(nullptr)); // copy path path.reset(); tmp.reset(); tmp.addOval(rect); path = tmp; REPORTER_ASSERT(reporter, SkPathPriv::IsOval(path, nullptr, &dir, &start)); REPORTER_ASSERT(reporter, SkPathDirection::kCW == dir); REPORTER_ASSERT(reporter, 1 == start); } static void test_empty(skiatest::Reporter* reporter, const SkPath& p) { SkPath empty; REPORTER_ASSERT(reporter, p.isEmpty()); REPORTER_ASSERT(reporter, 0 == p.countPoints()); REPORTER_ASSERT(reporter, 0 == p.countVerbs()); REPORTER_ASSERT(reporter, 0 == p.getSegmentMasks()); REPORTER_ASSERT(reporter, p.isConvex()); REPORTER_ASSERT(reporter, p.getFillType() == SkPathFillType::kWinding); REPORTER_ASSERT(reporter, !p.isInverseFillType()); REPORTER_ASSERT(reporter, p == empty); REPORTER_ASSERT(reporter, !(p != empty)); } static void test_rrect_is_convex(skiatest::Reporter* reporter, SkPath* path, SkPathDirection dir) { REPORTER_ASSERT(reporter, path->isConvex()); REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(*path, SkPathPriv::AsFirstDirection(dir))); path->setConvexityType(SkPathConvexityType::kUnknown); REPORTER_ASSERT(reporter, path->isConvex()); path->reset(); } static void test_rrect_convexity_is_unknown(skiatest::Reporter* reporter, SkPath* path, SkPathDirection dir) { REPORTER_ASSERT(reporter, path->isConvex()); REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(*path, SkPathPriv::AsFirstDirection(dir))); path->setConvexityType(SkPathConvexityType::kUnknown); REPORTER_ASSERT(reporter, path->getConvexityType() == SkPathConvexityType::kConcave); path->reset(); } static void test_rrect(skiatest::Reporter* reporter) { SkPath p; SkRRect rr; SkVector radii[] = {{1, 2}, {3, 4}, {5, 6}, {7, 8}}; SkRect r = {10, 20, 30, 40}; rr.setRectRadii(r, radii); p.addRRect(rr); test_rrect_is_convex(reporter, &p, SkPathDirection::kCW); p.addRRect(rr, SkPathDirection::kCCW); test_rrect_is_convex(reporter, &p, SkPathDirection::kCCW); p.addRoundRect(r, &radii[0].fX); test_rrect_is_convex(reporter, &p, SkPathDirection::kCW); p.addRoundRect(r, &radii[0].fX, SkPathDirection::kCCW); test_rrect_is_convex(reporter, &p, SkPathDirection::kCCW); p.addRoundRect(r, radii[1].fX, radii[1].fY); test_rrect_is_convex(reporter, &p, SkPathDirection::kCW); p.addRoundRect(r, radii[1].fX, radii[1].fY, SkPathDirection::kCCW); test_rrect_is_convex(reporter, &p, SkPathDirection::kCCW); for (size_t i = 0; i < SK_ARRAY_COUNT(radii); ++i) { SkVector save = radii[i]; radii[i].set(0, 0); rr.setRectRadii(r, radii); p.addRRect(rr); test_rrect_is_convex(reporter, &p, SkPathDirection::kCW); radii[i] = save; } p.addRoundRect(r, 0, 0); SkRect returnedRect; REPORTER_ASSERT(reporter, p.isRect(&returnedRect)); REPORTER_ASSERT(reporter, returnedRect == r); test_rrect_is_convex(reporter, &p, SkPathDirection::kCW); SkVector zeroRadii[] = {{0, 0}, {0, 0}, {0, 0}, {0, 0}}; rr.setRectRadii(r, zeroRadii); p.addRRect(rr); bool closed; SkPathDirection dir; REPORTER_ASSERT(reporter, p.isRect(nullptr, &closed, &dir)); REPORTER_ASSERT(reporter, closed); REPORTER_ASSERT(reporter, SkPathDirection::kCW == dir); test_rrect_is_convex(reporter, &p, SkPathDirection::kCW); p.addRRect(rr, SkPathDirection::kCW); p.addRRect(rr, SkPathDirection::kCW); REPORTER_ASSERT(reporter, !p.isConvex()); p.reset(); p.addRRect(rr, SkPathDirection::kCCW); p.addRRect(rr, SkPathDirection::kCCW); REPORTER_ASSERT(reporter, !p.isConvex()); p.reset(); SkRect emptyR = {10, 20, 10, 30}; rr.setRectRadii(emptyR, radii); p.addRRect(rr); // The round rect is "empty" in that it has no fill area. However, // the path isn't "empty" in that it should have verbs and points. REPORTER_ASSERT(reporter, !p.isEmpty()); p.reset(); SkRect largeR = {0, 0, SK_ScalarMax, SK_ScalarMax}; rr.setRectRadii(largeR, radii); p.addRRect(rr); test_rrect_convexity_is_unknown(reporter, &p, SkPathDirection::kCW); // we check for non-finites SkRect infR = {0, 0, SK_ScalarMax, SK_ScalarInfinity}; rr.setRectRadii(infR, radii); REPORTER_ASSERT(reporter, rr.isEmpty()); // We consider any path with very small (numerically unstable) edges to be concave. SkRect tinyR = {0, 0, 1e-9f, 1e-9f}; p.addRoundRect(tinyR, 5e-11f, 5e-11f); test_rrect_convexity_is_unknown(reporter, &p, SkPathDirection::kCW); } static void test_arc(skiatest::Reporter* reporter) { SkPath p; SkRect emptyOval = {10, 20, 30, 20}; REPORTER_ASSERT(reporter, emptyOval.isEmpty()); p.addArc(emptyOval, 1, 2); REPORTER_ASSERT(reporter, p.isEmpty()); p.reset(); SkRect oval = {10, 20, 30, 40}; p.addArc(oval, 1, 0); REPORTER_ASSERT(reporter, p.isEmpty()); p.reset(); SkPath cwOval; cwOval.addOval(oval); p.addArc(oval, 0, 360); REPORTER_ASSERT(reporter, p == cwOval); p.reset(); SkPath ccwOval; ccwOval.addOval(oval, SkPathDirection::kCCW); p.addArc(oval, 0, -360); REPORTER_ASSERT(reporter, p == ccwOval); p.reset(); p.addArc(oval, 1, 180); // diagonal colinear points make arc convex // TODO: one way to keep it concave would be to introduce interpolated on curve points // between control points and computing the on curve point at scan conversion time REPORTER_ASSERT(reporter, p.getConvexityType() == SkPathConvexityType::kConvex); REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(p, SkPathPriv::kCW_FirstDirection)); p.setConvexityType(SkPathConvexityType::kUnknown); REPORTER_ASSERT(reporter, p.getConvexityType() == SkPathConvexityType::kConvex); } static inline SkScalar oval_start_index_to_angle(unsigned start) { switch (start) { case 0: return 270.f; case 1: return 0.f; case 2: return 90.f; case 3: return 180.f; default: return -1.f; } } static inline SkScalar canonical_start_angle(float angle) { while (angle < 0.f) { angle += 360.f; } while (angle >= 360.f) { angle -= 360.f; } return angle; } static void check_oval_arc(skiatest::Reporter* reporter, SkScalar start, SkScalar sweep, const SkPath& path) { SkRect r = SkRect::MakeEmpty(); SkPathDirection d = SkPathDirection::kCCW; unsigned s = ~0U; bool isOval = SkPathPriv::IsOval(path, &r, &d, &s); REPORTER_ASSERT(reporter, isOval); SkPath recreatedPath; recreatedPath.addOval(r, d, s); REPORTER_ASSERT(reporter, path == recreatedPath); REPORTER_ASSERT(reporter, oval_start_index_to_angle(s) == canonical_start_angle(start)); REPORTER_ASSERT(reporter, (SkPathDirection::kCW == d) == (sweep > 0.f)); } static void test_arc_ovals(skiatest::Reporter* reporter) { SkRect oval = SkRect::MakeWH(10, 20); for (SkScalar sweep : {-720.f, -540.f, -360.f, 360.f, 432.f, 720.f}) { for (SkScalar start = -360.f; start <= 360.f; start += 1.f) { SkPath path; path.addArc(oval, start, sweep); // SkPath's interfaces for inserting and extracting ovals only allow contours // to start at multiples of 90 degrees. if (std::fmod(start, 90.f) == 0) { check_oval_arc(reporter, start, sweep, path); } else { REPORTER_ASSERT(reporter, !path.isOval(nullptr)); } } // Test start angles that are nearly at valid oval start angles. for (float start : {-180.f, -90.f, 90.f, 180.f}) { for (float delta : {-SK_ScalarNearlyZero, SK_ScalarNearlyZero}) { SkPath path; path.addArc(oval, start + delta, sweep); check_oval_arc(reporter, start, sweep, path); } } } } static void check_move(skiatest::Reporter* reporter, SkPathPriv::RangeIter* iter, SkScalar x0, SkScalar y0) { auto [v, pts, w] = *(*iter)++; REPORTER_ASSERT(reporter, v == SkPathVerb::kMove); REPORTER_ASSERT(reporter, pts[0].fX == x0); REPORTER_ASSERT(reporter, pts[0].fY == y0); } static void check_line(skiatest::Reporter* reporter, SkPathPriv::RangeIter* iter, SkScalar x1, SkScalar y1) { auto [v, pts, w] = *(*iter)++; REPORTER_ASSERT(reporter, v == SkPathVerb::kLine); REPORTER_ASSERT(reporter, pts[1].fX == x1); REPORTER_ASSERT(reporter, pts[1].fY == y1); } static void check_quad(skiatest::Reporter* reporter, SkPathPriv::RangeIter* iter, SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) { auto [v, pts, w] = *(*iter)++; REPORTER_ASSERT(reporter, v == SkPathVerb::kQuad); REPORTER_ASSERT(reporter, pts[1].fX == x1); REPORTER_ASSERT(reporter, pts[1].fY == y1); REPORTER_ASSERT(reporter, pts[2].fX == x2); REPORTER_ASSERT(reporter, pts[2].fY == y2); } static void check_done(skiatest::Reporter* reporter, SkPath* p, SkPathPriv::RangeIter* iter) { REPORTER_ASSERT(reporter, *iter == SkPathPriv::Iterate(*p).end()); } static void check_done_and_reset(skiatest::Reporter* reporter, SkPath* p, SkPathPriv::RangeIter* iter) { check_done(reporter, p, iter); p->reset(); } static void check_path_is_move_and_reset(skiatest::Reporter* reporter, SkPath* p, SkScalar x0, SkScalar y0) { SkPathPriv::RangeIter iter = SkPathPriv::Iterate(*p).begin(); check_move(reporter, &iter, x0, y0); check_done_and_reset(reporter, p, &iter); } static void check_path_is_line_and_reset(skiatest::Reporter* reporter, SkPath* p, SkScalar x1, SkScalar y1) { SkPathPriv::RangeIter iter = SkPathPriv::Iterate(*p).begin(); check_move(reporter, &iter, 0, 0); check_line(reporter, &iter, x1, y1); check_done_and_reset(reporter, p, &iter); } static void check_path_is_line(skiatest::Reporter* reporter, SkPath* p, SkScalar x1, SkScalar y1) { SkPathPriv::RangeIter iter = SkPathPriv::Iterate(*p).begin(); check_move(reporter, &iter, 0, 0); check_line(reporter, &iter, x1, y1); check_done(reporter, p, &iter); } static void check_path_is_line_pair_and_reset(skiatest::Reporter* reporter, SkPath* p, SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) { SkPathPriv::RangeIter iter = SkPathPriv::Iterate(*p).begin(); check_move(reporter, &iter, 0, 0); check_line(reporter, &iter, x1, y1); check_line(reporter, &iter, x2, y2); check_done_and_reset(reporter, p, &iter); } static void check_path_is_quad_and_reset(skiatest::Reporter* reporter, SkPath* p, SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) { SkPathPriv::RangeIter iter = SkPathPriv::Iterate(*p).begin(); check_move(reporter, &iter, 0, 0); check_quad(reporter, &iter, x1, y1, x2, y2); check_done_and_reset(reporter, p, &iter); } static bool nearly_equal(const SkRect& a, const SkRect& b) { return SkScalarNearlyEqual(a.fLeft, b.fLeft) && SkScalarNearlyEqual(a.fTop, b.fTop) && SkScalarNearlyEqual(a.fRight, b.fRight) && SkScalarNearlyEqual(a.fBottom, b.fBottom); } static void test_arcTo(skiatest::Reporter* reporter) { SkPath p; p.arcTo(0, 0, 1, 2, 1); check_path_is_line_and_reset(reporter, &p, 0, 0); p.arcTo(1, 2, 1, 2, 1); check_path_is_line_and_reset(reporter, &p, 1, 2); p.arcTo(1, 2, 3, 4, 0); check_path_is_line_and_reset(reporter, &p, 1, 2); p.arcTo(1, 2, 0, 0, 1); check_path_is_line_and_reset(reporter, &p, 1, 2); p.arcTo(1, 0, 1, 1, 1); SkPoint pt; REPORTER_ASSERT(reporter, p.getLastPt(&pt) && pt.fX == 1 && pt.fY == 1); p.reset(); p.arcTo(1, 0, 1, -1, 1); REPORTER_ASSERT(reporter, p.getLastPt(&pt) && pt.fX == 1 && pt.fY == -1); p.reset(); SkRect oval = {1, 2, 3, 4}; p.arcTo(oval, 0, 0, true); check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY()); p.arcTo(oval, 0, 0, false); check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY()); p.arcTo(oval, 360, 0, true); check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY()); p.arcTo(oval, 360, 0, false); check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY()); for (float sweep = 359, delta = 0.5f; sweep != (float) (sweep + delta); ) { p.arcTo(oval, 0, sweep, false); REPORTER_ASSERT(reporter, nearly_equal(p.getBounds(), oval)); sweep += delta; delta /= 2; } for (float sweep = 361, delta = 0.5f; sweep != (float) (sweep - delta);) { p.arcTo(oval, 0, sweep, false); REPORTER_ASSERT(reporter, nearly_equal(p.getBounds(), oval)); sweep -= delta; delta /= 2; } SkRect noOvalWidth = {1, 2, 0, 3}; p.reset(); p.arcTo(noOvalWidth, 0, 360, false); REPORTER_ASSERT(reporter, p.isEmpty()); SkRect noOvalHeight = {1, 2, 3, 1}; p.reset(); p.arcTo(noOvalHeight, 0, 360, false); REPORTER_ASSERT(reporter, p.isEmpty()); #ifndef SK_LEGACY_PATH_ARCTO_ENDPOINT // Inspired by http://code.google.com/p/chromium/issues/detail?id=1001768 { p.reset(); p.moveTo(216, 216); p.arcTo(216, 108, 0, SkPath::ArcSize::kLarge_ArcSize, SkPathDirection::kCW, 216, 0); p.arcTo(270, 135, 0, SkPath::ArcSize::kLarge_ArcSize, SkPathDirection::kCCW, 216, 216); // The 'arcTo' call should end up exactly at the starting location. int n = p.countPoints(); REPORTER_ASSERT(reporter, p.getPoint(0) == p.getPoint(n - 1)); } #endif } static void test_addPath(skiatest::Reporter* reporter) { SkPath p, q; p.lineTo(1, 2); q.moveTo(4, 4); q.lineTo(7, 8); q.conicTo(8, 7, 6, 5, 0.5f); q.quadTo(6, 7, 8, 6); q.cubicTo(5, 6, 7, 8, 7, 5); q.close(); p.addPath(q, -4, -4); SkRect expected = {0, 0, 4, 4}; REPORTER_ASSERT(reporter, p.getBounds() == expected); p.reset(); p.reverseAddPath(q); SkRect reverseExpected = {4, 4, 8, 8}; REPORTER_ASSERT(reporter, p.getBounds() == reverseExpected); } static void test_addPathMode(skiatest::Reporter* reporter, bool explicitMoveTo, bool extend) { SkPath p, q; if (explicitMoveTo) { p.moveTo(1, 1); } p.lineTo(1, 2); if (explicitMoveTo) { q.moveTo(2, 1); } q.lineTo(2, 2); p.addPath(q, extend ? SkPath::kExtend_AddPathMode : SkPath::kAppend_AddPathMode); uint8_t verbs[4]; int verbcount = p.getVerbs(verbs, 4); REPORTER_ASSERT(reporter, verbcount == 4); REPORTER_ASSERT(reporter, verbs[0] == SkPath::kMove_Verb); REPORTER_ASSERT(reporter, verbs[1] == SkPath::kLine_Verb); REPORTER_ASSERT(reporter, verbs[2] == (extend ? SkPath::kLine_Verb : SkPath::kMove_Verb)); REPORTER_ASSERT(reporter, verbs[3] == SkPath::kLine_Verb); } static void test_extendClosedPath(skiatest::Reporter* reporter) { SkPath p, q; p.moveTo(1, 1); p.lineTo(1, 2); p.lineTo(2, 2); p.close(); q.moveTo(2, 1); q.lineTo(2, 3); p.addPath(q, SkPath::kExtend_AddPathMode); uint8_t verbs[7]; int verbcount = p.getVerbs(verbs, 7); REPORTER_ASSERT(reporter, verbcount == 7); REPORTER_ASSERT(reporter, verbs[0] == SkPath::kMove_Verb); REPORTER_ASSERT(reporter, verbs[1] == SkPath::kLine_Verb); REPORTER_ASSERT(reporter, verbs[2] == SkPath::kLine_Verb); REPORTER_ASSERT(reporter, verbs[3] == SkPath::kClose_Verb); REPORTER_ASSERT(reporter, verbs[4] == SkPath::kMove_Verb); REPORTER_ASSERT(reporter, verbs[5] == SkPath::kLine_Verb); REPORTER_ASSERT(reporter, verbs[6] == SkPath::kLine_Verb); SkPoint pt; REPORTER_ASSERT(reporter, p.getLastPt(&pt)); REPORTER_ASSERT(reporter, pt == SkPoint::Make(2, 3)); REPORTER_ASSERT(reporter, p.getPoint(3) == SkPoint::Make(1, 1)); } static void test_addEmptyPath(skiatest::Reporter* reporter, SkPath::AddPathMode mode) { SkPath p, q, r; // case 1: dst is empty p.moveTo(2, 1); p.lineTo(2, 3); q.addPath(p, mode); REPORTER_ASSERT(reporter, q == p); // case 2: src is empty p.addPath(r, mode); REPORTER_ASSERT(reporter, q == p); // case 3: src and dst are empty q.reset(); q.addPath(r, mode); REPORTER_ASSERT(reporter, q.isEmpty()); } static void test_conicTo_special_case(skiatest::Reporter* reporter) { SkPath p; p.conicTo(1, 2, 3, 4, -1); check_path_is_line_and_reset(reporter, &p, 3, 4); p.conicTo(1, 2, 3, 4, SK_ScalarInfinity); check_path_is_line_pair_and_reset(reporter, &p, 1, 2, 3, 4); p.conicTo(1, 2, 3, 4, 1); check_path_is_quad_and_reset(reporter, &p, 1, 2, 3, 4); } static void test_get_point(skiatest::Reporter* reporter) { SkPath p; SkPoint pt = p.getPoint(0); REPORTER_ASSERT(reporter, pt == SkPoint::Make(0, 0)); REPORTER_ASSERT(reporter, !p.getLastPt(nullptr)); REPORTER_ASSERT(reporter, !p.getLastPt(&pt) && pt == SkPoint::Make(0, 0)); p.setLastPt(10, 10); pt = p.getPoint(0); REPORTER_ASSERT(reporter, pt == SkPoint::Make(10, 10)); REPORTER_ASSERT(reporter, p.getLastPt(nullptr)); p.rMoveTo(10, 10); REPORTER_ASSERT(reporter, p.getLastPt(&pt) && pt == SkPoint::Make(20, 20)); } static void test_contains(skiatest::Reporter* reporter) { SkPath p; p.moveTo(SkBits2Float(0xe085e7b1), SkBits2Float(0x5f512c00)); // -7.7191e+19f, 1.50724e+19f p.conicTo(SkBits2Float(0xdfdaa221), SkBits2Float(0x5eaac338), SkBits2Float(0x60342f13), SkBits2Float(0xdf0cbb58), SkBits2Float(0x3f3504f3)); // -3.15084e+19f, 6.15237e+18f, 5.19345e+19f, -1.01408e+19f, 0.707107f p.conicTo(SkBits2Float(0x60ead799), SkBits2Float(0xdfb76c24), SkBits2Float(0x609b9872), SkBits2Float(0xdf730de8), SkBits2Float(0x3f3504f4)); // 1.35377e+20f, -2.6434e+19f, 8.96947e+19f, -1.75139e+19f, 0.707107f p.lineTo(SkBits2Float(0x609b9872), SkBits2Float(0xdf730de8)); // 8.96947e+19f, -1.75139e+19f p.conicTo(SkBits2Float(0x6018b296), SkBits2Float(0xdeee870d), SkBits2Float(0xe008cd8e), SkBits2Float(0x5ed5b2db), SkBits2Float(0x3f3504f3)); // 4.40121e+19f, -8.59386e+18f, -3.94308e+19f, 7.69931e+18f, 0.707107f p.conicTo(SkBits2Float(0xe0d526d9), SkBits2Float(0x5fa67b31), SkBits2Float(0xe085e7b2), SkBits2Float(0x5f512c01), SkBits2Float(0x3f3504f3)); // -1.22874e+20f, 2.39925e+19f, -7.7191e+19f, 1.50724e+19f, 0.707107f // this may return true or false, depending on the platform's numerics, but it should not crash (void) p.contains(-77.2027664f, 15.3066053f); p.reset(); p.setFillType(SkPathFillType::kInverseWinding); REPORTER_ASSERT(reporter, p.contains(0, 0)); p.setFillType(SkPathFillType::kWinding); REPORTER_ASSERT(reporter, !p.contains(0, 0)); p.moveTo(4, 4); p.lineTo(6, 8); p.lineTo(8, 4); // test on edge REPORTER_ASSERT(reporter, p.contains(6, 4)); REPORTER_ASSERT(reporter, p.contains(5, 6)); REPORTER_ASSERT(reporter, p.contains(7, 6)); // test quick reject REPORTER_ASSERT(reporter, !p.contains(4, 0)); REPORTER_ASSERT(reporter, !p.contains(0, 4)); REPORTER_ASSERT(reporter, !p.contains(4, 10)); REPORTER_ASSERT(reporter, !p.contains(10, 4)); // test various crossings in x REPORTER_ASSERT(reporter, !p.contains(5, 7)); REPORTER_ASSERT(reporter, p.contains(6, 7)); REPORTER_ASSERT(reporter, !p.contains(7, 7)); p.reset(); p.moveTo(4, 4); p.lineTo(8, 6); p.lineTo(4, 8); // test on edge REPORTER_ASSERT(reporter, p.contains(4, 6)); REPORTER_ASSERT(reporter, p.contains(6, 5)); REPORTER_ASSERT(reporter, p.contains(6, 7)); // test various crossings in y REPORTER_ASSERT(reporter, !p.contains(7, 5)); REPORTER_ASSERT(reporter, p.contains(7, 6)); REPORTER_ASSERT(reporter, !p.contains(7, 7)); p.reset(); p.moveTo(4, 4); p.lineTo(8, 4); p.lineTo(8, 8); p.lineTo(4, 8); // test on vertices REPORTER_ASSERT(reporter, p.contains(4, 4)); REPORTER_ASSERT(reporter, p.contains(8, 4)); REPORTER_ASSERT(reporter, p.contains(8, 8)); REPORTER_ASSERT(reporter, p.contains(4, 8)); p.reset(); p.moveTo(4, 4); p.lineTo(6, 8); p.lineTo(2, 8); // test on edge REPORTER_ASSERT(reporter, p.contains(5, 6)); REPORTER_ASSERT(reporter, p.contains(4, 8)); REPORTER_ASSERT(reporter, p.contains(3, 6)); p.reset(); p.moveTo(4, 4); p.lineTo(0, 6); p.lineTo(4, 8); // test on edge REPORTER_ASSERT(reporter, p.contains(2, 5)); REPORTER_ASSERT(reporter, p.contains(2, 7)); REPORTER_ASSERT(reporter, p.contains(4, 6)); // test canceling coincident edge (a smaller triangle is coincident with a larger one) p.reset(); p.moveTo(4, 0); p.lineTo(6, 4); p.lineTo(2, 4); p.moveTo(4, 0); p.lineTo(0, 8); p.lineTo(8, 8); REPORTER_ASSERT(reporter, !p.contains(1, 2)); REPORTER_ASSERT(reporter, !p.contains(3, 2)); REPORTER_ASSERT(reporter, !p.contains(4, 0)); REPORTER_ASSERT(reporter, p.contains(4, 4)); // test quads p.reset(); p.moveTo(4, 4); p.quadTo(6, 6, 8, 8); p.quadTo(6, 8, 4, 8); p.quadTo(4, 6, 4, 4); REPORTER_ASSERT(reporter, p.contains(5, 6)); REPORTER_ASSERT(reporter, !p.contains(6, 5)); // test quad edge REPORTER_ASSERT(reporter, p.contains(5, 5)); REPORTER_ASSERT(reporter, p.contains(5, 8)); REPORTER_ASSERT(reporter, p.contains(4, 5)); // test quad endpoints REPORTER_ASSERT(reporter, p.contains(4, 4)); REPORTER_ASSERT(reporter, p.contains(8, 8)); REPORTER_ASSERT(reporter, p.contains(4, 8)); p.reset(); const SkPoint qPts[] = {{6, 6}, {8, 8}, {6, 8}, {4, 8}, {4, 6}, {4, 4}, {6, 6}}; p.moveTo(qPts[0]); for (int index = 1; index < (int) SK_ARRAY_COUNT(qPts); index += 2) { p.quadTo(qPts[index], qPts[index + 1]); } REPORTER_ASSERT(reporter, p.contains(5, 6)); REPORTER_ASSERT(reporter, !p.contains(6, 5)); // test quad edge SkPoint halfway; for (int index = 0; index < (int) SK_ARRAY_COUNT(qPts) - 2; index += 2) { SkEvalQuadAt(&qPts[index], 0.5f, &halfway, nullptr); REPORTER_ASSERT(reporter, p.contains(halfway.fX, halfway.fY)); } // test conics p.reset(); const SkPoint kPts[] = {{4, 4}, {6, 6}, {8, 8}, {6, 8}, {4, 8}, {4, 6}, {4, 4}}; p.moveTo(kPts[0]); for (int index = 1; index < (int) SK_ARRAY_COUNT(kPts); index += 2) { p.conicTo(kPts[index], kPts[index + 1], 0.5f); } REPORTER_ASSERT(reporter, p.contains(5, 6)); REPORTER_ASSERT(reporter, !p.contains(6, 5)); // test conic edge for (int index = 0; index < (int) SK_ARRAY_COUNT(kPts) - 2; index += 2) { SkConic conic(&kPts[index], 0.5f); halfway = conic.evalAt(0.5f); REPORTER_ASSERT(reporter, p.contains(halfway.fX, halfway.fY)); } // test conic end points REPORTER_ASSERT(reporter, p.contains(4, 4)); REPORTER_ASSERT(reporter, p.contains(8, 8)); REPORTER_ASSERT(reporter, p.contains(4, 8)); // test cubics SkPoint pts[] = {{5, 4}, {6, 5}, {7, 6}, {6, 6}, {4, 6}, {5, 7}, {5, 5}, {5, 4}, {6, 5}, {7, 6}}; for (int i = 0; i < 3; ++i) { p.reset(); p.setFillType(SkPathFillType::kEvenOdd); p.moveTo(pts[i].fX, pts[i].fY); p.cubicTo(pts[i + 1].fX, pts[i + 1].fY, pts[i + 2].fX, pts[i + 2].fY, pts[i + 3].fX, pts[i + 3].fY); p.cubicTo(pts[i + 4].fX, pts[i + 4].fY, pts[i + 5].fX, pts[i + 5].fY, pts[i + 6].fX, pts[i + 6].fY); p.close(); REPORTER_ASSERT(reporter, p.contains(5.5f, 5.5f)); REPORTER_ASSERT(reporter, !p.contains(4.5f, 5.5f)); // test cubic edge SkEvalCubicAt(&pts[i], 0.5f, &halfway, nullptr, nullptr); REPORTER_ASSERT(reporter, p.contains(halfway.fX, halfway.fY)); SkEvalCubicAt(&pts[i + 3], 0.5f, &halfway, nullptr, nullptr); REPORTER_ASSERT(reporter, p.contains(halfway.fX, halfway.fY)); // test cubic end points REPORTER_ASSERT(reporter, p.contains(pts[i].fX, pts[i].fY)); REPORTER_ASSERT(reporter, p.contains(pts[i + 3].fX, pts[i + 3].fY)); REPORTER_ASSERT(reporter, p.contains(pts[i + 6].fX, pts[i + 6].fY)); } } class PathRefTest_Private { public: static size_t GetFreeSpace(const SkPathRef& ref) { return (ref.fPoints.reserved() - ref.fPoints.count()) * sizeof(SkPoint) + (ref.fVerbs.reserved() - ref.fVerbs.count()) * sizeof(uint8_t); } static void TestPathRef(skiatest::Reporter* reporter) { static const int kRepeatCnt = 10; sk_sp pathRef(new SkPathRef); SkPathRef::Editor ed(&pathRef); { ed.growForRepeatedVerb(SkPath::kMove_Verb, kRepeatCnt); REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countVerbs()); REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countPoints()); REPORTER_ASSERT(reporter, 0 == pathRef->getSegmentMasks()); for (int i = 0; i < kRepeatCnt; ++i) { REPORTER_ASSERT(reporter, SkPath::kMove_Verb == pathRef->atVerb(i)); } ed.resetToSize(0, 0, 0); } { ed.growForRepeatedVerb(SkPath::kLine_Verb, kRepeatCnt); REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countVerbs()); REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countPoints()); REPORTER_ASSERT(reporter, SkPath::kLine_SegmentMask == pathRef->getSegmentMasks()); for (int i = 0; i < kRepeatCnt; ++i) { REPORTER_ASSERT(reporter, SkPath::kLine_Verb == pathRef->atVerb(i)); } ed.resetToSize(0, 0, 0); } { ed.growForRepeatedVerb(SkPath::kQuad_Verb, kRepeatCnt); REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countVerbs()); REPORTER_ASSERT(reporter, 2*kRepeatCnt == pathRef->countPoints()); REPORTER_ASSERT(reporter, SkPath::kQuad_SegmentMask == pathRef->getSegmentMasks()); for (int i = 0; i < kRepeatCnt; ++i) { REPORTER_ASSERT(reporter, SkPath::kQuad_Verb == pathRef->atVerb(i)); } ed.resetToSize(0, 0, 0); } { SkScalar* weights = nullptr; ed.growForRepeatedVerb(SkPath::kConic_Verb, kRepeatCnt, &weights); REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countVerbs()); REPORTER_ASSERT(reporter, 2*kRepeatCnt == pathRef->countPoints()); REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countWeights()); REPORTER_ASSERT(reporter, SkPath::kConic_SegmentMask == pathRef->getSegmentMasks()); REPORTER_ASSERT(reporter, weights); for (int i = 0; i < kRepeatCnt; ++i) { REPORTER_ASSERT(reporter, SkPath::kConic_Verb == pathRef->atVerb(i)); } ed.resetToSize(0, 0, 0); } { ed.growForRepeatedVerb(SkPath::kCubic_Verb, kRepeatCnt); REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countVerbs()); REPORTER_ASSERT(reporter, 3*kRepeatCnt == pathRef->countPoints()); REPORTER_ASSERT(reporter, SkPath::kCubic_SegmentMask == pathRef->getSegmentMasks()); for (int i = 0; i < kRepeatCnt; ++i) { REPORTER_ASSERT(reporter, SkPath::kCubic_Verb == pathRef->atVerb(i)); } ed.resetToSize(0, 0, 0); } } }; static void test_operatorEqual(skiatest::Reporter* reporter) { SkPath a; SkPath b; REPORTER_ASSERT(reporter, a == a); REPORTER_ASSERT(reporter, a == b); a.setFillType(SkPathFillType::kInverseWinding); REPORTER_ASSERT(reporter, a != b); a.reset(); REPORTER_ASSERT(reporter, a == b); a.lineTo(1, 1); REPORTER_ASSERT(reporter, a != b); a.reset(); REPORTER_ASSERT(reporter, a == b); a.lineTo(1, 1); b.lineTo(1, 2); REPORTER_ASSERT(reporter, a != b); a.reset(); a.lineTo(1, 2); REPORTER_ASSERT(reporter, a == b); } static void compare_dump(skiatest::Reporter* reporter, const SkPath& path, bool force, bool dumpAsHex, const char* str) { SkDynamicMemoryWStream wStream; path.dump(&wStream, force, dumpAsHex); sk_sp data = wStream.detachAsData(); REPORTER_ASSERT(reporter, data->size() == strlen(str)); if (strlen(str) > 0) { REPORTER_ASSERT(reporter, !memcmp(data->data(), str, strlen(str))); } else { REPORTER_ASSERT(reporter, data->data() == nullptr || !memcmp(data->data(), str, strlen(str))); } } static void test_dump(skiatest::Reporter* reporter) { SkPath p; compare_dump(reporter, p, false, false, "path.setFillType(SkPathFillType::kWinding);\n"); compare_dump(reporter, p, true, false, "path.setFillType(SkPathFillType::kWinding);\n"); p.moveTo(1, 2); p.lineTo(3, 4); compare_dump(reporter, p, false, false, "path.setFillType(SkPathFillType::kWinding);\n" "path.moveTo(1, 2);\n" "path.lineTo(3, 4);\n"); compare_dump(reporter, p, true, false, "path.setFillType(SkPathFillType::kWinding);\n" "path.moveTo(1, 2);\n" "path.lineTo(3, 4);\n" "path.lineTo(1, 2);\n" "path.close();\n"); p.reset(); p.setFillType(SkPathFillType::kEvenOdd); p.moveTo(1, 2); p.quadTo(3, 4, 5, 6); compare_dump(reporter, p, false, false, "path.setFillType(SkPathFillType::kEvenOdd);\n" "path.moveTo(1, 2);\n" "path.quadTo(3, 4, 5, 6);\n"); p.reset(); p.setFillType(SkPathFillType::kInverseWinding); p.moveTo(1, 2); p.conicTo(3, 4, 5, 6, 0.5f); compare_dump(reporter, p, false, false, "path.setFillType(SkPathFillType::kInverseWinding);\n" "path.moveTo(1, 2);\n" "path.conicTo(3, 4, 5, 6, 0.5f);\n"); p.reset(); p.setFillType(SkPathFillType::kInverseEvenOdd); p.moveTo(1, 2); p.cubicTo(3, 4, 5, 6, 7, 8); compare_dump(reporter, p, false, false, "path.setFillType(SkPathFillType::kInverseEvenOdd);\n" "path.moveTo(1, 2);\n" "path.cubicTo(3, 4, 5, 6, 7, 8);\n"); p.reset(); p.setFillType(SkPathFillType::kWinding); p.moveTo(1, 2); p.lineTo(3, 4); compare_dump(reporter, p, false, true, "path.setFillType(SkPathFillType::kWinding);\n" "path.moveTo(SkBits2Float(0x3f800000), SkBits2Float(0x40000000)); // 1, 2\n" "path.lineTo(SkBits2Float(0x40400000), SkBits2Float(0x40800000)); // 3, 4\n"); p.reset(); p.moveTo(SkBits2Float(0x3f800000), SkBits2Float(0x40000000)); p.lineTo(SkBits2Float(0x40400000), SkBits2Float(0x40800000)); compare_dump(reporter, p, false, false, "path.setFillType(SkPathFillType::kWinding);\n" "path.moveTo(1, 2);\n" "path.lineTo(3, 4);\n"); } namespace { class ChangeListener : public SkIDChangeListener { public: ChangeListener(bool *changed) : fChanged(changed) { *fChanged = false; } ~ChangeListener() override {} void changed() override { *fChanged = true; } private: bool* fChanged; }; } class PathTest_Private { public: static size_t GetFreeSpace(const SkPath& path) { return PathRefTest_Private::GetFreeSpace(*path.fPathRef); } static void TestPathTo(skiatest::Reporter* reporter) { SkPath p, q; p.lineTo(4, 4); p.reversePathTo(q); check_path_is_line(reporter, &p, 4, 4); q.moveTo(-4, -4); p.reversePathTo(q); check_path_is_line(reporter, &p, 4, 4); q.lineTo(7, 8); q.conicTo(8, 7, 6, 5, 0.5f); q.quadTo(6, 7, 8, 6); q.cubicTo(5, 6, 7, 8, 7, 5); q.close(); p.reversePathTo(q); SkRect reverseExpected = {-4, -4, 8, 8}; REPORTER_ASSERT(reporter, p.getBounds() == reverseExpected); } static void TestPathrefListeners(skiatest::Reporter* reporter) { SkPath p; bool changed = false; p.moveTo(0, 0); // Check that listener is notified on moveTo(). SkPathPriv::AddGenIDChangeListener(p, sk_make_sp(&changed)); REPORTER_ASSERT(reporter, !changed); p.moveTo(10, 0); REPORTER_ASSERT(reporter, changed); // Check that listener is notified on lineTo(). SkPathPriv::AddGenIDChangeListener(p, sk_make_sp(&changed)); REPORTER_ASSERT(reporter, !changed); p.lineTo(20, 0); REPORTER_ASSERT(reporter, changed); // Check that listener is notified on reset(). SkPathPriv::AddGenIDChangeListener(p, sk_make_sp(&changed)); REPORTER_ASSERT(reporter, !changed); p.reset(); REPORTER_ASSERT(reporter, changed); p.moveTo(0, 0); // Check that listener is notified on rewind(). SkPathPriv::AddGenIDChangeListener(p, sk_make_sp(&changed)); REPORTER_ASSERT(reporter, !changed); p.rewind(); REPORTER_ASSERT(reporter, changed); // Check that listener is notified on transform(). { SkPath q; q.moveTo(10, 10); SkPathPriv::AddGenIDChangeListener(q, sk_make_sp(&changed)); REPORTER_ASSERT(reporter, !changed); SkMatrix matrix; matrix.setScale(2, 2); p.transform(matrix, &q); REPORTER_ASSERT(reporter, changed); } // Check that listener is notified when pathref is deleted. { SkPath q; q.moveTo(10, 10); SkPathPriv::AddGenIDChangeListener(q, sk_make_sp(&changed)); REPORTER_ASSERT(reporter, !changed); } // q went out of scope. REPORTER_ASSERT(reporter, changed); } }; static void test_crbug_629455(skiatest::Reporter* reporter) { SkPath path; path.moveTo(0, 0); path.cubicTo(SkBits2Float(0xcdcdcd00), SkBits2Float(0xcdcdcdcd), SkBits2Float(0xcdcdcdcd), SkBits2Float(0xcdcdcdcd), SkBits2Float(0x423fcdcd), SkBits2Float(0x40ed9341)); // AKA: cubicTo(-4.31596e+08f, -4.31602e+08f, -4.31602e+08f, -4.31602e+08f, 47.951f, 7.42423f); path.lineTo(0, 0); test_draw_AA_path(100, 100, path); } static void test_fuzz_crbug_662952(skiatest::Reporter* reporter) { SkPath path; path.moveTo(SkBits2Float(0x4109999a), SkBits2Float(0x411c0000)); // 8.6f, 9.75f path.lineTo(SkBits2Float(0x410a6666), SkBits2Float(0x411c0000)); // 8.65f, 9.75f path.lineTo(SkBits2Float(0x410a6666), SkBits2Float(0x411e6666)); // 8.65f, 9.9f path.lineTo(SkBits2Float(0x4109999a), SkBits2Float(0x411e6666)); // 8.6f, 9.9f path.lineTo(SkBits2Float(0x4109999a), SkBits2Float(0x411c0000)); // 8.6f, 9.75f path.close(); auto surface = SkSurface::MakeRasterN32Premul(100, 100); SkPaint paint; paint.setAntiAlias(true); surface->getCanvas()->clipPath(path, true); surface->getCanvas()->drawRect(SkRect::MakeWH(100, 100), paint); } static void test_path_crbugskia6003() { auto surface(SkSurface::MakeRasterN32Premul(500, 500)); SkCanvas* canvas = surface->getCanvas(); SkPaint paint; paint.setAntiAlias(true); SkPath path; path.moveTo(SkBits2Float(0x4325e666), SkBits2Float(0x42a1999a)); // 165.9f, 80.8f path.lineTo(SkBits2Float(0x4325e666), SkBits2Float(0x42a2999a)); // 165.9f, 81.3f path.lineTo(SkBits2Float(0x4325b333), SkBits2Float(0x42a2999a)); // 165.7f, 81.3f path.lineTo(SkBits2Float(0x4325b333), SkBits2Float(0x42a16666)); // 165.7f, 80.7f path.lineTo(SkBits2Float(0x4325b333), SkBits2Float(0x429f6666)); // 165.7f, 79.7f // 165.7f, 79.7f, 165.8f, 79.7f, 165.8f, 79.7f path.cubicTo(SkBits2Float(0x4325b333), SkBits2Float(0x429f6666), SkBits2Float(0x4325cccc), SkBits2Float(0x429f6666), SkBits2Float(0x4325cccc), SkBits2Float(0x429f6666)); // 165.8f, 79.7f, 165.8f, 79.7f, 165.9f, 79.7f path.cubicTo(SkBits2Float(0x4325cccc), SkBits2Float(0x429f6666), SkBits2Float(0x4325cccc), SkBits2Float(0x429f6666), SkBits2Float(0x4325e666), SkBits2Float(0x429f6666)); path.lineTo(SkBits2Float(0x4325e666), SkBits2Float(0x42a1999a)); // 165.9f, 80.8f path.close(); canvas->clipPath(path, true); canvas->drawRect(SkRect::MakeWH(500, 500), paint); } static void test_fuzz_crbug_662730(skiatest::Reporter* reporter) { SkPath path; path.moveTo(SkBits2Float(0x00000000), SkBits2Float(0x00000000)); // 0, 0 path.lineTo(SkBits2Float(0xd5394437), SkBits2Float(0x37373737)); // -1.2731e+13f, 1.09205e-05f path.lineTo(SkBits2Float(0x37373737), SkBits2Float(0x37373737)); // 1.09205e-05f, 1.09205e-05f path.lineTo(SkBits2Float(0x37373745), SkBits2Float(0x0001b800)); // 1.09205e-05f, 1.57842e-40f path.close(); test_draw_AA_path(100, 100, path); } static void test_skbug_6947() { SkPath path; SkPoint points[] = {{125.126022f, -0.499872506f}, {125.288895f, -0.499338806f}, {125.299316f, -0.499290764f}, {126.294594f, 0.505449712f}, {125.999992f, 62.5047531f}, {124.0f, 62.4980202f}, {124.122749f, 0.498142242f}, {125.126022f, -0.499872506f}, {125.119476f, 1.50011659f}, {125.122749f, 0.50012207f}, {126.122749f, 0.502101898f}, {126.0f, 62.5019798f}, {125.0f, 62.5f}, {124.000008f, 62.4952469f}, {124.294609f, 0.495946467f}, {125.294601f, 0.50069809f}, {125.289886f, 1.50068688f}, {125.282349f, 1.50065041f}, {125.119476f, 1.50011659f}}; constexpr SkPath::Verb kMove = SkPath::kMove_Verb; constexpr SkPath::Verb kLine = SkPath::kLine_Verb; constexpr SkPath::Verb kClose = SkPath::kClose_Verb; SkPath::Verb verbs[] = {kMove, kLine, kLine, kLine, kLine, kLine, kLine, kLine, kClose, kMove, kLine, kLine, kLine, kLine, kLine, kLine, kLine, kLine, kLine, kLine, kClose}; int pointIndex = 0; for(auto verb : verbs) { switch (verb) { case kMove: path.moveTo(points[pointIndex++]); break; case kLine: path.lineTo(points[pointIndex++]); break; case kClose: default: path.close(); break; } } test_draw_AA_path(250, 125, path); } static void test_skbug_7015() { SkPath path; path.setFillType(SkPathFillType::kWinding); path.moveTo(SkBits2Float(0x4388c000), SkBits2Float(0x43947c08)); // 273.5f, 296.969f path.lineTo(SkBits2Float(0x4386c000), SkBits2Float(0x43947c08)); // 269.5f, 296.969f // 269.297f, 292.172f, 273.695f, 292.172f, 273.5f, 296.969f path.cubicTo(SkBits2Float(0x4386a604), SkBits2Float(0x43921604), SkBits2Float(0x4388d8f6), SkBits2Float(0x43921604), SkBits2Float(0x4388c000), SkBits2Float(0x43947c08)); path.close(); test_draw_AA_path(500, 500, path); } static void test_skbug_7051() { SkPath path; path.moveTo(10, 10); path.cubicTo(10, 20, 10, 30, 30, 30); path.lineTo(50, 20); path.lineTo(50, 10); path.close(); test_draw_AA_path(100, 100, path); } static void test_skbug_7435() { SkPaint paint; SkPath path; path.setFillType(SkPathFillType::kWinding); path.moveTo(SkBits2Float(0x7f07a5af), SkBits2Float(0xff07ff1d)); // 1.80306e+38f, -1.8077e+38f path.lineTo(SkBits2Float(0x7edf4b2d), SkBits2Float(0xfedffe0a)); // 1.48404e+38f, -1.48868e+38f path.lineTo(SkBits2Float(0x7edf4585), SkBits2Float(0xfee003b2)); // 1.48389e+38f, -1.48883e+38f path.lineTo(SkBits2Float(0x7ef348e9), SkBits2Float(0xfef403c6)); // 1.6169e+38f, -1.62176e+38f path.lineTo(SkBits2Float(0x7ef74c4e), SkBits2Float(0xfef803cb)); // 1.64358e+38f, -1.64834e+38f path.conicTo(SkBits2Float(0x7ef74f23), SkBits2Float(0xfef8069e), SkBits2Float(0x7ef751f6), SkBits2Float(0xfef803c9), SkBits2Float(0x3f3504f3)); // 1.64365e+38f, -1.64841e+38f, 1.64372e+38f, -1.64834e+38f, 0.707107f path.conicTo(SkBits2Float(0x7ef754c8), SkBits2Float(0xfef800f5), SkBits2Float(0x7ef751f5), SkBits2Float(0xfef7fe22), SkBits2Float(0x3f353472)); // 1.6438e+38f, -1.64827e+38f, 1.64372e+38f, -1.64819e+38f, 0.707832f path.lineTo(SkBits2Float(0x7edb57a9), SkBits2Float(0xfedbfe06)); // 1.45778e+38f, -1.4621e+38f path.lineTo(SkBits2Float(0x7e875976), SkBits2Float(0xfe87fdb3)); // 8.99551e+37f, -9.03815e+37f path.lineTo(SkBits2Float(0x7ded5c2b), SkBits2Float(0xfdeff59e)); // 3.94382e+37f, -3.98701e+37f path.lineTo(SkBits2Float(0x7d7a78a7), SkBits2Float(0xfd7fda0f)); // 2.08083e+37f, -2.12553e+37f path.lineTo(SkBits2Float(0x7d7a6403), SkBits2Float(0xfd7fe461)); // 2.08016e+37f, -2.12587e+37f path.conicTo(SkBits2Float(0x7d7a4764), SkBits2Float(0xfd7ff2b0), SkBits2Float(0x7d7a55b4), SkBits2Float(0xfd8007a8), SkBits2Float(0x3f3504f3)); // 2.07924e+37f, -2.12633e+37f, 2.0797e+37f, -2.12726e+37f, 0.707107f path.conicTo(SkBits2Float(0x7d7a5803), SkBits2Float(0xfd8009f7), SkBits2Float(0x7d7a5ba9), SkBits2Float(0xfd800bcc), SkBits2Float(0x3f7cba66)); // 2.07977e+37f, -2.12741e+37f, 2.07989e+37f, -2.12753e+37f, 0.987219f path.lineTo(SkBits2Float(0x7d8d2067), SkBits2Float(0xfd900bdb)); // 2.34487e+37f, -2.39338e+37f path.lineTo(SkBits2Float(0x7ddd137a), SkBits2Float(0xfde00c2d)); // 3.67326e+37f, -3.72263e+37f path.lineTo(SkBits2Float(0x7ddd2a1b), SkBits2Float(0xfddff58e)); // 3.67473e+37f, -3.72116e+37f path.lineTo(SkBits2Float(0x7c694ae5), SkBits2Float(0xfc7fa67c)); // 4.8453e+36f, -5.30965e+36f path.lineTo(SkBits2Float(0xfc164a8b), SkBits2Float(0x7c005af5)); // -3.12143e+36f, 2.66584e+36f path.lineTo(SkBits2Float(0xfc8ae983), SkBits2Float(0x7c802da7)); // -5.77019e+36f, 5.32432e+36f path.lineTo(SkBits2Float(0xfc8b16d9), SkBits2Float(0x7c80007b)); // -5.77754e+36f, 5.31699e+36f path.lineTo(SkBits2Float(0xfc8b029c), SkBits2Float(0x7c7f8788)); // -5.77426e+36f, 5.30714e+36f path.lineTo(SkBits2Float(0xfc8b0290), SkBits2Float(0x7c7f8790)); // -5.77425e+36f, 5.30714e+36f path.lineTo(SkBits2Float(0xfc8b16cd), SkBits2Float(0x7c80007f)); // -5.77753e+36f, 5.31699e+36f path.lineTo(SkBits2Float(0xfc8b4409), SkBits2Float(0x7c7fa672)); // -5.78487e+36f, 5.30965e+36f path.lineTo(SkBits2Float(0x7d7aa2ba), SkBits2Float(0xfd800bd1)); // 2.0822e+37f, -2.12753e+37f path.lineTo(SkBits2Float(0x7e8757ee), SkBits2Float(0xfe88035b)); // 8.99512e+37f, -9.03962e+37f path.lineTo(SkBits2Float(0x7ef7552d), SkBits2Float(0xfef803ca)); // 1.64381e+38f, -1.64834e+38f path.lineTo(SkBits2Float(0x7f0fa653), SkBits2Float(0xff1001f9)); // 1.90943e+38f, -1.91419e+38f path.lineTo(SkBits2Float(0x7f0fa926), SkBits2Float(0xff0fff24)); // 1.90958e+38f, -1.91404e+38f path.lineTo(SkBits2Float(0x7f0da75c), SkBits2Float(0xff0dff22)); // 1.8829e+38f, -1.88746e+38f path.lineTo(SkBits2Float(0x7f07a5af), SkBits2Float(0xff07ff1d)); // 1.80306e+38f, -1.8077e+38f path.close(); path.moveTo(SkBits2Float(0x7f07a2db), SkBits2Float(0xff0801f1)); // 1.80291e+38f, -1.80785e+38f path.lineTo(SkBits2Float(0x7f0da48a), SkBits2Float(0xff0e01f8)); // 1.88275e+38f, -1.88761e+38f path.lineTo(SkBits2Float(0x7f0fa654), SkBits2Float(0xff1001fa)); // 1.90943e+38f, -1.91419e+38f path.lineTo(SkBits2Float(0x7f0fa7bd), SkBits2Float(0xff10008f)); // 1.90951e+38f, -1.91412e+38f path.lineTo(SkBits2Float(0x7f0fa927), SkBits2Float(0xff0fff25)); // 1.90958e+38f, -1.91404e+38f path.lineTo(SkBits2Float(0x7ef75ad5), SkBits2Float(0xfef7fe22)); // 1.64395e+38f, -1.64819e+38f path.lineTo(SkBits2Float(0x7e875d96), SkBits2Float(0xfe87fdb3)); // 8.99659e+37f, -9.03815e+37f path.lineTo(SkBits2Float(0x7d7acff6), SkBits2Float(0xfd7fea5b)); // 2.08367e+37f, -2.12606e+37f path.lineTo(SkBits2Float(0xfc8b0588), SkBits2Float(0x7c8049b7)); // -5.77473e+36f, 5.32887e+36f path.lineTo(SkBits2Float(0xfc8b2b16), SkBits2Float(0x7c803d32)); // -5.78083e+36f, 5.32684e+36f path.conicTo(SkBits2Float(0xfc8b395c), SkBits2Float(0x7c803870), SkBits2Float(0xfc8b4405), SkBits2Float(0x7c802dd1), SkBits2Float(0x3f79349d)); // -5.78314e+36f, 5.32607e+36f, -5.78487e+36f, 5.32435e+36f, 0.973459f path.conicTo(SkBits2Float(0xfc8b715b), SkBits2Float(0x7c8000a5), SkBits2Float(0xfc8b442f), SkBits2Float(0x7c7fa69e), SkBits2Float(0x3f3504f3)); // -5.79223e+36f, 5.31702e+36f, -5.7849e+36f, 5.30966e+36f, 0.707107f path.lineTo(SkBits2Float(0xfc16ffaa), SkBits2Float(0x7bff4c12)); // -3.13612e+36f, 2.65116e+36f path.lineTo(SkBits2Float(0x7c6895e0), SkBits2Float(0xfc802dc0)); // 4.83061e+36f, -5.32434e+36f path.lineTo(SkBits2Float(0x7ddd137b), SkBits2Float(0xfde00c2e)); // 3.67326e+37f, -3.72263e+37f path.lineTo(SkBits2Float(0x7ddd1ecb), SkBits2Float(0xfde000de)); // 3.67399e+37f, -3.72189e+37f path.lineTo(SkBits2Float(0x7ddd2a1c), SkBits2Float(0xfddff58f)); // 3.67473e+37f, -3.72116e+37f path.lineTo(SkBits2Float(0x7d8d3711), SkBits2Float(0xfd8ff543)); // 2.34634e+37f, -2.39191e+37f path.lineTo(SkBits2Float(0x7d7a88fe), SkBits2Float(0xfd7fea69)); // 2.08136e+37f, -2.12606e+37f path.lineTo(SkBits2Float(0x7d7a7254), SkBits2Float(0xfd800080)); // 2.08063e+37f, -2.1268e+37f path.lineTo(SkBits2Float(0x7d7a80a4), SkBits2Float(0xfd800ed0)); // 2.08109e+37f, -2.12773e+37f path.lineTo(SkBits2Float(0x7d7a80a8), SkBits2Float(0xfd800ecf)); // 2.08109e+37f, -2.12773e+37f path.lineTo(SkBits2Float(0x7d7a7258), SkBits2Float(0xfd80007f)); // 2.08063e+37f, -2.1268e+37f path.lineTo(SkBits2Float(0x7d7a5bb9), SkBits2Float(0xfd800bd0)); // 2.0799e+37f, -2.12753e+37f path.lineTo(SkBits2Float(0x7ded458b), SkBits2Float(0xfdf00c3e)); // 3.94235e+37f, -3.98848e+37f path.lineTo(SkBits2Float(0x7e8753ce), SkBits2Float(0xfe88035b)); // 8.99405e+37f, -9.03962e+37f path.lineTo(SkBits2Float(0x7edb5201), SkBits2Float(0xfedc03ae)); // 1.45763e+38f, -1.46225e+38f path.lineTo(SkBits2Float(0x7ef74c4d), SkBits2Float(0xfef803ca)); // 1.64358e+38f, -1.64834e+38f path.lineTo(SkBits2Float(0x7ef74f21), SkBits2Float(0xfef800f6)); // 1.64365e+38f, -1.64827e+38f path.lineTo(SkBits2Float(0x7ef751f4), SkBits2Float(0xfef7fe21)); // 1.64372e+38f, -1.64819e+38f path.lineTo(SkBits2Float(0x7ef34e91), SkBits2Float(0xfef3fe1e)); // 1.61705e+38f, -1.62161e+38f path.lineTo(SkBits2Float(0x7edf4b2d), SkBits2Float(0xfedffe0a)); // 1.48404e+38f, -1.48868e+38f path.lineTo(SkBits2Float(0x7edf4859), SkBits2Float(0xfee000de)); // 1.48397e+38f, -1.48876e+38f path.lineTo(SkBits2Float(0x7edf4585), SkBits2Float(0xfee003b2)); // 1.48389e+38f, -1.48883e+38f path.lineTo(SkBits2Float(0x7f07a2db), SkBits2Float(0xff0801f1)); // 1.80291e+38f, -1.80785e+38f path.close(); path.moveTo(SkBits2Float(0xfab120db), SkBits2Float(0x77b50b4f)); // -4.59851e+35f, 7.34402e+33f path.lineTo(SkBits2Float(0xfd6597e5), SkBits2Float(0x7d60177f)); // -1.90739e+37f, 1.86168e+37f path.lineTo(SkBits2Float(0xfde2cea1), SkBits2Float(0x7de00c2e)); // -3.76848e+37f, 3.72263e+37f path.lineTo(SkBits2Float(0xfe316511), SkBits2Float(0x7e300657)); // -5.89495e+37f, 5.84943e+37f path.lineTo(SkBits2Float(0xfe415da1), SkBits2Float(0x7e400666)); // -6.42568e+37f, 6.38112e+37f path.lineTo(SkBits2Float(0xfe41634a), SkBits2Float(0x7e4000be)); // -6.42641e+37f, 6.38039e+37f path.lineTo(SkBits2Float(0xfe41634a), SkBits2Float(0x7e3ff8be)); // -6.42641e+37f, 6.37935e+37f path.lineTo(SkBits2Float(0xfe416349), SkBits2Float(0x7e3ff8be)); // -6.42641e+37f, 6.37935e+37f path.lineTo(SkBits2Float(0xfe415f69), SkBits2Float(0x7e3ff8be)); // -6.42591e+37f, 6.37935e+37f path.lineTo(SkBits2Float(0xfe415bc9), SkBits2Float(0x7e3ff8be)); // -6.42544e+37f, 6.37935e+37f path.lineTo(SkBits2Float(0xfe415bc9), SkBits2Float(0x7e4000be)); // -6.42544e+37f, 6.38039e+37f path.lineTo(SkBits2Float(0xfe416171), SkBits2Float(0x7e3ffb16)); // -6.42617e+37f, 6.37966e+37f path.lineTo(SkBits2Float(0xfe016131), SkBits2Float(0x7dfff5ae)); // -4.29938e+37f, 4.25286e+37f path.lineTo(SkBits2Float(0xfe0155e2), SkBits2Float(0x7e000628)); // -4.29791e+37f, 4.25433e+37f path.lineTo(SkBits2Float(0xfe0958ea), SkBits2Float(0x7e080630)); // -4.56415e+37f, 4.52018e+37f path.lineTo(SkBits2Float(0xfe115c92), SkBits2Float(0x7e100638)); // -4.83047e+37f, 4.78603e+37f path.conicTo(SkBits2Float(0xfe11623c), SkBits2Float(0x7e100bdf), SkBits2Float(0xfe1167e2), SkBits2Float(0x7e100636), SkBits2Float(0x3f3504f3)); // -4.8312e+37f, 4.78676e+37f, -4.83194e+37f, 4.78603e+37f, 0.707107f path.conicTo(SkBits2Float(0xfe116d87), SkBits2Float(0x7e10008e), SkBits2Float(0xfe1167e2), SkBits2Float(0x7e0ffae8), SkBits2Float(0x3f35240a)); // -4.83267e+37f, 4.78529e+37f, -4.83194e+37f, 4.78456e+37f, 0.707581f path.lineTo(SkBits2Float(0xfe016b92), SkBits2Float(0x7dfff5af)); // -4.30072e+37f, 4.25286e+37f path.lineTo(SkBits2Float(0xfdc2d963), SkBits2Float(0x7dbff56e)); // -3.23749e+37f, 3.18946e+37f path.lineTo(SkBits2Float(0xfd65ae25), SkBits2Float(0x7d5fea3d)); // -1.90811e+37f, 1.86021e+37f path.lineTo(SkBits2Float(0xfab448de), SkBits2Float(0xf7b50a19)); // -4.68046e+35f, -7.34383e+33f path.lineTo(SkBits2Float(0xfab174d9), SkBits2Float(0x43480000)); // -4.60703e+35f, 200 path.lineTo(SkBits2Float(0xfab174d9), SkBits2Float(0x7800007f)); // -4.60703e+35f, 1.03848e+34f path.lineTo(SkBits2Float(0xfab3f4db), SkBits2Float(0x7800007f)); // -4.67194e+35f, 1.03848e+34f path.lineTo(SkBits2Float(0xfab3f4db), SkBits2Float(0x43480000)); // -4.67194e+35f, 200 path.lineTo(SkBits2Float(0xfab120db), SkBits2Float(0x77b50b4f)); // -4.59851e+35f, 7.34402e+33f path.close(); path.moveTo(SkBits2Float(0xfab59cf2), SkBits2Float(0xf800007e)); // -4.71494e+35f, -1.03847e+34f path.lineTo(SkBits2Float(0xfaa7cc52), SkBits2Float(0xf800007f)); // -4.35629e+35f, -1.03848e+34f path.lineTo(SkBits2Float(0xfd6580e5), SkBits2Float(0x7d60177f)); // -1.90664e+37f, 1.86168e+37f path.lineTo(SkBits2Float(0xfdc2c2c1), SkBits2Float(0x7dc00c0f)); // -3.23602e+37f, 3.19093e+37f path.lineTo(SkBits2Float(0xfe016040), SkBits2Float(0x7e000626)); // -4.29925e+37f, 4.25433e+37f path.lineTo(SkBits2Float(0xfe115c90), SkBits2Float(0x7e100636)); // -4.83047e+37f, 4.78603e+37f path.lineTo(SkBits2Float(0xfe116239), SkBits2Float(0x7e10008f)); // -4.8312e+37f, 4.78529e+37f path.lineTo(SkBits2Float(0xfe1167e0), SkBits2Float(0x7e0ffae6)); // -4.83194e+37f, 4.78456e+37f path.lineTo(SkBits2Float(0xfe096438), SkBits2Float(0x7e07fade)); // -4.56562e+37f, 4.51871e+37f path.lineTo(SkBits2Float(0xfe016130), SkBits2Float(0x7dfff5ac)); // -4.29938e+37f, 4.25286e+37f path.lineTo(SkBits2Float(0xfe015b89), SkBits2Float(0x7e00007f)); // -4.29864e+37f, 4.25359e+37f path.lineTo(SkBits2Float(0xfe0155e1), SkBits2Float(0x7e000627)); // -4.29791e+37f, 4.25433e+37f path.lineTo(SkBits2Float(0xfe415879), SkBits2Float(0x7e4008bf)); // -6.42501e+37f, 6.38143e+37f path.lineTo(SkBits2Float(0xfe415f69), SkBits2Float(0x7e4008bf)); // -6.42591e+37f, 6.38143e+37f path.lineTo(SkBits2Float(0xfe416349), SkBits2Float(0x7e4008bf)); // -6.42641e+37f, 6.38143e+37f path.lineTo(SkBits2Float(0xfe41634a), SkBits2Float(0x7e4008bf)); // -6.42641e+37f, 6.38143e+37f path.conicTo(SkBits2Float(0xfe416699), SkBits2Float(0x7e4008bf), SkBits2Float(0xfe4168f1), SkBits2Float(0x7e400668), SkBits2Float(0x3f6c8ed9)); // -6.42684e+37f, 6.38143e+37f, -6.42715e+37f, 6.38113e+37f, 0.924055f path.conicTo(SkBits2Float(0xfe416e9a), SkBits2Float(0x7e4000c2), SkBits2Float(0xfe4168f3), SkBits2Float(0x7e3ffb17), SkBits2Float(0x3f3504f3)); // -6.42788e+37f, 6.38039e+37f, -6.42715e+37f, 6.37966e+37f, 0.707107f path.lineTo(SkBits2Float(0xfe317061), SkBits2Float(0x7e2ffb07)); // -5.89642e+37f, 5.84796e+37f path.lineTo(SkBits2Float(0xfde2e542), SkBits2Float(0x7ddff58e)); // -3.76995e+37f, 3.72116e+37f path.lineTo(SkBits2Float(0xfd65c525), SkBits2Float(0x7d5fea3d)); // -1.90886e+37f, 1.86021e+37f path.lineTo(SkBits2Float(0xfab6c8db), SkBits2Float(0xf7b50b4f)); // -4.74536e+35f, -7.34402e+33f path.lineTo(SkBits2Float(0xfab59cf2), SkBits2Float(0xf800007e)); // -4.71494e+35f, -1.03847e+34f path.close(); path.moveTo(SkBits2Float(0xfab3f4db), SkBits2Float(0x43480000)); // -4.67194e+35f, 200 path.lineTo(SkBits2Float(0xfab174d9), SkBits2Float(0x43480000)); // -4.60703e+35f, 200 path.quadTo(SkBits2Float(0xfd0593a5), SkBits2Float(0x7d00007f), SkBits2Float(0xfd659785), SkBits2Float(0x7d6000de)); // -1.10971e+37f, 1.0634e+37f, -1.90737e+37f, 1.86095e+37f path.quadTo(SkBits2Float(0xfda2cdf2), SkBits2Float(0x7da0009f), SkBits2Float(0xfdc2ce12), SkBits2Float(0x7dc000be)); // -2.70505e+37f, 2.6585e+37f, -3.23675e+37f, 3.1902e+37f path.quadTo(SkBits2Float(0xfde2ce31), SkBits2Float(0x7de000de), SkBits2Float(0xfe0165e9), SkBits2Float(0x7e00007f)); // -3.76845e+37f, 3.72189e+37f, -4.29999e+37f, 4.25359e+37f path.quadTo(SkBits2Float(0xfe1164b9), SkBits2Float(0x7e10008f), SkBits2Float(0xfe116239), SkBits2Float(0x7e10008f)); // -4.83153e+37f, 4.78529e+37f, -4.8312e+37f, 4.78529e+37f path.quadTo(SkBits2Float(0xfe116039), SkBits2Float(0x7e10008f), SkBits2Float(0xfe095e91), SkBits2Float(0x7e080087)); // -4.83094e+37f, 4.78529e+37f, -4.56488e+37f, 4.51944e+37f path.quadTo(SkBits2Float(0xfe015d09), SkBits2Float(0x7e00007f), SkBits2Float(0xfe015b89), SkBits2Float(0x7e00007f)); // -4.29884e+37f, 4.25359e+37f, -4.29864e+37f, 4.25359e+37f path.lineTo(SkBits2Float(0xfe415bc9), SkBits2Float(0x7e4000be)); // -6.42544e+37f, 6.38039e+37f path.quadTo(SkBits2Float(0xfe415da9), SkBits2Float(0x7e4000be), SkBits2Float(0xfe415f69), SkBits2Float(0x7e4000be)); // -6.42568e+37f, 6.38039e+37f, -6.42591e+37f, 6.38039e+37f path.quadTo(SkBits2Float(0xfe416149), SkBits2Float(0x7e4000be), SkBits2Float(0xfe416349), SkBits2Float(0x7e4000be)); // -6.42615e+37f, 6.38039e+37f, -6.42641e+37f, 6.38039e+37f path.quadTo(SkBits2Float(0xfe416849), SkBits2Float(0x7e4000be), SkBits2Float(0xfe316ab9), SkBits2Float(0x7e3000af)); // -6.42706e+37f, 6.38039e+37f, -5.89569e+37f, 5.84869e+37f path.quadTo(SkBits2Float(0xfe216d29), SkBits2Float(0x7e20009f), SkBits2Float(0xfde2d9f2), SkBits2Float(0x7de000de)); // -5.36431e+37f, 5.31699e+37f, -3.76921e+37f, 3.72189e+37f path.quadTo(SkBits2Float(0xfda2d9b2), SkBits2Float(0x7da0009f), SkBits2Float(0xfd65ae85), SkBits2Float(0x7d6000de)); // -2.70582e+37f, 2.6585e+37f, -1.90812e+37f, 1.86095e+37f path.quadTo(SkBits2Float(0xfd05a9a6), SkBits2Float(0x7d00007f), SkBits2Float(0xfab3f4db), SkBits2Float(0x43480000)); // -1.11043e+37f, 1.0634e+37f, -4.67194e+35f, 200 path.close(); path.moveTo(SkBits2Float(0x7f07a445), SkBits2Float(0xff080087)); // 1.80299e+38f, -1.80778e+38f path.quadTo(SkBits2Float(0x7f0ba519), SkBits2Float(0xff0c008b), SkBits2Float(0x7f0da5f3), SkBits2Float(0xff0e008d)); // 1.8562e+38f, -1.86095e+38f, 1.88283e+38f, -1.88753e+38f path.quadTo(SkBits2Float(0x7f0fa6d5), SkBits2Float(0xff10008f), SkBits2Float(0x7f0fa7bd), SkBits2Float(0xff10008f)); // 1.90946e+38f, -1.91412e+38f, 1.90951e+38f, -1.91412e+38f path.quadTo(SkBits2Float(0x7f0faa7d), SkBits2Float(0xff10008f), SkBits2Float(0x7ef75801), SkBits2Float(0xfef800f6)); // 1.90965e+38f, -1.91412e+38f, 1.64388e+38f, -1.64827e+38f path.quadTo(SkBits2Float(0x7ecf5b09), SkBits2Float(0xfed000ce), SkBits2Float(0x7e875ac2), SkBits2Float(0xfe880087)); // 1.37811e+38f, -1.38242e+38f, 8.99585e+37f, -9.03889e+37f path.quadTo(SkBits2Float(0x7e0eb505), SkBits2Float(0xfe10008f), SkBits2Float(0x7d7ab958), SkBits2Float(0xfd80007f)); // 4.74226e+37f, -4.78529e+37f, 2.08293e+37f, -2.1268e+37f path.quadTo(SkBits2Float(0xfc8ac1cd), SkBits2Float(0x7c80007f), SkBits2Float(0xfc8b16cd), SkBits2Float(0x7c80007f)); // -5.76374e+36f, 5.31699e+36f, -5.77753e+36f, 5.31699e+36f path.quadTo(SkBits2Float(0xfc8b36cd), SkBits2Float(0x7c80007f), SkBits2Float(0xfc16a51a), SkBits2Float(0x7c00007f)); // -5.78273e+36f, 5.31699e+36f, -3.12877e+36f, 2.6585e+36f path.quadTo(SkBits2Float(0xfab6e4de), SkBits2Float(0x43480000), SkBits2Float(0x7c68f062), SkBits2Float(0xfc80007f)); // -4.7482e+35f, 200, 4.83795e+36f, -5.31699e+36f path.lineTo(SkBits2Float(0x7ddd1ecb), SkBits2Float(0xfde000de)); // 3.67399e+37f, -3.72189e+37f path.quadTo(SkBits2Float(0x7d9d254b), SkBits2Float(0xfda0009f), SkBits2Float(0x7d8d2bbc), SkBits2Float(0xfd90008f)); // 2.61103e+37f, -2.6585e+37f, 2.3456e+37f, -2.39265e+37f path.quadTo(SkBits2Float(0x7d7a64d8), SkBits2Float(0xfd80007f), SkBits2Float(0x7d7a7258), SkBits2Float(0xfd80007f)); // 2.08019e+37f, -2.1268e+37f, 2.08063e+37f, -2.1268e+37f path.quadTo(SkBits2Float(0x7d7a9058), SkBits2Float(0xfd80007f), SkBits2Float(0x7ded50db), SkBits2Float(0xfdf000ee)); // 2.0816e+37f, -2.1268e+37f, 3.94309e+37f, -3.98774e+37f path.quadTo(SkBits2Float(0x7e2eace5), SkBits2Float(0xfe3000af), SkBits2Float(0x7e8756a2), SkBits2Float(0xfe880087)); // 5.80458e+37f, -5.84869e+37f, 8.99478e+37f, -9.03889e+37f path.quadTo(SkBits2Float(0x7ebf56d9), SkBits2Float(0xfec000be), SkBits2Float(0x7edb54d5), SkBits2Float(0xfedc00da)); // 1.27167e+38f, -1.27608e+38f, 1.45771e+38f, -1.46217e+38f path.quadTo(SkBits2Float(0x7ef752e1), SkBits2Float(0xfef800f6), SkBits2Float(0x7ef74f21), SkBits2Float(0xfef800f6)); // 1.64375e+38f, -1.64827e+38f, 1.64365e+38f, -1.64827e+38f path.quadTo(SkBits2Float(0x7ef74d71), SkBits2Float(0xfef800f6), SkBits2Float(0x7ef34bbd), SkBits2Float(0xfef400f2)); // 1.64361e+38f, -1.64827e+38f, 1.61698e+38f, -1.62168e+38f path.quadTo(SkBits2Float(0x7eef4a19), SkBits2Float(0xfef000ee), SkBits2Float(0x7edf4859), SkBits2Float(0xfee000de)); // 1.59035e+38f, -1.5951e+38f, 1.48397e+38f, -1.48876e+38f path.lineTo(SkBits2Float(0x7f07a445), SkBits2Float(0xff080087)); // 1.80299e+38f, -1.80778e+38f path.close(); SkSurface::MakeRasterN32Premul(250, 250, nullptr)->getCanvas()->drawPath(path, paint); } static void test_interp(skiatest::Reporter* reporter) { SkPath p1, p2, out; REPORTER_ASSERT(reporter, p1.isInterpolatable(p2)); REPORTER_ASSERT(reporter, p1.interpolate(p2, 0, &out)); REPORTER_ASSERT(reporter, p1 == out); REPORTER_ASSERT(reporter, p1.interpolate(p2, 1, &out)); REPORTER_ASSERT(reporter, p1 == out); p1.moveTo(0, 2); p1.lineTo(0, 4); REPORTER_ASSERT(reporter, !p1.isInterpolatable(p2)); REPORTER_ASSERT(reporter, !p1.interpolate(p2, 1, &out)); p2.moveTo(6, 0); p2.lineTo(8, 0); REPORTER_ASSERT(reporter, p1.isInterpolatable(p2)); REPORTER_ASSERT(reporter, p1.interpolate(p2, 0, &out)); REPORTER_ASSERT(reporter, p2 == out); REPORTER_ASSERT(reporter, p1.interpolate(p2, 1, &out)); REPORTER_ASSERT(reporter, p1 == out); REPORTER_ASSERT(reporter, p1.interpolate(p2, 0.5f, &out)); REPORTER_ASSERT(reporter, out.getBounds() == SkRect::MakeLTRB(3, 1, 4, 2)); p1.reset(); p1.moveTo(4, 4); p1.conicTo(5, 4, 5, 5, 1 / SkScalarSqrt(2)); p2.reset(); p2.moveTo(4, 2); p2.conicTo(7, 2, 7, 5, 1 / SkScalarSqrt(2)); REPORTER_ASSERT(reporter, p1.isInterpolatable(p2)); REPORTER_ASSERT(reporter, p1.interpolate(p2, 0.5f, &out)); REPORTER_ASSERT(reporter, out.getBounds() == SkRect::MakeLTRB(4, 3, 6, 5)); p2.reset(); p2.moveTo(4, 2); p2.conicTo(6, 3, 6, 5, 1); REPORTER_ASSERT(reporter, !p1.isInterpolatable(p2)); p2.reset(); p2.moveTo(4, 4); p2.conicTo(5, 4, 5, 5, 0.5f); REPORTER_ASSERT(reporter, !p1.isInterpolatable(p2)); } DEF_TEST(PathInterp, reporter) { test_interp(reporter); } #include "include/core/SkSurface.h" DEF_TEST(PathBigCubic, reporter) { SkPath path; path.moveTo(SkBits2Float(0x00000000), SkBits2Float(0x00000000)); // 0, 0 path.moveTo(SkBits2Float(0x44000000), SkBits2Float(0x373938b8)); // 512, 1.10401e-05f path.cubicTo(SkBits2Float(0x00000001), SkBits2Float(0xdf000052), SkBits2Float(0x00000100), SkBits2Float(0x00000000), SkBits2Float(0x00000100), SkBits2Float(0x00000000)); // 1.4013e-45f, -9.22346e+18f, 3.58732e-43f, 0, 3.58732e-43f, 0 path.moveTo(0, 512); // this call should not assert SkSurface::MakeRasterN32Premul(255, 255, nullptr)->getCanvas()->drawPath(path, SkPaint()); } DEF_TEST(PathContains, reporter) { test_contains(reporter); } DEF_TEST(Paths, reporter) { test_fuzz_crbug_647922(); test_fuzz_crbug_643933(); test_sect_with_horizontal_needs_pinning(); test_crbug_629455(reporter); test_fuzz_crbug_627414(reporter); test_path_crbug364224(); test_fuzz_crbug_662952(reporter); test_fuzz_crbug_662730(reporter); test_fuzz_crbug_662780(); test_mask_overflow(); test_path_crbugskia6003(); test_fuzz_crbug_668907(); test_skbug_6947(); test_skbug_7015(); test_skbug_7051(); test_skbug_7435(); SkSize::Make(3, 4); SkPath p, empty; SkRect bounds, bounds2; test_empty(reporter, p); REPORTER_ASSERT(reporter, p.getBounds().isEmpty()); // this triggers a code path in SkPath::operator= which is otherwise unexercised SkPath& self = p; p = self; // this triggers a code path in SkPath::swap which is otherwise unexercised p.swap(self); bounds.setLTRB(0, 0, SK_Scalar1, SK_Scalar1); p.addRoundRect(bounds, SK_Scalar1, SK_Scalar1); check_convex_bounds(reporter, p, bounds); // we have quads or cubics REPORTER_ASSERT(reporter, p.getSegmentMasks() & (kCurveSegmentMask | SkPath::kConic_SegmentMask)); REPORTER_ASSERT(reporter, !p.isEmpty()); p.reset(); test_empty(reporter, p); p.addOval(bounds); check_convex_bounds(reporter, p, bounds); REPORTER_ASSERT(reporter, !p.isEmpty()); p.rewind(); test_empty(reporter, p); p.addRect(bounds); check_convex_bounds(reporter, p, bounds); // we have only lines REPORTER_ASSERT(reporter, SkPath::kLine_SegmentMask == p.getSegmentMasks()); REPORTER_ASSERT(reporter, !p.isEmpty()); REPORTER_ASSERT(reporter, p != empty); REPORTER_ASSERT(reporter, !(p == empty)); // do getPoints and getVerbs return the right result REPORTER_ASSERT(reporter, p.getPoints(nullptr, 0) == 4); REPORTER_ASSERT(reporter, p.getVerbs(nullptr, 0) == 5); SkPoint pts[4]; int count = p.getPoints(pts, 4); REPORTER_ASSERT(reporter, count == 4); uint8_t verbs[6]; verbs[5] = 0xff; p.getVerbs(verbs, 5); REPORTER_ASSERT(reporter, SkPath::kMove_Verb == verbs[0]); REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[1]); REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[2]); REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[3]); REPORTER_ASSERT(reporter, SkPath::kClose_Verb == verbs[4]); REPORTER_ASSERT(reporter, 0xff == verbs[5]); bounds2.setBounds(pts, 4); REPORTER_ASSERT(reporter, bounds == bounds2); bounds.offset(SK_Scalar1*3, SK_Scalar1*4); p.offset(SK_Scalar1*3, SK_Scalar1*4); REPORTER_ASSERT(reporter, bounds == p.getBounds()); REPORTER_ASSERT(reporter, p.isRect(nullptr)); bounds2.setEmpty(); REPORTER_ASSERT(reporter, p.isRect(&bounds2)); REPORTER_ASSERT(reporter, bounds == bounds2); // now force p to not be a rect bounds.setWH(SK_Scalar1/2, SK_Scalar1/2); p.addRect(bounds); REPORTER_ASSERT(reporter, !p.isRect(nullptr)); // Test an edge case w.r.t. the bound returned by isRect (i.e., the // path has a trailing moveTo. Please see crbug.com\445368) { SkRect r; p.reset(); p.addRect(bounds); REPORTER_ASSERT(reporter, p.isRect(&r)); REPORTER_ASSERT(reporter, r == bounds); // add a moveTo outside of our bounds p.moveTo(bounds.fLeft + 10, bounds.fBottom + 10); REPORTER_ASSERT(reporter, p.isRect(&r)); REPORTER_ASSERT(reporter, r == bounds); } test_operatorEqual(reporter); test_isLine(reporter); test_isRect(reporter); test_is_simple_closed_rect(reporter); test_isNestedFillRects(reporter); test_zero_length_paths(reporter); test_direction(reporter); test_convexity(reporter); test_convexity2(reporter); test_convexity_doubleback(reporter); test_conservativelyContains(reporter); test_close(reporter); test_segment_masks(reporter); test_flattening(reporter); test_transform(reporter); test_bounds(reporter); test_iter(reporter); test_range_iter(reporter); test_circle(reporter); test_oval(reporter); test_strokerec(reporter); test_addPoly(reporter); test_isfinite(reporter); test_isfinite_after_transform(reporter); test_islastcontourclosed(reporter); test_arb_round_rect_is_convex(reporter); test_arb_zero_rad_round_rect_is_rect(reporter); test_addrect(reporter); test_addrect_isfinite(reporter); test_tricky_cubic(); test_clipped_cubic(); test_crbug_170666(); test_crbug_493450(reporter); test_crbug_495894(reporter); test_crbug_613918(); test_bad_cubic_crbug229478(); test_bad_cubic_crbug234190(); test_gen_id(reporter); test_path_close_issue1474(reporter); test_path_to_region(reporter); test_rrect(reporter); test_arc(reporter); test_arc_ovals(reporter); test_arcTo(reporter); test_addPath(reporter); test_addPathMode(reporter, false, false); test_addPathMode(reporter, true, false); test_addPathMode(reporter, false, true); test_addPathMode(reporter, true, true); test_extendClosedPath(reporter); test_addEmptyPath(reporter, SkPath::kExtend_AddPathMode); test_addEmptyPath(reporter, SkPath::kAppend_AddPathMode); test_conicTo_special_case(reporter); test_get_point(reporter); test_contains(reporter); PathTest_Private::TestPathTo(reporter); PathRefTest_Private::TestPathRef(reporter); PathTest_Private::TestPathrefListeners(reporter); test_dump(reporter); test_path_crbug389050(reporter); test_path_crbugskia2820(reporter); test_path_crbugskia5995(); test_skbug_3469(reporter); test_skbug_3239(reporter); test_bounds_crbug_513799(reporter); test_fuzz_crbug_638223(); } DEF_TEST(conservatively_contains_rect, reporter) { SkPath path; path.moveTo(SkBits2Float(0x44000000), SkBits2Float(0x373938b8)); // 512, 1.10401e-05f // 1.4013e-45f, -9.22346e+18f, 3.58732e-43f, 0, 3.58732e-43f, 0 path.cubicTo(SkBits2Float(0x00000001), SkBits2Float(0xdf000052), SkBits2Float(0x00000100), SkBits2Float(0x00000000), SkBits2Float(0x00000100), SkBits2Float(0x00000000)); path.moveTo(0, 0); // this guy should not assert path.conservativelyContainsRect({ -211747, 12.1115f, -197893, 25.0321f }); } /////////////////////////////////////////////////////////////////////////////////////////////////// static void rand_path(SkPath* path, SkRandom& rand, SkPath::Verb verb, int n) { for (int i = 0; i < n; ++i) { switch (verb) { case SkPath::kLine_Verb: path->lineTo(rand.nextF()*100, rand.nextF()*100); break; case SkPath::kQuad_Verb: path->quadTo(rand.nextF()*100, rand.nextF()*100, rand.nextF()*100, rand.nextF()*100); break; case SkPath::kConic_Verb: path->conicTo(rand.nextF()*100, rand.nextF()*100, rand.nextF()*100, rand.nextF()*100, rand.nextF()*10); break; case SkPath::kCubic_Verb: path->cubicTo(rand.nextF()*100, rand.nextF()*100, rand.nextF()*100, rand.nextF()*100, rand.nextF()*100, rand.nextF()*100); break; default: SkASSERT(false); } } } #include "include/pathops/SkPathOps.h" DEF_TEST(path_tight_bounds, reporter) { SkRandom rand; const SkPath::Verb verbs[] = { SkPath::kLine_Verb, SkPath::kQuad_Verb, SkPath::kConic_Verb, SkPath::kCubic_Verb, }; for (int i = 0; i < 1000; ++i) { for (int n = 1; n <= 10; n += 9) { for (SkPath::Verb verb : verbs) { SkPath path; rand_path(&path, rand, verb, n); SkRect bounds = path.getBounds(); SkRect tight = path.computeTightBounds(); REPORTER_ASSERT(reporter, bounds.contains(tight)); SkRect tight2; TightBounds(path, &tight2); REPORTER_ASSERT(reporter, nearly_equal(tight, tight2)); } } } } DEF_TEST(skbug_6450, r) { SkRect ri = { 0.18554693f, 195.26283f, 0.185784385f, 752.644409f }; SkVector rdi[4] = { { 1.81159976e-09f, 7.58768801e-05f }, { 0.000118725002f, 0.000118725002f }, { 0.000118725002f, 0.000118725002f }, { 0.000118725002f, 0.486297607f } }; SkRRect irr; irr.setRectRadii(ri, rdi); SkRect ro = { 9.18354821e-39f, 2.1710848e+9f, 2.16945843e+9f, 3.47808128e+9f }; SkVector rdo[4] = { { 0, 0 }, { 0.0103298295f, 0.185887396f }, { 2.52999727e-29f, 169.001938f }, { 195.262741f, 195.161255f } }; SkRRect orr; orr.setRectRadii(ro, rdo); SkMakeNullCanvas()->drawDRRect(orr, irr, SkPaint()); } DEF_TEST(PathRefSerialization, reporter) { SkPath path; const size_t numMoves = 5; const size_t numConics = 7; const size_t numPoints = numMoves + 2 * numConics; const size_t numVerbs = numMoves + numConics; for (size_t i = 0; i < numMoves; ++i) path.moveTo(1, 2); for (size_t i = 0; i < numConics; ++i) path.conicTo(1, 2, 3, 4, 5); REPORTER_ASSERT(reporter, path.countPoints() == numPoints); REPORTER_ASSERT(reporter, path.countVerbs() == numVerbs); // Verify that path serializes/deserializes properly. sk_sp data = path.serialize(); size_t bytesWritten = data->size(); { SkPath readBack; REPORTER_ASSERT(reporter, readBack != path); size_t bytesRead = readBack.readFromMemory(data->data(), bytesWritten); REPORTER_ASSERT(reporter, bytesRead == bytesWritten); REPORTER_ASSERT(reporter, readBack == path); } // One less byte (rounded down to alignment) than was written will also // fail to be deserialized. { SkPath readBack; size_t bytesRead = readBack.readFromMemory(data->data(), bytesWritten - 4); REPORTER_ASSERT(reporter, !bytesRead); } } DEF_TEST(NonFinitePathIteration, reporter) { SkPath path; path.moveTo(SK_ScalarInfinity, SK_ScalarInfinity); SkPathPriv::Iterate iterate(path); REPORTER_ASSERT(reporter, iterate.begin() == iterate.end()); } DEF_TEST(AndroidArc, reporter) { const char* tests[] = { "M50,0A50,50,0,0 1 100,50 L100,85 A15,15,0,0 1 85,100 L50,100 A50,50,0,0 1 50,0z", "M50,0L92,0 A8,8,0,0 1 100,8 L100,92 A8,8,0,0 1 92,100 L8,100" " A8,8,0,0 1 0,92 L 0,8 A8,8,0,0 1 8,0z", "M50 0A50 50,0,1,1,50 100A50 50,0,1,1,50 0" }; for (auto test : tests) { SkPath aPath; SkAssertResult(SkParsePath::FromSVGString(test, &aPath)); SkASSERT(aPath.isConvex()); for (SkScalar scale = 1; scale < 1000; scale *= 1.1f) { SkPath scalePath = aPath; SkMatrix matrix; matrix.setScale(scale, scale); scalePath.transform(matrix); SkASSERT(scalePath.isConvex()); } for (SkScalar scale = 1; scale < .001; scale /= 1.1f) { SkPath scalePath = aPath; SkMatrix matrix; matrix.setScale(scale, scale); scalePath.transform(matrix); SkASSERT(scalePath.isConvex()); } } } /* * Try a range of crazy values, just to ensure that we don't assert/crash. */ DEF_TEST(HugeGeometry, reporter) { auto surf = SkSurface::MakeRasterN32Premul(100, 100); auto canvas = surf->getCanvas(); const bool aas[] = { false, true }; const SkPaint::Style styles[] = { SkPaint::kFill_Style, SkPaint::kStroke_Style, SkPaint::kStrokeAndFill_Style }; const SkScalar values[] = { 0, 1, 1000, 1000 * 1000, 1000.f * 1000 * 10000, SK_ScalarMax / 2, SK_ScalarMax, SK_ScalarInfinity }; SkPaint paint; for (auto x : values) { SkRect r = { -x, -x, x, x }; for (auto width : values) { paint.setStrokeWidth(width); for (auto aa : aas) { paint.setAntiAlias(aa); for (auto style : styles) { paint.setStyle(style); canvas->drawRect(r, paint); canvas->drawOval(r, paint); } } } } } // Treat nonfinite paths as "empty" or "full", depending on inverse-filltype DEF_TEST(ClipPath_nonfinite, reporter) { auto surf = SkSurface::MakeRasterN32Premul(10, 10); SkCanvas* canvas = surf->getCanvas(); REPORTER_ASSERT(reporter, !canvas->isClipEmpty()); for (bool aa : {false, true}) { for (auto ft : {SkPathFillType::kWinding, SkPathFillType::kInverseWinding}) { for (SkScalar bad : {SK_ScalarInfinity, SK_ScalarNaN}) { for (int bits = 1; bits <= 15; ++bits) { SkPoint p0 = { 0, 0 }; SkPoint p1 = { 0, 0 }; if (bits & 1) p0.fX = -bad; if (bits & 2) p0.fY = -bad; if (bits & 4) p1.fX = bad; if (bits & 8) p1.fY = bad; SkPath path; path.moveTo(p0); path.lineTo(p1); path.setFillType(ft); canvas->save(); canvas->clipPath(path, aa); REPORTER_ASSERT(reporter, canvas->isClipEmpty() == !path.isInverseFillType()); canvas->restore(); } } } } REPORTER_ASSERT(reporter, !canvas->isClipEmpty()); } // skbug.com/7792 DEF_TEST(Path_isRect, reporter) { auto makePath = [](const SkPoint* points, size_t count, bool close) -> SkPath { SkPath path; for (size_t index = 0; index < count; ++index) { index < 2 ? path.moveTo(points[index]) : path.lineTo(points[index]); } if (close) { path.close(); } return path; }; auto makePath2 = [](const SkPoint* points, const SkPath::Verb* verbs, size_t count) -> SkPath { SkPath path; for (size_t index = 0; index < count; ++index) { switch (verbs[index]) { case SkPath::kMove_Verb: path.moveTo(*points++); break; case SkPath::kLine_Verb: path.lineTo(*points++); break; case SkPath::kClose_Verb: path.close(); break; default: SkASSERT(0); } } return path; }; // isolated from skbug.com/7792 (bug description) SkRect rect; SkPoint points[] = { {10, 10}, {75, 75}, {150, 75}, {150, 150}, {75, 150} }; SkPath path = makePath(points, SK_ARRAY_COUNT(points), false); REPORTER_ASSERT(reporter, path.isRect(&rect)); SkRect compare; compare.setBounds(&points[1], SK_ARRAY_COUNT(points) - 1); REPORTER_ASSERT(reporter, rect == compare); // isolated from skbug.com/7792#c3 SkPoint points3[] = { {75, 50}, {100, 75}, {150, 75}, {150, 150}, {75, 150}, {75, 50} }; path = makePath(points3, SK_ARRAY_COUNT(points3), true); REPORTER_ASSERT(reporter, !path.isRect(&rect)); // isolated from skbug.com/7792#c9 SkPoint points9[] = { {10, 10}, {75, 75}, {150, 75}, {150, 150}, {75, 150} }; path = makePath(points9, SK_ARRAY_COUNT(points9), true); REPORTER_ASSERT(reporter, path.isRect(&rect)); compare.setBounds(&points9[1], SK_ARRAY_COUNT(points9) - 1); REPORTER_ASSERT(reporter, rect == compare); // isolated from skbug.com/7792#c11 SkPath::Verb verbs11[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb }; SkPoint points11[] = { {75, 150}, {75, 75}, {150, 75}, {150, 150}, {75, 150}, {75, 150} }; path = makePath2(points11, verbs11, SK_ARRAY_COUNT(verbs11)); REPORTER_ASSERT(reporter, path.isRect(&rect)); compare.setBounds(&points11[0], SK_ARRAY_COUNT(points11)); REPORTER_ASSERT(reporter, rect == compare); // isolated from skbug.com/7792#c14 SkPath::Verb verbs14[] = { SkPath::kMove_Verb, SkPath::kMove_Verb, SkPath::kMove_Verb, SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb }; SkPoint points14[] = { {250, 75}, {250, 75}, {250, 75}, {100, 75}, {150, 75}, {150, 150}, {75, 150}, {75, 75}, {0, 0} }; path = makePath2(points14, verbs14, SK_ARRAY_COUNT(verbs14)); REPORTER_ASSERT(reporter, !path.isRect(&rect)); // isolated from skbug.com/7792#c15 SkPath::Verb verbs15[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb }; SkPoint points15[] = { {75, 75}, {150, 75}, {150, 150}, {75, 150}, {250, 75} }; path = makePath2(points15, verbs15, SK_ARRAY_COUNT(verbs15)); REPORTER_ASSERT(reporter, path.isRect(&rect)); compare.setBounds(&points15[0], SK_ARRAY_COUNT(points15) - 1); REPORTER_ASSERT(reporter, rect == compare); // isolated from skbug.com/7792#c17 SkPoint points17[] = { {75, 10}, {75, 75}, {150, 75}, {150, 150}, {75, 150}, {75, 10} }; path = makePath(points17, SK_ARRAY_COUNT(points17), true); REPORTER_ASSERT(reporter, !path.isRect(&rect)); // isolated from skbug.com/7792#c19 SkPath::Verb verbs19[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb }; SkPoint points19[] = { {75, 75}, {75, 75}, {75, 75}, {75, 75}, {150, 75}, {150, 150}, {75, 150}, {10, 10}, {30, 10}, {10, 30} }; path = makePath2(points19, verbs19, SK_ARRAY_COUNT(verbs19)); REPORTER_ASSERT(reporter, !path.isRect(&rect)); // isolated from skbug.com/7792#c23 SkPath::Verb verbs23[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb }; SkPoint points23[] = { {75, 75}, {75, 75}, {75, 75}, {75, 75}, {150, 75}, {150, 150}, {75, 150} }; path = makePath2(points23, verbs23, SK_ARRAY_COUNT(verbs23)); REPORTER_ASSERT(reporter, path.isRect(&rect)); compare.setBounds(&points23[0], SK_ARRAY_COUNT(points23)); REPORTER_ASSERT(reporter, rect == compare); // isolated from skbug.com/7792#c29 SkPath::Verb verbs29[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb }; SkPoint points29[] = { {75, 75}, {150, 75}, {150, 150}, {75, 150}, {75, 250}, {75, 75} }; path = makePath2(points29, verbs29, SK_ARRAY_COUNT(verbs29)); REPORTER_ASSERT(reporter, !path.isRect(&rect)); // isolated from skbug.com/7792#c31 SkPath::Verb verbs31[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb }; SkPoint points31[] = { {75, 75}, {150, 75}, {150, 150}, {75, 150}, {75, 10}, {75, 75} }; path = makePath2(points31, verbs31, SK_ARRAY_COUNT(verbs31)); REPORTER_ASSERT(reporter, path.isRect(&rect)); compare.setBounds(&points31[0], 4); REPORTER_ASSERT(reporter, rect == compare); // isolated from skbug.com/7792#c36 SkPath::Verb verbs36[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb, SkPath::kLine_Verb }; SkPoint points36[] = { {75, 75}, {150, 75}, {150, 150}, {10, 150}, {75, 75}, {75, 75} }; path = makePath2(points36, verbs36, SK_ARRAY_COUNT(verbs36)); REPORTER_ASSERT(reporter, !path.isRect(&rect)); // isolated from skbug.com/7792#c39 SkPath::Verb verbs39[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb }; SkPoint points39[] = { {150, 75}, {150, 150}, {75, 150}, {75, 100} }; path = makePath2(points39, verbs39, SK_ARRAY_COUNT(verbs39)); REPORTER_ASSERT(reporter, !path.isRect(&rect)); // isolated from zero_length_paths_aa SkPath::Verb verbsAA[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb }; SkPoint pointsAA[] = { {32, 9.5f}, {32, 9.5f}, {32, 17}, {17, 17}, {17, 9.5f}, {17, 2}, {32, 2} }; path = makePath2(pointsAA, verbsAA, SK_ARRAY_COUNT(verbsAA)); REPORTER_ASSERT(reporter, path.isRect(&rect)); compare.setBounds(&pointsAA[0], SK_ARRAY_COUNT(pointsAA)); REPORTER_ASSERT(reporter, rect == compare); // isolated from skbug.com/7792#c41 SkPath::Verb verbs41[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb }; SkPoint points41[] = { {75, 75}, {150, 75}, {150, 150}, {140, 150}, {140, 75}, {75, 75} }; path = makePath2(points41, verbs41, SK_ARRAY_COUNT(verbs41)); REPORTER_ASSERT(reporter, path.isRect(&rect)); compare.setBounds(&points41[1], 4); REPORTER_ASSERT(reporter, rect == compare); // isolated from skbug.com/7792#c53 SkPath::Verb verbs53[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb }; SkPoint points53[] = { {75, 75}, {150, 75}, {150, 150}, {140, 150}, {140, 75}, {75, 75} }; path = makePath2(points53, verbs53, SK_ARRAY_COUNT(verbs53)); REPORTER_ASSERT(reporter, path.isRect(&rect)); compare.setBounds(&points53[1], 4); REPORTER_ASSERT(reporter, rect == compare); } // Be sure we can safely add ourselves DEF_TEST(Path_self_add, reporter) { // The possible problem is that during path.add() we may have to grow the dst buffers as // we append the src pts/verbs, but all the while we are iterating over the src. If src == dst // we could realloc the buffer's (on behalf of dst) leaving the src iterator pointing at // garbage. // // The test runs though verious sized src paths, since its not defined publicly what the // reserve allocation strategy is for SkPath, therefore we can't know when an append operation // will trigger a realloc. At the time of this writing, these loops were sufficient to trigger // an ASAN error w/o the fix to SkPath::addPath(). // for (int count = 0; count < 10; ++count) { SkPath path; for (int add = 0; add < count; ++add) { // just add some stuff, so we have something to copy/append in addPath() path.moveTo(1, 2).lineTo(3, 4).cubicTo(1,2,3,4,5,6).conicTo(1,2,3,4,5); } path.addPath(path, 1, 2); path.addPath(path, 3, 4); } } #include "include/core/SkVertices.h" static void draw_triangle(SkCanvas* canvas, const SkPoint pts[]) { // draw in different ways, looking for an assert { SkPath path; path.addPoly(pts, 3, false); canvas->drawPath(path, SkPaint()); } const SkColor colors[] = { SK_ColorBLACK, SK_ColorBLACK, SK_ColorBLACK }; auto v = SkVertices::MakeCopy(SkVertices::kTriangles_VertexMode, 3, pts, nullptr, colors); canvas->drawVertices(v, SkBlendMode::kSrcOver, SkPaint()); } DEF_TEST(triangle_onehalf, reporter) { auto surface(SkSurface::MakeRasterN32Premul(100, 100)); const SkPoint pts[] = { { 0.499069244f, 9.63295173f }, { 0.499402374f, 7.88207579f }, { 10.2363272f, 0.49999997f } }; draw_triangle(surface->getCanvas(), pts); } DEF_TEST(triangle_big, reporter) { auto surface(SkSurface::MakeRasterN32Premul(4, 4304)); // The first two points, when sent through our fixed-point SkEdge, can walk negative beyond // -0.5 due to accumulated += error of the slope. We have since make the bounds calculation // be conservative, so we invoke clipping if we get in this situation. // This test was added to demonstrate the need for this conservative bounds calc. // (found by a fuzzer) const SkPoint pts[] = { { 0.327190518f, -114.945152f }, { -0.5f, 1.00003874f }, { 0.666425824f, 4304.26172f }, }; draw_triangle(surface->getCanvas(), pts); } static void add_verbs(SkPath* path, int count) { path->moveTo(0, 0); for (int i = 0; i < count; ++i) { switch (i & 3) { case 0: path->lineTo(10, 20); break; case 1: path->quadTo(5, 6, 7, 8); break; case 2: path->conicTo(1, 2, 3, 4, 0.5f); break; case 3: path->cubicTo(2, 4, 6, 8, 10, 12); break; } } } // Make sure when we call shrinkToFit() that we always shrink (or stay the same) // and that if we call twice, we stay the same. DEF_TEST(Path_shrinkToFit, reporter) { size_t max_free = 0; for (int verbs = 0; verbs < 100; ++verbs) { SkPath unique_path, shared_path; add_verbs(&unique_path, verbs); add_verbs(&shared_path, verbs); const SkPath copy = shared_path; REPORTER_ASSERT(reporter, shared_path == unique_path); REPORTER_ASSERT(reporter, shared_path == copy); #ifdef SK_DEBUG size_t before = PathTest_Private::GetFreeSpace(unique_path); #endif unique_path.shrinkToFit(); shared_path.shrinkToFit(); REPORTER_ASSERT(reporter, shared_path == unique_path); REPORTER_ASSERT(reporter, shared_path == copy); #ifdef SK_DEBUG size_t after = PathTest_Private::GetFreeSpace(unique_path); REPORTER_ASSERT(reporter, before >= after); max_free = std::max(max_free, before - after); size_t after2 = PathTest_Private::GetFreeSpace(unique_path); REPORTER_ASSERT(reporter, after == after2); #endif } if (false) { SkDebugf("max_free %zu\n", max_free); } } DEF_TEST(Path_setLastPt, r) { // There was a time where SkPath::setLastPoint() didn't invalidate cached path bounds. SkPath p; p.moveTo(0,0); p.moveTo(20,01); p.moveTo(20,10); p.moveTo(20,61); REPORTER_ASSERT(r, p.getBounds() == SkRect::MakeLTRB(0,0, 20,61)); p.setLastPt(30,01); REPORTER_ASSERT(r, p.getBounds() == SkRect::MakeLTRB(0,0, 30,10)); // was {0,0, 20,61} REPORTER_ASSERT(r, p.isValid()); } DEF_TEST(Path_increserve_handle_neg_crbug_883666, r) { SkPath path; path.conicTo({0, 0}, {1, 1}, SK_FloatNegativeInfinity); // <== use a copy path object to force SkPathRef::copy() and SkPathRef::resetToSize() SkPath shallowPath = path; // make sure we don't assert/crash on this. shallowPath.incReserve(0xffffffff); } //////////////////////////////////////////////////////////////////////////////////////////////// /* * For speed, we tried to preserve useful/expensive attributes about paths, * - convexity, isrect, isoval, ... * Axis-aligned shapes (rect, oval, rrect) should survive, including convexity if the matrix * is axis-aligned (e.g. scale+translate) */ struct Xforms { SkMatrix fIM, fTM, fSM, fRM; Xforms() { fIM.reset(); fTM.setTranslate(10, 20); fSM.setScale(2, 3); fRM.setRotate(30); } }; static bool conditional_convex(const SkPath& path, bool is_convex) { SkPathConvexityType c = path.getConvexityTypeOrUnknown(); return is_convex ? (c == SkPathConvexityType::kConvex) : (c != SkPathConvexityType::kConvex); } // expect axis-aligned shape to survive assignment, identity and scale/translate matrices template void survive(SkPath* path, const Xforms& x, bool isAxisAligned, skiatest::Reporter* reporter, ISA isa_proc) { REPORTER_ASSERT(reporter, isa_proc(*path)); // force the issue (computing convexity) the first time. REPORTER_ASSERT(reporter, path->getConvexityType() == SkPathConvexityType::kConvex); SkPath path2; // a path's isa and convexity should survive assignment path2 = *path; REPORTER_ASSERT(reporter, isa_proc(path2)); REPORTER_ASSERT(reporter, path2.getConvexityTypeOrUnknown() == SkPathConvexityType::kConvex); // a path's isa and convexity should identity transform path->transform(x.fIM, &path2); path->transform(x.fIM); REPORTER_ASSERT(reporter, isa_proc(path2)); REPORTER_ASSERT(reporter, path2.getConvexityTypeOrUnknown() == SkPathConvexityType::kConvex); REPORTER_ASSERT(reporter, isa_proc(*path)); REPORTER_ASSERT(reporter, path->getConvexityTypeOrUnknown() == SkPathConvexityType::kConvex); // a path's isa should survive translation, convexity depends on axis alignment path->transform(x.fTM, &path2); path->transform(x.fTM); REPORTER_ASSERT(reporter, isa_proc(path2)); REPORTER_ASSERT(reporter, isa_proc(*path)); REPORTER_ASSERT(reporter, conditional_convex(path2, isAxisAligned)); REPORTER_ASSERT(reporter, conditional_convex(*path, isAxisAligned)); // a path's isa should survive scaling, convexity depends on axis alignment path->transform(x.fSM, &path2); path->transform(x.fSM); REPORTER_ASSERT(reporter, isa_proc(path2)); REPORTER_ASSERT(reporter, isa_proc(*path)); REPORTER_ASSERT(reporter, conditional_convex(path2, isAxisAligned)); REPORTER_ASSERT(reporter, conditional_convex(*path, isAxisAligned)); // For security, post-rotation, we can't assume we're still convex. It might prove to be, // in fact, still be convex, be we can't have cached that setting, hence the call to // getConvexityTypeOrUnknown() instead of getConvexityType(). path->transform(x.fRM, &path2); path->transform(x.fRM); if (isAxisAligned) { REPORTER_ASSERT(reporter, !isa_proc(path2)); REPORTER_ASSERT(reporter, !isa_proc(*path)); } REPORTER_ASSERT(reporter, path2.getConvexityTypeOrUnknown() != SkPathConvexityType::kConvex); REPORTER_ASSERT(reporter, path->getConvexityTypeOrUnknown() != SkPathConvexityType::kConvex); } DEF_TEST(Path_survive_transform, r) { const Xforms x; SkPath path; path.addRect({10, 10, 40, 50}); survive(&path, x, true, r, [](const SkPath& p) { return p.isRect(nullptr); }); path.reset(); path.addOval({10, 10, 40, 50}); survive(&path, x, true, r, [](const SkPath& p) { return p.isOval(nullptr); }); path.reset(); path.addRRect(SkRRect::MakeRectXY({10, 10, 40, 50}, 5, 5)); survive(&path, x, true, r, [](const SkPath& p) { return p.isRRect(nullptr); }); // make a trapazoid; definitely convex, but not marked as axis-aligned (e.g. oval, rrect) path.reset(); path.moveTo(0, 0).lineTo(100, 0).lineTo(70, 100).lineTo(30, 100); REPORTER_ASSERT(r, path.getConvexityType() == SkPathConvexityType::kConvex); survive(&path, x, false, r, [](const SkPath& p) { return true; }); } DEF_TEST(path_last_move_to_index, r) { // Make sure that copyPath is safe after the call to path.offset(). // Previously, we would leave its fLastMoveToIndex alone after the copy, but now we should // set it to path's value inside SkPath::transform() const char text[] = "hello"; constexpr size_t len = sizeof(text) - 1; SkGlyphID glyphs[len]; SkFont font; font.textToGlyphs(text, len, SkTextEncoding::kUTF8, glyphs, len); SkPath copyPath; SkFont().getPaths(glyphs, len, [](const SkPath* src, const SkMatrix& mx, void* ctx) { if (src) { ((SkPath*)ctx)->addPath(*src, mx); } }, ©Path); SkScalar radii[] = { 80, 100, 0, 0, 40, 60, 0, 0 }; SkPath path; path.addRoundRect({10, 10, 110, 110}, radii); path.offset(0, 5, &(copyPath)); // <== change buffer copyPath.fPathRef->fPoints but not reset copyPath.fLastMoveToIndex lead to out of bound copyPath.rConicTo(1, 1, 3, 3, 0.707107f); } static void test_edger(skiatest::Reporter* r, const std::initializer_list& in, const std::initializer_list& expected) { SkPath path; SkScalar x = 0, y = 0; for (auto v : in) { switch (v) { case SkPath::kMove_Verb: path.moveTo(x++, y++); break; case SkPath::kLine_Verb: path.lineTo(x++, y++); break; case SkPath::kClose_Verb: path.close(); break; default: SkASSERT(false); } } SkPathEdgeIter iter(path); for (auto v : expected) { auto e = iter.next(); REPORTER_ASSERT(r, e); REPORTER_ASSERT(r, SkPathEdgeIter::EdgeToVerb(e.fEdge) == v); } auto e = iter.next(); REPORTER_ASSERT(r, !e); } DEF_TEST(pathedger, r) { auto M = SkPath::kMove_Verb; auto L = SkPath::kLine_Verb; auto C = SkPath::kClose_Verb; test_edger(r, { M }, {}); test_edger(r, { M, M }, {}); test_edger(r, { M, C }, {}); test_edger(r, { M, M, C }, {}); test_edger(r, { M, L }, { L, L }); test_edger(r, { M, L, C }, { L, L }); test_edger(r, { M, L, L }, { L, L, L }); test_edger(r, { M, L, L, C }, { L, L, L }); test_edger(r, { M, L, L, M, L, L }, { L, L, L, L, L, L }); }