/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkSemaphore_DEFINED #define SkSemaphore_DEFINED #include "include/core/SkTypes.h" #include "include/private/SkOnce.h" #include "include/private/SkThreadAnnotations.h" #include <algorithm> #include <atomic> class SkSemaphore { public: constexpr SkSemaphore(int count = 0) : fCount(count), fOSSemaphore(nullptr) {} // Cleanup the underlying OS semaphore. SK_SPI ~SkSemaphore(); // Increment the counter n times. // Generally it's better to call signal(n) instead of signal() n times. void signal(int n = 1); // Decrement the counter by 1, // then if the counter is < 0, sleep this thread until the counter is >= 0. void wait(); // If the counter is positive, decrement it by 1 and return true, otherwise return false. SK_SPI bool try_wait(); private: // This implementation follows the general strategy of // 'A Lightweight Semaphore with Partial Spinning' // found here // http://preshing.com/20150316/semaphores-are-surprisingly-versatile/ // That article (and entire blog) are very much worth reading. // // We wrap an OS-provided semaphore with a user-space atomic counter that // lets us avoid interacting with the OS semaphore unless strictly required: // moving the count from >=0 to <0 or vice-versa, i.e. sleeping or waking threads. struct OSSemaphore; SK_SPI void osSignal(int n); SK_SPI void osWait(); std::atomic<int> fCount; SkOnce fOSSemaphoreOnce; OSSemaphore* fOSSemaphore; }; inline void SkSemaphore::signal(int n) { int prev = fCount.fetch_add(n, std::memory_order_release); // We only want to call the OS semaphore when our logical count crosses // from <0 to >=0 (when we need to wake sleeping threads). // // This is easiest to think about with specific examples of prev and n. // If n == 5 and prev == -3, there are 3 threads sleeping and we signal // std::min(-(-3), 5) == 3 times on the OS semaphore, leaving the count at 2. // // If prev >= 0, no threads are waiting, std::min(-prev, n) is always <= 0, // so we don't call the OS semaphore, leaving the count at (prev + n). int toSignal = std::min(-prev, n); if (toSignal > 0) { this->osSignal(toSignal); } } inline void SkSemaphore::wait() { // Since this fetches the value before the subtract, zero and below means that there are no // resources left, so the thread needs to wait. if (fCount.fetch_sub(1, std::memory_order_acquire) <= 0) { SK_POTENTIALLY_BLOCKING_REGION_BEGIN; this->osWait(); SK_POTENTIALLY_BLOCKING_REGION_END; } } #endif//SkSemaphore_DEFINED