skia2/samplecode/Sample3D.cpp
Mike Reed 7543587ee2 clean-up 3d sample's use of matrices
Propose a standard way to talk about the camera (etc) in SkCanvas:
- client provides 3 matrices: viewport, projection, camera
- canvas->concat(viewport * projection * camera * invert(viewport)
- camera and projection are taken straight from the textbook for 3D
- "viewport" means a matrix that transforms +-1 square about the origin
  to the clients working canvas. A simple way to describe it is:
  "specify the area-of-interest with a rectangle and z_scale"

Expose the ctm as a 44 from canvas for now. Likely we will add these
3 new matrices to canvas, and each may have a getter.

Bug: skia:
Change-Id: I6fa79c56956e060c17569848a81e13c13cb0981a
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/264221
Reviewed-by: Florin Malita <fmalita@chromium.org>
Commit-Queue: Mike Reed <reed@google.com>
2020-01-14 15:56:12 +00:00

213 lines
6.3 KiB
C++

/*
* Copyright 2020 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkCanvas.h"
#include "include/core/SkMatrix44.h"
#include "include/core/SkPaint.h"
#include "include/core/SkRRect.h"
#include "include/private/SkM44.h"
#include "include/utils/Sk3D.h"
#include "include/utils/SkRandom.h"
#include "samplecode/Sample.h"
#include "tools/Resources.h"
static SkMatrix44 inv(const SkMatrix44& m) {
SkMatrix44 inverse;
SkAssertResult(m.invert(&inverse));
return inverse;
}
class Sample3DView : public Sample {
protected:
float fNear = 0.05f;
float fFar = 4;
float fAngle = SK_ScalarPI / 12;
SkPoint3 fEye { 0, 0, 1.0f/tan(fAngle/2) - 1 };
SkPoint3 fCOA { 0, 0, 0 };
SkPoint3 fUp { 0, 1, 0 };
SkMatrix44 fRot;
SkPoint3 fTrans;
void rotate(float x, float y, float z) {
SkMatrix44 r;
if (x) {
r.setRotateAboutUnit(1, 0, 0, x);
} else if (y) {
r.setRotateAboutUnit(0, 1, 0, y);
} else {
r.setRotateAboutUnit(0, 0, 1, z);
}
fRot.postConcat(r);
}
public:
void setupCamera(SkCanvas* canvas, const SkRect& area, SkScalar zscale) {
SkMatrix44 camera,
perspective,
viewport;
Sk3Perspective(&perspective, fNear, fFar, fAngle);
Sk3LookAt(&camera, fEye, fCOA, fUp);
viewport.setScale(area.width()*0.5f, area.height()*0.5f, zscale)
.postTranslate(area.centerX(), area.centerY(), 0);
canvas->concat(viewport * perspective * camera * inv(viewport));
}
bool onChar(SkUnichar uni) override {
float delta = SK_ScalarPI / 30;
switch (uni) {
case '8': this->rotate( delta, 0, 0); return true;
case '2': this->rotate(-delta, 0, 0); return true;
case '4': this->rotate(0, delta, 0); return true;
case '6': this->rotate(0, -delta, 0); return true;
case '-': this->rotate(0, 0, delta); return true;
case '+': this->rotate(0, 0, -delta); return true;
case 'i': fTrans.fZ += 0.1f; SkDebugf("z %g\n", fTrans.fZ); return true;
case 'k': fTrans.fZ -= 0.1f; SkDebugf("z %g\n", fTrans.fZ); return true;
case 'n': fNear += 0.1f; SkDebugf("near %g\n", fNear); return true;
case 'N': fNear -= 0.1f; SkDebugf("near %g\n", fNear); return true;
case 'f': fFar += 0.1f; SkDebugf("far %g\n", fFar); return true;
case 'F': fFar -= 0.1f; SkDebugf("far %g\n", fFar); return true;
default: break;
}
return false;
}
};
struct SkV3 {
float x, y, z;
static SkScalar Dot(const SkV3& a, const SkV3& b) { return a.x*b.x + a.y*b.y + a.z*b.z; }
static SkV3 Cross(const SkV3& a, const SkV3& b) {
return { a.y*b.z - a.z*b.y, a.z*b.x - a.x*b.z, a.x*b.y - a.y*b.x };
}
SkV3 operator+(const SkV3& v) const { return { x + v.x, y + v.y, z + v.z }; }
SkV3 operator-(const SkV3& v) const { return { x - v.x, y - v.y, z - v.z }; }
friend SkV3 operator*(const SkV3& v, SkScalar s) {
return { v.x*s, v.y*s, v.z*s };
}
friend SkV3 operator*(SkScalar s, const SkV3& v) { return v*s; }
SkScalar operator*(const SkV3& v) const { return Dot(*this, v); }
SkV3 operator%(const SkV3& v) const { return Cross(*this, v); }
SkScalar lengthSquared() const { return Dot(*this, *this); }
SkScalar length() const { return SkScalarSqrt(Dot(*this, *this)); }
};
typedef SkV3 SkP3;
static SkMatrix44 RX(SkScalar rad) {
SkScalar c = SkScalarCos(rad), s = SkScalarSin(rad);
SkMatrix44 m;
m.set3x3(1, 0, 0,
0, c, s,
0,-s, c);
return m;
}
static SkMatrix44 RY(SkScalar rad) {
SkScalar c = SkScalarCos(rad), s = SkScalarSin(rad);
SkMatrix44 m;
m.set3x3( c, 0,-s,
0, 1, 0,
s, 0, c);
return m;
}
struct Face {
SkScalar fRx, fRy;
static SkMatrix44 T(SkScalar x, SkScalar y, SkScalar z) {
SkMatrix44 m;
m.setTranslate(x, y, z);
return m;
}
static SkMatrix44 R(SkScalar x, SkScalar y, SkScalar z, SkScalar rad) {
SkMatrix44 m;
m.setRotateAboutUnit(x, y, z, rad);
return m;
}
SkMatrix44 asM44(SkScalar scale) const {
return RY(fRy) * RX(fRx) * T(0, 0, scale);
}
};
static bool front(const SkM44& m) {
SkM44 m2;
m.invert(&m2);
/*
* Classically we want to dot the transpose(inverse(ctm)) with our surface normal.
* In this case, the normal is known to be {0, 0, 1}, so we only actually need to look
* at the z-scale of the inverse (the transpose doesn't change the main diagonal, so
* no need to actually transpose).
*/
return m2.atColMajor(10) > 0;
}
const Face faces[] = {
{ 0, 0 }, // front
{ 0, SK_ScalarPI }, // back
{ SK_ScalarPI/2, 0 }, // top
{-SK_ScalarPI/2, 0 }, // bottom
{ 0, SK_ScalarPI/2 }, // left
{ 0,-SK_ScalarPI/2 }, // right
};
class SampleRR3D : public Sample3DView {
SkRRect fRR;
sk_sp<SkShader> fShader;
SkString name() override { return SkString("rrect3d"); }
void onOnceBeforeDraw() override {
fRR = SkRRect::MakeRectXY({20, 20, 380, 380}, 50, 50);
fShader = GetResourceAsImage("images/mandrill_128.png")
->makeShader(SkMatrix::MakeScale(3, 3));
}
bool onChar(SkUnichar uni) override {
return this->Sample3DView::onChar(uni);
}
void drawContent(SkCanvas* canvas, const SkMatrix44& m) {
SkMatrix44 trans;
trans.setTranslate(200, 200, 0); // center of the rotation
canvas->concat(trans * fRot * m * inv(trans));
SkPaint paint;
paint.setAlphaf(front(canvas->getTotalM44()) ? 1 : 0.25f);
paint.setShader(fShader);
canvas->drawRRect(fRR, paint);
}
void onDrawContent(SkCanvas* canvas) override {
canvas->translate(400, 300);
this->setupCamera(canvas, {0, 0, 400, 400}, 200);
for (auto f : faces) {
SkAutoCanvasRestore acr(canvas, true);
this->drawContent(canvas, f.asM44(200));
}
}
};
DEF_SAMPLE( return new SampleRR3D(); )