skia2/src/core/SkBlitMask_D32.cpp
reed@google.com 181f4b3269 fix lcd16_shader_blend math
git-svn-id: http://skia.googlecode.com/svn/trunk@2762 2bbb7eff-a529-9590-31e7-b0007b416f81
2011-11-30 14:49:24 +00:00

684 lines
23 KiB
C++

#include "SkBlitMask.h"
#include "SkColor.h"
#include "SkColorPriv.h"
static void D32_A8_Color(void* SK_RESTRICT dst, size_t dstRB,
const void* SK_RESTRICT maskPtr, size_t maskRB,
SkColor color, int width, int height) {
SkPMColor pmc = SkPreMultiplyColor(color);
size_t dstOffset = dstRB - (width << 2);
size_t maskOffset = maskRB - width;
SkPMColor* SK_RESTRICT device = (SkPMColor *)dst;
const uint8_t* SK_RESTRICT mask = (const uint8_t*)maskPtr;
do {
int w = width;
do {
unsigned aa = *mask++;
*device = SkBlendARGB32(pmc, *device, aa);
device += 1;
} while (--w != 0);
device = (uint32_t*)((char*)device + dstOffset);
mask += maskOffset;
} while (--height != 0);
}
static void D32_A8_Opaque(void* SK_RESTRICT dst, size_t dstRB,
const void* SK_RESTRICT maskPtr, size_t maskRB,
SkColor color, int width, int height) {
SkPMColor pmc = SkPreMultiplyColor(color);
SkPMColor* SK_RESTRICT device = (SkPMColor*)dst;
const uint8_t* SK_RESTRICT mask = (const uint8_t*)maskPtr;
maskRB -= width;
dstRB -= (width << 2);
do {
int w = width;
do {
unsigned aa = *mask++;
*device = SkAlphaMulQ(pmc, SkAlpha255To256(aa)) + SkAlphaMulQ(*device, SkAlpha255To256(255 - aa));
device += 1;
} while (--w != 0);
device = (uint32_t*)((char*)device + dstRB);
mask += maskRB;
} while (--height != 0);
}
static void D32_A8_Black(void* SK_RESTRICT dst, size_t dstRB,
const void* SK_RESTRICT maskPtr, size_t maskRB,
SkColor, int width, int height) {
SkPMColor* SK_RESTRICT device = (SkPMColor*)dst;
const uint8_t* SK_RESTRICT mask = (const uint8_t*)maskPtr;
maskRB -= width;
dstRB -= (width << 2);
do {
int w = width;
do {
unsigned aa = *mask++;
*device = (aa << SK_A32_SHIFT) + SkAlphaMulQ(*device, SkAlpha255To256(255 - aa));
device += 1;
} while (--w != 0);
device = (uint32_t*)((char*)device + dstRB);
mask += maskRB;
} while (--height != 0);
}
///////////////////////////////////////////////////////////////////////////////
static inline int upscale31To32(int value) {
SkASSERT((unsigned)value <= 31);
return value + (value >> 4);
}
static inline int blend32(int src, int dst, int scale) {
SkASSERT((unsigned)src <= 0xFF);
SkASSERT((unsigned)dst <= 0xFF);
SkASSERT((unsigned)scale <= 32);
return dst + ((src - dst) * scale >> 5);
}
static void blit_lcd16_row(SkPMColor dst[], const uint16_t src[],
SkColor color, int width, SkPMColor) {
int srcA = SkColorGetA(color);
int srcR = SkColorGetR(color);
int srcG = SkColorGetG(color);
int srcB = SkColorGetB(color);
srcA = SkAlpha255To256(srcA);
for (int i = 0; i < width; i++) {
uint16_t mask = src[i];
if (0 == mask) {
continue;
}
SkPMColor d = dst[i];
/* We want all of these in 5bits, hence the shifts in case one of them
* (green) is 6bits.
*/
int maskR = SkGetPackedR16(mask) >> (SK_R16_BITS - 5);
int maskG = SkGetPackedG16(mask) >> (SK_G16_BITS - 5);
int maskB = SkGetPackedB16(mask) >> (SK_B16_BITS - 5);
// Now upscale them to 0..32, so we can use blend32
maskR = upscale31To32(maskR);
maskG = upscale31To32(maskG);
maskB = upscale31To32(maskB);
maskR = maskR * srcA >> 8;
maskG = maskG * srcA >> 8;
maskB = maskB * srcA >> 8;
int dstR = SkGetPackedR32(d);
int dstG = SkGetPackedG32(d);
int dstB = SkGetPackedB32(d);
// LCD blitting is only supported if the dst is known/required
// to be opaque
dst[i] = SkPackARGB32(0xFF,
blend32(srcR, dstR, maskR),
blend32(srcG, dstG, maskG),
blend32(srcB, dstB, maskB));
}
}
static void blit_lcd16_opaque_row(SkPMColor dst[], const uint16_t src[],
SkColor color, int width, SkPMColor opaqueDst) {
int srcR = SkColorGetR(color);
int srcG = SkColorGetG(color);
int srcB = SkColorGetB(color);
for (int i = 0; i < width; i++) {
uint16_t mask = src[i];
if (0 == mask) {
continue;
}
if (0xFFFF == mask) {
dst[i] = opaqueDst;
continue;
}
SkPMColor d = dst[i];
/* We want all of these in 5bits, hence the shifts in case one of them
* (green) is 6bits.
*/
int maskR = SkGetPackedR16(mask) >> (SK_R16_BITS - 5);
int maskG = SkGetPackedG16(mask) >> (SK_G16_BITS - 5);
int maskB = SkGetPackedB16(mask) >> (SK_B16_BITS - 5);
// Now upscale them to 0..32, so we can use blend32
maskR = upscale31To32(maskR);
maskG = upscale31To32(maskG);
maskB = upscale31To32(maskB);
int dstR = SkGetPackedR32(d);
int dstG = SkGetPackedG32(d);
int dstB = SkGetPackedB32(d);
// LCD blitting is only supported if the dst is known/required
// to be opaque
dst[i] = SkPackARGB32(0xFF,
blend32(srcR, dstR, maskR),
blend32(srcG, dstG, maskG),
blend32(srcB, dstB, maskB));
}
}
static void D32_LCD16_Proc(void* SK_RESTRICT dst, size_t dstRB,
const void* SK_RESTRICT mask, size_t maskRB,
SkColor color, int width, int height) {
SkPMColor* dstRow = (SkPMColor*)dst;
const uint16_t* srcRow = (const uint16_t*)mask;
SkPMColor opaqueDst;
void (*proc)(SkPMColor dst[], const uint16_t src[],
SkColor color, int width, SkPMColor);
if (0xFF == SkColorGetA(color)) {
proc = blit_lcd16_opaque_row;
opaqueDst = SkPreMultiplyColor(color);
} else {
proc = blit_lcd16_row;
opaqueDst = 0; // ignored
}
do {
proc(dstRow, srcRow, color, width, opaqueDst);
dstRow = (SkPMColor*)((char*)dstRow + dstRB);
srcRow = (const uint16_t*)((const char*)srcRow + maskRB);
} while (--height != 0);
}
///////////////////////////////////////////////////////////////////////////////
static void blit_lcd32_opaque_row(SkPMColor* SK_RESTRICT dst,
const SkPMColor* SK_RESTRICT src,
SkColor color, int width) {
int srcR = SkColorGetR(color);
int srcG = SkColorGetG(color);
int srcB = SkColorGetB(color);
for (int i = 0; i < width; i++) {
SkPMColor mask = src[i];
if (0 == mask) {
continue;
}
SkPMColor d = dst[i];
int maskR = SkGetPackedR32(mask);
int maskG = SkGetPackedG32(mask);
int maskB = SkGetPackedB32(mask);
// Now upscale them to 0..256, so we can use SkAlphaBlend
maskR = SkAlpha255To256(maskR);
maskG = SkAlpha255To256(maskG);
maskB = SkAlpha255To256(maskB);
int dstR = SkGetPackedR32(d);
int dstG = SkGetPackedG32(d);
int dstB = SkGetPackedB32(d);
// LCD blitting is only supported if the dst is known/required
// to be opaque
dst[i] = SkPackARGB32(0xFF,
SkAlphaBlend(srcR, dstR, maskR),
SkAlphaBlend(srcG, dstG, maskG),
SkAlphaBlend(srcB, dstB, maskB));
}
}
static void blit_lcd32_row(SkPMColor* SK_RESTRICT dst,
const SkPMColor* SK_RESTRICT src,
SkColor color, int width) {
int srcA = SkColorGetA(color);
int srcR = SkColorGetR(color);
int srcG = SkColorGetG(color);
int srcB = SkColorGetB(color);
srcA = SkAlpha255To256(srcA);
for (int i = 0; i < width; i++) {
SkPMColor mask = src[i];
if (0 == mask) {
continue;
}
SkPMColor d = dst[i];
int maskR = SkGetPackedR32(mask);
int maskG = SkGetPackedG32(mask);
int maskB = SkGetPackedB32(mask);
// Now upscale them to 0..256, so we can use SkAlphaBlend
maskR = SkAlpha255To256(maskR);
maskG = SkAlpha255To256(maskG);
maskB = SkAlpha255To256(maskB);
maskR = maskR * srcA >> 8;
maskG = maskG * srcA >> 8;
maskB = maskB * srcA >> 8;
int dstR = SkGetPackedR32(d);
int dstG = SkGetPackedG32(d);
int dstB = SkGetPackedB32(d);
// LCD blitting is only supported if the dst is known/required
// to be opaque
dst[i] = SkPackARGB32(0xFF,
SkAlphaBlend(srcR, dstR, maskR),
SkAlphaBlend(srcG, dstG, maskG),
SkAlphaBlend(srcB, dstB, maskB));
}
}
static void D32_LCD32_Blend(void* SK_RESTRICT dst, size_t dstRB,
const void* SK_RESTRICT mask, size_t maskRB,
SkColor color, int width, int height) {
SkASSERT(height > 0);
SkPMColor* SK_RESTRICT dstRow = (SkPMColor*)dst;
const SkPMColor* SK_RESTRICT srcRow = (const SkPMColor*)mask;
do {
blit_lcd32_row(dstRow, srcRow, color, width);
dstRow = (SkPMColor*)((char*)dstRow + dstRB);
srcRow = (const SkPMColor*)((const char*)srcRow + maskRB);
} while (--height != 0);
}
static void D32_LCD32_Opaque(void* SK_RESTRICT dst, size_t dstRB,
const void* SK_RESTRICT mask, size_t maskRB,
SkColor color, int width, int height) {
SkASSERT(height > 0);
SkPMColor* SK_RESTRICT dstRow = (SkPMColor*)dst;
const SkPMColor* SK_RESTRICT srcRow = (const SkPMColor*)mask;
do {
blit_lcd32_opaque_row(dstRow, srcRow, color, width);
dstRow = (SkPMColor*)((char*)dstRow + dstRB);
srcRow = (const SkPMColor*)((const char*)srcRow + maskRB);
} while (--height != 0);
}
///////////////////////////////////////////////////////////////////////////////
static SkBlitMask::ColorProc D32_A8_Factory(SkColor color) {
if (SK_ColorBLACK == color) {
return D32_A8_Black;
} else if (0xFF == SkColorGetA(color)) {
return D32_A8_Opaque;
} else {
return D32_A8_Color;
}
}
static SkBlitMask::ColorProc D32_LCD32_Factory(SkColor color) {
return (0xFF == SkColorGetA(color)) ? D32_LCD32_Opaque : D32_LCD32_Blend;
}
SkBlitMask::ColorProc SkBlitMask::ColorFactory(SkBitmap::Config config,
SkMask::Format format,
SkColor color) {
ColorProc proc = PlatformColorProcs(config, format, color);
if (proc) {
return proc;
}
switch (config) {
case SkBitmap::kARGB_8888_Config:
switch (format) {
case SkMask::kA8_Format:
return D32_A8_Factory(color);
case SkMask::kLCD16_Format:
return D32_LCD16_Proc;
case SkMask::kLCD32_Format:
return D32_LCD32_Factory(color);
default:
break;
}
break;
default:
break;
}
return NULL;
}
bool SkBlitMask::BlitColor(const SkBitmap& device, const SkMask& mask,
const SkIRect& clip, SkColor color) {
ColorProc proc = ColorFactory(device.config(), mask.fFormat, color);
if (proc) {
int x = clip.fLeft;
int y = clip.fTop;
proc(device.getAddr32(x, y), device.rowBytes(), mask.getAddr(x, y),
mask.fRowBytes, color, clip.width(), clip.height());
return true;
}
return false;
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
static void BW_RowProc_Blend(SkPMColor* SK_RESTRICT dst,
const uint8_t* SK_RESTRICT mask,
const SkPMColor* SK_RESTRICT src, int count) {
int i, octuple = (count + 7) >> 3;
for (i = 0; i < octuple; ++i) {
int m = *mask++;
if (m & 0x80) { dst[0] = SkPMSrcOver(src[0], dst[0]); }
if (m & 0x40) { dst[1] = SkPMSrcOver(src[1], dst[1]); }
if (m & 0x20) { dst[2] = SkPMSrcOver(src[2], dst[2]); }
if (m & 0x10) { dst[3] = SkPMSrcOver(src[3], dst[3]); }
if (m & 0x08) { dst[4] = SkPMSrcOver(src[4], dst[4]); }
if (m & 0x04) { dst[5] = SkPMSrcOver(src[5], dst[5]); }
if (m & 0x02) { dst[6] = SkPMSrcOver(src[6], dst[6]); }
if (m & 0x01) { dst[7] = SkPMSrcOver(src[7], dst[7]); }
src += 8;
dst += 8;
}
count &= 7;
if (count > 0) {
int m = *mask;
do {
if (m & 0x80) { dst[0] = SkPMSrcOver(src[0], dst[0]); }
m <<= 1;
src += 1;
dst += 1;
} while (--count > 0);
}
}
static void BW_RowProc_Opaque(SkPMColor* SK_RESTRICT dst,
const uint8_t* SK_RESTRICT mask,
const SkPMColor* SK_RESTRICT src, int count) {
int i, octuple = (count + 7) >> 3;
for (i = 0; i < octuple; ++i) {
int m = *mask++;
if (m & 0x80) { dst[0] = src[0]; }
if (m & 0x40) { dst[1] = src[1]; }
if (m & 0x20) { dst[2] = src[2]; }
if (m & 0x10) { dst[3] = src[3]; }
if (m & 0x08) { dst[4] = src[4]; }
if (m & 0x04) { dst[5] = src[5]; }
if (m & 0x02) { dst[6] = src[6]; }
if (m & 0x01) { dst[7] = src[7]; }
src += 8;
dst += 8;
}
count &= 7;
if (count > 0) {
int m = *mask;
do {
if (m & 0x80) { dst[0] = SkPMSrcOver(src[0], dst[0]); }
m <<= 1;
src += 1;
dst += 1;
} while (--count > 0);
}
}
static void A8_RowProc_Blend(SkPMColor* SK_RESTRICT dst,
const uint8_t* SK_RESTRICT mask,
const SkPMColor* SK_RESTRICT src, int count) {
for (int i = 0; i < count; ++i) {
if (mask[i]) {
dst[i] = SkBlendARGB32(src[i], dst[i], mask[i]);
}
}
}
// expand the steps that SkAlphaMulQ performs, but this way we can
// exand.. add.. combine
// instead of
// expand..combine add expand..combine
//
#define EXPAND0(v, m, s) ((v) & (m)) * (s)
#define EXPAND1(v, m, s) (((v) >> 8) & (m)) * (s)
#define COMBINE(e0, e1, m) ((((e0) >> 8) & (m)) | ((e1) & ~(m)))
static void A8_RowProc_Opaque(SkPMColor* SK_RESTRICT dst,
const uint8_t* SK_RESTRICT mask,
const SkPMColor* SK_RESTRICT src, int count) {
const uint32_t rbmask = gMask_00FF00FF;
for (int i = 0; i < count; ++i) {
int m = mask[i];
if (m) {
m += (m >> 7);
#if 1
// this is slightly slower than the expand/combine version, but it
// is much closer to the old results, so we use it for now to reduce
// rebaselining.
dst[i] = SkAlphaMulQ(src[i], m) + SkAlphaMulQ(dst[i], 256 - m);
#else
uint32_t v = src[i];
uint32_t s0 = EXPAND0(v, rbmask, m);
uint32_t s1 = EXPAND1(v, rbmask, m);
v = dst[i];
uint32_t d0 = EXPAND0(v, rbmask, m);
uint32_t d1 = EXPAND1(v, rbmask, m);
dst[i] = COMBINE(s0 + d0, s1 + d1, rbmask);
#endif
}
}
}
static int upscale31To255(int value) {
value = (value << 3) | (value >> 2);
return value;
}
static int mul(int a, int b) {
return a * b >> 8;
}
static int src_alpha_blend(int src, int dst, int srcA, int mask) {
return dst + mul(src - mul(srcA, dst), mask);
}
static void LCD16_RowProc_Blend(SkPMColor* SK_RESTRICT dst,
const uint16_t* SK_RESTRICT mask,
const SkPMColor* SK_RESTRICT src, int count) {
for (int i = 0; i < count; ++i) {
uint16_t m = mask[i];
if (0 == m) {
continue;
}
SkPMColor s = src[i];
SkPMColor d = dst[i];
int srcA = SkGetPackedA32(s);
int srcR = SkGetPackedR32(s);
int srcG = SkGetPackedG32(s);
int srcB = SkGetPackedB32(s);
srcA += srcA >> 7;
/* We want all of these in 5bits, hence the shifts in case one of them
* (green) is 6bits.
*/
int maskR = SkGetPackedR16(m) >> (SK_R16_BITS - 5);
int maskG = SkGetPackedG16(m) >> (SK_G16_BITS - 5);
int maskB = SkGetPackedB16(m) >> (SK_B16_BITS - 5);
maskR = upscale31To255(maskR);
maskG = upscale31To255(maskG);
maskB = upscale31To255(maskB);
int dstR = SkGetPackedR32(d);
int dstG = SkGetPackedG32(d);
int dstB = SkGetPackedB32(d);
// LCD blitting is only supported if the dst is known/required
// to be opaque
dst[i] = SkPackARGB32(0xFF,
src_alpha_blend(srcR, dstR, srcA, maskR),
src_alpha_blend(srcG, dstG, srcA, maskG),
src_alpha_blend(srcB, dstB, srcA, maskB));
}
}
static void LCD16_RowProc_Opaque(SkPMColor* SK_RESTRICT dst,
const uint16_t* SK_RESTRICT mask,
const SkPMColor* SK_RESTRICT src, int count) {
for (int i = 0; i < count; ++i) {
uint16_t m = mask[i];
if (0 == m) {
continue;
}
SkPMColor s = src[i];
SkPMColor d = dst[i];
int srcR = SkGetPackedR32(s);
int srcG = SkGetPackedG32(s);
int srcB = SkGetPackedB32(s);
/* We want all of these in 5bits, hence the shifts in case one of them
* (green) is 6bits.
*/
int maskR = SkGetPackedR16(m) >> (SK_R16_BITS - 5);
int maskG = SkGetPackedG16(m) >> (SK_G16_BITS - 5);
int maskB = SkGetPackedB16(m) >> (SK_B16_BITS - 5);
// Now upscale them to 0..32, so we can use blend32
maskR = upscale31To32(maskR);
maskG = upscale31To32(maskG);
maskB = upscale31To32(maskB);
int dstR = SkGetPackedR32(d);
int dstG = SkGetPackedG32(d);
int dstB = SkGetPackedB32(d);
// LCD blitting is only supported if the dst is known/required
// to be opaque
dst[i] = SkPackARGB32(0xFF,
blend32(srcR, dstR, maskR),
blend32(srcG, dstG, maskG),
blend32(srcB, dstB, maskB));
}
}
static void LCD32_RowProc_Blend(SkPMColor* SK_RESTRICT dst,
const SkPMColor* SK_RESTRICT mask,
const SkPMColor* SK_RESTRICT src, int count) {
for (int i = 0; i < count; ++i) {
SkPMColor m = mask[i];
if (0 == m) {
continue;
}
SkPMColor s = src[i];
int srcA = SkGetPackedA32(s);
int srcR = SkGetPackedR32(s);
int srcG = SkGetPackedG32(s);
int srcB = SkGetPackedB32(s);
srcA = SkAlpha255To256(srcA);
SkPMColor d = dst[i];
int maskR = SkGetPackedR32(m);
int maskG = SkGetPackedG32(m);
int maskB = SkGetPackedB32(m);
// Now upscale them to 0..256
maskR = SkAlpha255To256(maskR);
maskG = SkAlpha255To256(maskG);
maskB = SkAlpha255To256(maskB);
int dstR = SkGetPackedR32(d);
int dstG = SkGetPackedG32(d);
int dstB = SkGetPackedB32(d);
// LCD blitting is only supported if the dst is known/required
// to be opaque
dst[i] = SkPackARGB32(0xFF,
src_alpha_blend(srcR, dstR, srcA, maskR),
src_alpha_blend(srcG, dstG, srcA, maskG),
src_alpha_blend(srcB, dstB, srcA, maskB));
}
}
static void LCD32_RowProc_Opaque(SkPMColor* SK_RESTRICT dst,
const SkPMColor* SK_RESTRICT mask,
const SkPMColor* SK_RESTRICT src, int count) {
for (int i = 0; i < count; ++i) {
SkPMColor m = mask[i];
if (0 == m) {
continue;
}
SkPMColor s = src[i];
SkPMColor d = dst[i];
int maskR = SkGetPackedR32(m);
int maskG = SkGetPackedG32(m);
int maskB = SkGetPackedB32(m);
int srcR = SkGetPackedR32(s);
int srcG = SkGetPackedG32(s);
int srcB = SkGetPackedB32(s);
int dstR = SkGetPackedR32(d);
int dstG = SkGetPackedG32(d);
int dstB = SkGetPackedB32(d);
// Now upscale them to 0..256, so we can use SkAlphaBlend
maskR = SkAlpha255To256(maskR);
maskG = SkAlpha255To256(maskG);
maskB = SkAlpha255To256(maskB);
// LCD blitting is only supported if the dst is known/required
// to be opaque
dst[i] = SkPackARGB32(0xFF,
SkAlphaBlend(srcR, dstR, maskR),
SkAlphaBlend(srcG, dstG, maskG),
SkAlphaBlend(srcB, dstB, maskB));
}
}
SkBlitMask::RowProc SkBlitMask::RowFactory(SkBitmap::Config config,
SkMask::Format format,
RowFlags flags) {
// make this opt-in until chrome can rebaseline
RowProc proc = PlatformRowProcs(config, format, flags);
if (proc) {
return proc;
}
static const RowProc gProcs[] = {
// need X coordinate to handle BW
NULL, NULL, //(RowProc)BW_RowProc_Blend, (RowProc)BW_RowProc_Opaque,
(RowProc)A8_RowProc_Blend, (RowProc)A8_RowProc_Opaque,
(RowProc)LCD16_RowProc_Blend, (RowProc)LCD16_RowProc_Opaque,
(RowProc)LCD32_RowProc_Blend, (RowProc)LCD32_RowProc_Opaque,
};
int index;
switch (config) {
case SkBitmap::kARGB_8888_Config:
switch (format) {
case SkMask::kBW_Format: index = 0; break;
case SkMask::kA8_Format: index = 2; break;
case SkMask::kLCD16_Format: index = 4; break;
case SkMask::kLCD32_Format: index = 6; break;
default:
return NULL;
}
if (flags & kSrcIsOpaque_RowFlag) {
index |= 1;
}
SkASSERT((size_t)index < SK_ARRAY_COUNT(gProcs));
return gProcs[index];
default:
break;
}
return NULL;
}