skia2/tests/SwizzlerTest.cpp
msarett e6dd004c1b Fill incomplete images in SkCodec parent class
Rather than implementing some sort of "fill" in every
SkCodec subclass for incomplete images, let's make the
parent class handle this situation.

This includes an API change to SkCodec.h

SkCodec::getScanlines() now returns the number of lines it
read successfully, rather than an SkCodec::Result enum.
getScanlines() most often fails on an incomplete input, in
which case it is useful to know how many lines were
successfully decoded - this provides more information than
kIncomplete vs kSuccess.  We do lose information when the
API is used improperly, as we are no longer able to return
kInvalidParameter or kScanlineNotStarted.

Known Issues:
Does not work for incomplete fFrameIsSubset gifs.
Does not work for incomplete icos.

BUG=skia:

Review URL: https://codereview.chromium.org/1332053002
2015-10-09 11:07:34 -07:00

127 lines
5.5 KiB
C++

/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkSwizzler.h"
#include "Test.h"
// These are the values that we will look for to indicate that the fill was successful
static const uint8_t kFillIndex = 0x11;
static const uint8_t kFillGray = 0x22;
static const uint16_t kFill565 = 0x3344;
static const uint32_t kFillColor = 0x55667788;
static void check_fill(skiatest::Reporter* r,
const SkImageInfo& imageInfo,
uint32_t startRow,
uint32_t endRow,
size_t rowBytes,
uint32_t offset,
uint32_t colorOrIndex) {
// Calculate the total size of the image in bytes. Use the smallest possible size.
// The offset value tells us to adjust the pointer from the memory we allocate in order
// to test on different memory alignments. If offset is nonzero, we need to increase the
// size of the memory we allocate in order to make sure that we have enough. We are
// still allocating the smallest possible size.
const size_t totalBytes = imageInfo.getSafeSize(rowBytes) + offset;
// Create fake image data where every byte has a value of 0
SkAutoTDeleteArray<uint8_t> storage(new uint8_t[totalBytes]);
memset(storage.get(), 0, totalBytes);
// Adjust the pointer in order to test on different memory alignments
uint8_t* imageData = storage.get() + offset;
uint8_t* imageStart = imageData + rowBytes * startRow;
const SkImageInfo fillInfo = imageInfo.makeWH(imageInfo.width(), endRow - startRow + 1);
SkSampler::Fill(fillInfo, imageStart, rowBytes, colorOrIndex, SkCodec::kNo_ZeroInitialized);
// Ensure that the pixels are filled properly
// The bots should catch any memory corruption
uint8_t* indexPtr = imageData + startRow * rowBytes;
uint8_t* grayPtr = indexPtr;
uint32_t* colorPtr = (uint32_t*) indexPtr;
uint16_t* color565Ptr = (uint16_t*) indexPtr;
for (uint32_t y = startRow; y <= endRow; y++) {
for (int32_t x = 0; x < imageInfo.width(); x++) {
switch (imageInfo.colorType()) {
case kIndex_8_SkColorType:
REPORTER_ASSERT(r, kFillIndex == indexPtr[x]);
break;
case kN32_SkColorType:
REPORTER_ASSERT(r, kFillColor == colorPtr[x]);
break;
case kGray_8_SkColorType:
REPORTER_ASSERT(r, kFillGray == grayPtr[x]);
break;
case kRGB_565_SkColorType:
REPORTER_ASSERT(r, kFill565 == color565Ptr[x]);
break;
default:
REPORTER_ASSERT(r, false);
break;
}
}
indexPtr += rowBytes;
colorPtr = (uint32_t*) indexPtr;
}
}
// Test Fill() with different combinations of dimensions, alignment, and padding
DEF_TEST(SwizzlerFill, r) {
// Test on an invalid width and representative widths
const uint32_t widths[] = { 0, 10, 50 };
// In order to call Fill(), there must be at least one row to fill
// Test on the smallest possible height and representative heights
const uint32_t heights[] = { 1, 5, 10 };
// Test on interesting possibilities for row padding
const uint32_t paddings[] = { 0, 4 };
// Iterate over test dimensions
for (uint32_t width : widths) {
for (uint32_t height : heights) {
// Create image info objects
const SkImageInfo colorInfo = SkImageInfo::MakeN32(width, height, kUnknown_SkAlphaType);
const SkImageInfo grayInfo = colorInfo.makeColorType(kGray_8_SkColorType);
const SkImageInfo indexInfo = colorInfo.makeColorType(kIndex_8_SkColorType);
const SkImageInfo color565Info = colorInfo.makeColorType(kRGB_565_SkColorType);
for (uint32_t padding : paddings) {
// Calculate row bytes
const size_t colorRowBytes = SkColorTypeBytesPerPixel(kN32_SkColorType) * width
+ padding;
const size_t indexRowBytes = width + padding;
const size_t grayRowBytes = indexRowBytes;
const size_t color565RowBytes =
SkColorTypeBytesPerPixel(kRGB_565_SkColorType) * width + padding;
// If there is padding, we can invent an offset to change the memory alignment
for (uint32_t offset = 0; offset <= padding; offset += 4) {
// Test all possible start rows with all possible end rows
for (uint32_t startRow = 0; startRow < height; startRow++) {
for (uint32_t endRow = startRow; endRow < height; endRow++) {
// Test fill with each color type
check_fill(r, colorInfo, startRow, endRow, colorRowBytes, offset,
kFillColor);
check_fill(r, indexInfo, startRow, endRow, indexRowBytes, offset,
kFillIndex);
check_fill(r, grayInfo, startRow, endRow, grayRowBytes, offset,
kFillGray);
check_fill(r, color565Info, startRow, endRow, color565RowBytes, offset,
kFill565);
}
}
}
}
}
}
}