skia2/include/gpu/GrXferProcessor.h
cdalton 9a70920db2 Implement Porter Duff XP with a blend table
Removes the runtime logic used by PorterDuffXferProcessor to decide
blend coeffs and shader outputs, and instead uses a compile-time
constant table of pre-selected blend formulas.

Introduces a new blend strategy for srcCoeff=0 that can apply coverage
with a reverse subtract blend equation instead of dual source
blending.

Adds new macros in GrBlend.h to analyze blend formulas both runtime.

Removes kSetCoverageDrawing_OptFlag and GrSimplifyBlend as they are no
longer used.

Adds a GM that verifies all xfermodes, including arithmetic, with the
color/coverage invariants used by Porter Duff.

Adds a unit test that verifies each Porter Duff formula with every
color/coverage invariant.

Major changes:

 * Uses a reverse subtract blend equation for coverage when srcCoeff=0
   (clear, dst-out [Sa=1], dst-in, modulate). Platforms that don't
   support dual source blending no longer require a dst copy for
   dst-in and modulate.

 * Sets BlendInfo::fWriteColor to false when the blend does not modify
   the dst. GrGLGpu will now use glColorMask instead of blending for
   these modes (dst, dst-in [Sa=1], modulate ignored for [Sc=1]).

 * Converts all SA blend coeffs to One for opaque inputs, and ISA to
   Zero if there is also no coverage. (We keep ISA around when there
   is coverage because we use it to tweak alpha for coverage.)

 * Abandons solid white optimizations for the sake of simplicity
   (screen was the only mode that previous had solid white opts).

Minor differences:

 * Inconsequential differences in opt flags (e.g. we now return
   kCanTweakAlphaForCoverage_OptFlag even when there is no coverage).

 * Src coeffs when the shader outputs 0.

 * IS2C vs IS2A when the secondary output is scalar.

BUG=skia:

Review URL: https://codereview.chromium.org/1124373002
2015-05-22 11:36:57 -07:00

402 lines
15 KiB
C++

/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrXferProcessor_DEFINED
#define GrXferProcessor_DEFINED
#include "GrColor.h"
#include "GrProcessor.h"
#include "GrTexture.h"
#include "GrTypes.h"
#include "SkXfermode.h"
class GrShaderCaps;
class GrGLSLCaps;
class GrGLXferProcessor;
class GrProcOptInfo;
/**
* Equations for alpha-blending.
*/
enum GrBlendEquation {
// Basic blend equations.
kAdd_GrBlendEquation, //<! Cs*S + Cd*D
kSubtract_GrBlendEquation, //<! Cs*S - Cd*D
kReverseSubtract_GrBlendEquation, //<! Cd*D - Cs*S
// Advanced blend equations. These are described in the SVG and PDF specs.
kScreen_GrBlendEquation,
kOverlay_GrBlendEquation,
kDarken_GrBlendEquation,
kLighten_GrBlendEquation,
kColorDodge_GrBlendEquation,
kColorBurn_GrBlendEquation,
kHardLight_GrBlendEquation,
kSoftLight_GrBlendEquation,
kDifference_GrBlendEquation,
kExclusion_GrBlendEquation,
kMultiply_GrBlendEquation,
kHSLHue_GrBlendEquation,
kHSLSaturation_GrBlendEquation,
kHSLColor_GrBlendEquation,
kHSLLuminosity_GrBlendEquation,
kFirstAdvancedGrBlendEquation = kScreen_GrBlendEquation,
kLast_GrBlendEquation = kHSLLuminosity_GrBlendEquation
};
static const int kGrBlendEquationCnt = kLast_GrBlendEquation + 1;
/**
* Coeffecients for alpha-blending.
*/
enum GrBlendCoeff {
kZero_GrBlendCoeff, //<! 0
kOne_GrBlendCoeff, //<! 1
kSC_GrBlendCoeff, //<! src color
kISC_GrBlendCoeff, //<! one minus src color
kDC_GrBlendCoeff, //<! dst color
kIDC_GrBlendCoeff, //<! one minus dst color
kSA_GrBlendCoeff, //<! src alpha
kISA_GrBlendCoeff, //<! one minus src alpha
kDA_GrBlendCoeff, //<! dst alpha
kIDA_GrBlendCoeff, //<! one minus dst alpha
kConstC_GrBlendCoeff, //<! constant color
kIConstC_GrBlendCoeff, //<! one minus constant color
kConstA_GrBlendCoeff, //<! constant color alpha
kIConstA_GrBlendCoeff, //<! one minus constant color alpha
kS2C_GrBlendCoeff,
kIS2C_GrBlendCoeff,
kS2A_GrBlendCoeff,
kIS2A_GrBlendCoeff,
kLast_GrBlendCoeff = kIS2A_GrBlendCoeff
};
static const int kGrBlendCoeffCnt = kLast_GrBlendCoeff + 1;
/**
* Barriers for blending. When a shader reads the dst directly, an Xfer barrier is sometimes
* required after a pixel has been written, before it can be safely read again.
*/
enum GrXferBarrierType {
kTexture_GrXferBarrierType, //<! Required when a shader reads and renders to the same texture.
kBlend_GrXferBarrierType, //<! Required by certain blend extensions.
};
/**
* GrXferProcessor is responsible for implementing the xfer mode that blends the src color and dst
* color. It does this by emitting fragment shader code and controlling the fixed-function blend
* state. The inputs to its shader code are the final computed src color and fractional pixel
* coverage. The GrXferProcessor's shader code writes the fragment shader output color that goes
* into the fixed-function blend. When dual-source blending is available, it may also write a
* seconday fragment shader output color. When allowed by the backend API, the GrXferProcessor may
* read the destination color. The GrXferProcessor is responsible for setting the blend coefficients
* and blend constant color.
*
* A GrXferProcessor is never installed directly into our draw state, but instead is created from a
* GrXPFactory once we have finalized the state of our draw.
*/
class GrXferProcessor : public GrProcessor {
public:
/**
* Sets a unique key on the GrProcessorKeyBuilder calls onGetGLProcessorKey(...) to get the
* specific subclass's key.
*/
void getGLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const;
/** Returns a new instance of the appropriate *GL* implementation class
for the given GrXferProcessor; caller is responsible for deleting
the object. */
virtual GrGLXferProcessor* createGLInstance() const = 0;
/**
* Optimizations for blending / coverage that an OptDrawState should apply to itself.
*/
enum OptFlags {
/**
* No optimizations needed
*/
kNone_Opt = 0,
/**
* The draw can be skipped completely.
*/
kSkipDraw_OptFlag = 0x1,
/**
* GrXferProcessor will ignore color, thus no need to provide
*/
kIgnoreColor_OptFlag = 0x2,
/**
* GrXferProcessor will ignore coverage, thus no need to provide
*/
kIgnoreCoverage_OptFlag = 0x4,
/**
* Clear color stages and override input color to that returned by getOptimizations
*/
kOverrideColor_OptFlag = 0x8,
/**
* Can tweak alpha for coverage. Currently this flag should only be used by a batch
*/
kCanTweakAlphaForCoverage_OptFlag = 0x20,
};
GR_DECL_BITFIELD_OPS_FRIENDS(OptFlags);
/**
* Determines which optimizations (as described by the ptFlags above) can be performed by
* the draw with this xfer processor. If this function is called, the xfer processor may change
* its state to reflected the given blend optimizations. If the XP needs to see a specific input
* color to blend correctly, it will set the OverrideColor flag and the output parameter
* overrideColor will be the required value that should be passed into the XP.
* A caller who calls this function on a XP is required to honor the returned OptFlags
* and color values for its draw.
*/
OptFlags getOptimizations(const GrProcOptInfo& colorPOI,
const GrProcOptInfo& coveragePOI,
bool doesStencilWrite,
GrColor* overrideColor,
const GrCaps& caps);
/**
* Returns whether this XP will require an Xfer barrier on the given rt. If true, outBarrierType
* is updated to contain the type of barrier needed.
*/
bool willNeedXferBarrier(const GrRenderTarget* rt,
const GrCaps& caps,
GrXferBarrierType* outBarrierType) const;
struct BlendInfo {
void reset() {
fEquation = kAdd_GrBlendEquation;
fSrcBlend = kOne_GrBlendCoeff;
fDstBlend = kZero_GrBlendCoeff;
fBlendConstant = 0;
fWriteColor = true;
}
SkDEBUGCODE(SkString dump() const;)
GrBlendEquation fEquation;
GrBlendCoeff fSrcBlend;
GrBlendCoeff fDstBlend;
GrColor fBlendConstant;
bool fWriteColor;
};
void getBlendInfo(BlendInfo* blendInfo) const {
blendInfo->reset();
this->onGetBlendInfo(blendInfo);
}
bool willReadDstColor() const { return fWillReadDstColor; }
/**
* Returns the texture to be used as the destination when reading the dst in the fragment
* shader. If the returned texture is NULL then the XP is either not reading the dst or we have
* extentions that support framebuffer fetching and thus don't need a copy of the dst texture.
*/
const GrTexture* getDstCopyTexture() const { return fDstCopy.getTexture(); }
/**
* Returns the offset into the DstCopyTexture to use when reading it in the shader. This value
* is only valid if getDstCopyTexture() != NULL.
*/
const SkIPoint& dstCopyTextureOffset() const {
SkASSERT(this->getDstCopyTexture());
return fDstCopyTextureOffset;
}
/**
* Returns whether or not the XP will look at coverage when doing its blending.
*/
bool readsCoverage() const { return fReadsCoverage; }
/**
* Returns whether or not this xferProcossor will set a secondary output to be used with dual
* source blending.
*/
virtual bool hasSecondaryOutput() const { return false; }
/** Returns true if this and other processor conservatively draw identically. It can only return
true when the two processor are of the same subclass (i.e. they return the same object from
from getFactory()).
A return value of true from isEqual() should not be used to test whether the processor would
generate the same shader code. To test for identical code generation use getGLProcessorKey*/
bool isEqual(const GrXferProcessor& that) const {
if (this->classID() != that.classID()) {
return false;
}
if (this->fWillReadDstColor != that.fWillReadDstColor) {
return false;
}
if (this->fReadsCoverage != that.fReadsCoverage) {
return false;
}
if (this->fDstCopy.getTexture() != that.fDstCopy.getTexture()) {
return false;
}
if (this->fDstCopyTextureOffset != that.fDstCopyTextureOffset) {
return false;
}
return this->onIsEqual(that);
}
protected:
GrXferProcessor();
GrXferProcessor(const GrDeviceCoordTexture* dstCopy, bool willReadDstColor);
private:
virtual OptFlags onGetOptimizations(const GrProcOptInfo& colorPOI,
const GrProcOptInfo& coveragePOI,
bool doesStencilWrite,
GrColor* overrideColor,
const GrCaps& caps) = 0;
/**
* Sets a unique key on the GrProcessorKeyBuilder that is directly associated with this xfer
* processor's GL backend implementation.
*/
virtual void onGetGLProcessorKey(const GrGLSLCaps& caps,
GrProcessorKeyBuilder* b) const = 0;
/**
* If not using a texture barrier, retrieves whether the subclass will require a different type
* of barrier.
*/
virtual bool onWillNeedXferBarrier(const GrRenderTarget*,
const GrCaps&,
GrXferBarrierType* outBarrierType SK_UNUSED) const {
return false;
}
/**
* Retrieves the hardware blend state required by this Xfer processor. The BlendInfo struct
* comes initialized to default values, so the Xfer processor only needs to set the state it
* needs. It may not even need to override this method at all.
*/
virtual void onGetBlendInfo(BlendInfo*) const {}
virtual bool onIsEqual(const GrXferProcessor&) const = 0;
bool fWillReadDstColor;
bool fReadsCoverage;
SkIPoint fDstCopyTextureOffset;
GrTextureAccess fDstCopy;
typedef GrFragmentProcessor INHERITED;
};
GR_MAKE_BITFIELD_OPS(GrXferProcessor::OptFlags);
///////////////////////////////////////////////////////////////////////////////
/**
* We install a GrXPFactory (XPF) early on in the pipeline before all the final draw information is
* known (e.g. whether there is fractional pixel coverage, will coverage be 1 or 4 channel, is the
* draw opaque, etc.). Once the state of the draw is finalized, we use the XPF along with all the
* draw information to create a GrXferProcessor (XP) which can implement the desired blending for
* the draw.
*
* Before the XP is created, the XPF is able to answer queries about what functionality the XPs it
* creates will have. For example, can it create an XP that supports RGB coverage or will the XP
* blend with the destination color.
*/
class GrXPFactory : public SkRefCnt {
public:
GrXferProcessor* createXferProcessor(const GrProcOptInfo& colorPOI,
const GrProcOptInfo& coveragePOI,
const GrDeviceCoordTexture* dstCopy,
const GrCaps& caps) const;
/**
* This function returns true if the GrXferProcessor generated from this factory will be able to
* correctly blend when using RGB coverage. The knownColor and knownColorFlags represent the
* final computed color from the color stages.
*/
virtual bool supportsRGBCoverage(GrColor knownColor, uint32_t knownColorFlags) const = 0;
struct InvariantOutput {
bool fWillBlendWithDst;
GrColor fBlendedColor;
uint32_t fBlendedColorFlags;
};
/**
* This function returns known information about the output of the xfer processor produced by
* this xp factory. The invariant color information returned by this function refers to the
* final color produced after all blending.
*/
virtual void getInvariantOutput(const GrProcOptInfo& colorPOI, const GrProcOptInfo& coveragePOI,
InvariantOutput*) const = 0;
bool willNeedDstCopy(const GrCaps& caps, const GrProcOptInfo& colorPOI,
const GrProcOptInfo& coveragePOI) const;
bool isEqual(const GrXPFactory& that) const {
if (this->classID() != that.classID()) {
return false;
}
return this->onIsEqual(that);
}
/**
* Helper for down-casting to a GrXPFactory subclass
*/
template <typename T> const T& cast() const { return *static_cast<const T*>(this); }
uint32_t classID() const { SkASSERT(kIllegalXPFClassID != fClassID); return fClassID; }
protected:
GrXPFactory() : fClassID(kIllegalXPFClassID) {}
template <typename XPF_SUBCLASS> void initClassID() {
static uint32_t kClassID = GenClassID();
fClassID = kClassID;
}
uint32_t fClassID;
private:
virtual GrXferProcessor* onCreateXferProcessor(const GrCaps& caps,
const GrProcOptInfo& colorPOI,
const GrProcOptInfo& coveragePOI,
const GrDeviceCoordTexture* dstCopy) const = 0;
/**
* Returns true if the XP generated by this factory will explicitly read dst in the fragment
* shader.
*/
virtual bool willReadDstColor(const GrCaps& caps,
const GrProcOptInfo& colorPOI,
const GrProcOptInfo& coveragePOI) const = 0;
virtual bool onIsEqual(const GrXPFactory&) const = 0;
static uint32_t GenClassID() {
// fCurrXPFactoryID has been initialized to kIllegalXPFactoryID. The
// atomic inc returns the old value not the incremented value. So we add
// 1 to the returned value.
uint32_t id = static_cast<uint32_t>(sk_atomic_inc(&gCurrXPFClassID)) + 1;
if (!id) {
SkFAIL("This should never wrap as it should only be called once for each GrXPFactory "
"subclass.");
}
return id;
}
enum {
kIllegalXPFClassID = 0,
};
static int32_t gCurrXPFClassID;
typedef GrProgramElement INHERITED;
};
#endif