0d9e9bee17
SkTArray cannot currently contain move only elements because its swap currently requires the SkTArray to be copyable. This makes SkTArray movable and makes its swap move instead of copy. Review URL: https://codereview.chromium.org/1904663004
542 lines
15 KiB
C++
542 lines
15 KiB
C++
/*
|
|
* Copyright 2011 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#ifndef SkTArray_DEFINED
|
|
#define SkTArray_DEFINED
|
|
|
|
#include "../private/SkTLogic.h"
|
|
#include "../private/SkTemplates.h"
|
|
#include "SkTypes.h"
|
|
|
|
#include <new>
|
|
#include <utility>
|
|
|
|
/** When MEM_COPY is true T will be bit copied when moved.
|
|
When MEM_COPY is false, T will be copy constructed / destructed.
|
|
In all cases T will be default-initialized on allocation,
|
|
and its destructor will be called from this object's destructor.
|
|
*/
|
|
template <typename T, bool MEM_COPY = false> class SkTArray {
|
|
public:
|
|
/**
|
|
* Creates an empty array with no initial storage
|
|
*/
|
|
SkTArray() {
|
|
fCount = 0;
|
|
fReserveCount = gMIN_ALLOC_COUNT;
|
|
fAllocCount = 0;
|
|
fMemArray = NULL;
|
|
fPreAllocMemArray = NULL;
|
|
}
|
|
|
|
/**
|
|
* Creates an empty array that will preallocate space for reserveCount
|
|
* elements.
|
|
*/
|
|
explicit SkTArray(int reserveCount) {
|
|
this->init(0, NULL, reserveCount);
|
|
}
|
|
|
|
/**
|
|
* Copies one array to another. The new array will be heap allocated.
|
|
*/
|
|
explicit SkTArray(const SkTArray& that) {
|
|
this->init(that.fCount, NULL, 0);
|
|
this->copy(that.fItemArray);
|
|
}
|
|
explicit SkTArray(SkTArray&& that) {
|
|
this->init(that.fCount, NULL, 0);
|
|
that.move(fMemArray);
|
|
that.fCount = 0;
|
|
}
|
|
|
|
/**
|
|
* Creates a SkTArray by copying contents of a standard C array. The new
|
|
* array will be heap allocated. Be careful not to use this constructor
|
|
* when you really want the (void*, int) version.
|
|
*/
|
|
SkTArray(const T* array, int count) {
|
|
this->init(count, NULL, 0);
|
|
this->copy(array);
|
|
}
|
|
|
|
/**
|
|
* assign copy of array to this
|
|
*/
|
|
SkTArray& operator =(const SkTArray& that) {
|
|
for (int i = 0; i < fCount; ++i) {
|
|
fItemArray[i].~T();
|
|
}
|
|
fCount = 0;
|
|
this->checkRealloc(that.count());
|
|
fCount = that.count();
|
|
this->copy(that.fItemArray);
|
|
return *this;
|
|
}
|
|
SkTArray& operator =(SkTArray&& that) {
|
|
for (int i = 0; i < fCount; ++i) {
|
|
fItemArray[i].~T();
|
|
}
|
|
fCount = 0;
|
|
this->checkRealloc(that.count());
|
|
fCount = that.count();
|
|
that.move(fMemArray);
|
|
that.fCount = 0;
|
|
return *this;
|
|
}
|
|
|
|
~SkTArray() {
|
|
for (int i = 0; i < fCount; ++i) {
|
|
fItemArray[i].~T();
|
|
}
|
|
if (fMemArray != fPreAllocMemArray) {
|
|
sk_free(fMemArray);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Resets to count() == 0
|
|
*/
|
|
void reset() { this->pop_back_n(fCount); }
|
|
|
|
/**
|
|
* Resets to count() = n newly constructed T objects.
|
|
*/
|
|
void reset(int n) {
|
|
SkASSERT(n >= 0);
|
|
for (int i = 0; i < fCount; ++i) {
|
|
fItemArray[i].~T();
|
|
}
|
|
// Set fCount to 0 before calling checkRealloc so that no elements are moved.
|
|
fCount = 0;
|
|
this->checkRealloc(n);
|
|
fCount = n;
|
|
for (int i = 0; i < fCount; ++i) {
|
|
new (fItemArray + i) T;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Resets to a copy of a C array.
|
|
*/
|
|
void reset(const T* array, int count) {
|
|
for (int i = 0; i < fCount; ++i) {
|
|
fItemArray[i].~T();
|
|
}
|
|
fCount = 0;
|
|
this->checkRealloc(count);
|
|
fCount = count;
|
|
this->copy(array);
|
|
}
|
|
|
|
void removeShuffle(int n) {
|
|
SkASSERT(n < fCount);
|
|
int newCount = fCount - 1;
|
|
fCount = newCount;
|
|
fItemArray[n].~T();
|
|
if (n != newCount) {
|
|
this->move(n, newCount);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Number of elements in the array.
|
|
*/
|
|
int count() const { return fCount; }
|
|
|
|
/**
|
|
* Is the array empty.
|
|
*/
|
|
bool empty() const { return !fCount; }
|
|
|
|
/**
|
|
* Adds 1 new default-initialized T value and returns it by reference. Note
|
|
* the reference only remains valid until the next call that adds or removes
|
|
* elements.
|
|
*/
|
|
T& push_back() {
|
|
T* newT = reinterpret_cast<T*>(this->push_back_raw(1));
|
|
new (newT) T;
|
|
return *newT;
|
|
}
|
|
|
|
/**
|
|
* Version of above that uses a copy constructor to initialize the new item
|
|
*/
|
|
T& push_back(const T& t) {
|
|
T* newT = reinterpret_cast<T*>(this->push_back_raw(1));
|
|
new (newT) T(t);
|
|
return *newT;
|
|
}
|
|
|
|
/**
|
|
* Version of above that uses a move constructor to initialize the new item
|
|
*/
|
|
T& push_back(T&& t) {
|
|
T* newT = reinterpret_cast<T*>(this->push_back_raw(1));
|
|
new (newT) T(std::move(t));
|
|
return *newT;
|
|
}
|
|
|
|
/**
|
|
* Construct a new T at the back of this array.
|
|
*/
|
|
template<class... Args> T& emplace_back(Args&&... args) {
|
|
T* newT = reinterpret_cast<T*>(this->push_back_raw(1));
|
|
return *new (newT) T(std::forward<Args>(args)...);
|
|
}
|
|
|
|
/**
|
|
* Allocates n more default-initialized T values, and returns the address of
|
|
* the start of that new range. Note: this address is only valid until the
|
|
* next API call made on the array that might add or remove elements.
|
|
*/
|
|
T* push_back_n(int n) {
|
|
SkASSERT(n >= 0);
|
|
T* newTs = reinterpret_cast<T*>(this->push_back_raw(n));
|
|
for (int i = 0; i < n; ++i) {
|
|
new (newTs + i) T;
|
|
}
|
|
return newTs;
|
|
}
|
|
|
|
/**
|
|
* Version of above that uses a copy constructor to initialize all n items
|
|
* to the same T.
|
|
*/
|
|
T* push_back_n(int n, const T& t) {
|
|
SkASSERT(n >= 0);
|
|
T* newTs = reinterpret_cast<T*>(this->push_back_raw(n));
|
|
for (int i = 0; i < n; ++i) {
|
|
new (newTs + i) T(t);
|
|
}
|
|
return newTs;
|
|
}
|
|
|
|
/**
|
|
* Version of above that uses a copy constructor to initialize the n items
|
|
* to separate T values.
|
|
*/
|
|
T* push_back_n(int n, const T t[]) {
|
|
SkASSERT(n >= 0);
|
|
this->checkRealloc(n);
|
|
for (int i = 0; i < n; ++i) {
|
|
new (fItemArray + fCount + i) T(t[i]);
|
|
}
|
|
fCount += n;
|
|
return fItemArray + fCount - n;
|
|
}
|
|
|
|
/**
|
|
* Removes the last element. Not safe to call when count() == 0.
|
|
*/
|
|
void pop_back() {
|
|
SkASSERT(fCount > 0);
|
|
--fCount;
|
|
fItemArray[fCount].~T();
|
|
this->checkRealloc(0);
|
|
}
|
|
|
|
/**
|
|
* Removes the last n elements. Not safe to call when count() < n.
|
|
*/
|
|
void pop_back_n(int n) {
|
|
SkASSERT(n >= 0);
|
|
SkASSERT(fCount >= n);
|
|
fCount -= n;
|
|
for (int i = 0; i < n; ++i) {
|
|
fItemArray[fCount + i].~T();
|
|
}
|
|
this->checkRealloc(0);
|
|
}
|
|
|
|
/**
|
|
* Pushes or pops from the back to resize. Pushes will be default
|
|
* initialized.
|
|
*/
|
|
void resize_back(int newCount) {
|
|
SkASSERT(newCount >= 0);
|
|
|
|
if (newCount > fCount) {
|
|
this->push_back_n(newCount - fCount);
|
|
} else if (newCount < fCount) {
|
|
this->pop_back_n(fCount - newCount);
|
|
}
|
|
}
|
|
|
|
/** Swaps the contents of this array with that array. Does a pointer swap if possible,
|
|
otherwise copies the T values. */
|
|
void swap(SkTArray* that) {
|
|
if (this == that) {
|
|
return;
|
|
}
|
|
if (this->fPreAllocMemArray != this->fItemArray &&
|
|
that->fPreAllocMemArray != that->fItemArray) {
|
|
// If neither is using a preallocated array then just swap.
|
|
SkTSwap(fItemArray, that->fItemArray);
|
|
SkTSwap(fCount, that->fCount);
|
|
SkTSwap(fAllocCount, that->fAllocCount);
|
|
} else {
|
|
// This could be more optimal...
|
|
SkTArray copy(std::move(*that));
|
|
*that = std::move(*this);
|
|
*this = std::move(copy);
|
|
}
|
|
}
|
|
|
|
T* begin() {
|
|
return fItemArray;
|
|
}
|
|
const T* begin() const {
|
|
return fItemArray;
|
|
}
|
|
T* end() {
|
|
return fItemArray ? fItemArray + fCount : NULL;
|
|
}
|
|
const T* end() const {
|
|
return fItemArray ? fItemArray + fCount : NULL;
|
|
}
|
|
|
|
/**
|
|
* Get the i^th element.
|
|
*/
|
|
T& operator[] (int i) {
|
|
SkASSERT(i < fCount);
|
|
SkASSERT(i >= 0);
|
|
return fItemArray[i];
|
|
}
|
|
|
|
const T& operator[] (int i) const {
|
|
SkASSERT(i < fCount);
|
|
SkASSERT(i >= 0);
|
|
return fItemArray[i];
|
|
}
|
|
|
|
/**
|
|
* equivalent to operator[](0)
|
|
*/
|
|
T& front() { SkASSERT(fCount > 0); return fItemArray[0];}
|
|
|
|
const T& front() const { SkASSERT(fCount > 0); return fItemArray[0];}
|
|
|
|
/**
|
|
* equivalent to operator[](count() - 1)
|
|
*/
|
|
T& back() { SkASSERT(fCount); return fItemArray[fCount - 1];}
|
|
|
|
const T& back() const { SkASSERT(fCount > 0); return fItemArray[fCount - 1];}
|
|
|
|
/**
|
|
* equivalent to operator[](count()-1-i)
|
|
*/
|
|
T& fromBack(int i) {
|
|
SkASSERT(i >= 0);
|
|
SkASSERT(i < fCount);
|
|
return fItemArray[fCount - i - 1];
|
|
}
|
|
|
|
const T& fromBack(int i) const {
|
|
SkASSERT(i >= 0);
|
|
SkASSERT(i < fCount);
|
|
return fItemArray[fCount - i - 1];
|
|
}
|
|
|
|
bool operator==(const SkTArray<T, MEM_COPY>& right) const {
|
|
int leftCount = this->count();
|
|
if (leftCount != right.count()) {
|
|
return false;
|
|
}
|
|
for (int index = 0; index < leftCount; ++index) {
|
|
if (fItemArray[index] != right.fItemArray[index]) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool operator!=(const SkTArray<T, MEM_COPY>& right) const {
|
|
return !(*this == right);
|
|
}
|
|
|
|
protected:
|
|
/**
|
|
* Creates an empty array that will use the passed storage block until it
|
|
* is insufficiently large to hold the entire array.
|
|
*/
|
|
template <int N>
|
|
SkTArray(SkAlignedSTStorage<N,T>* storage) {
|
|
this->init(0, storage->get(), N);
|
|
}
|
|
|
|
/**
|
|
* Copy another array, using preallocated storage if preAllocCount >=
|
|
* array.count(). Otherwise storage will only be used when array shrinks
|
|
* to fit.
|
|
*/
|
|
template <int N>
|
|
SkTArray(const SkTArray& array, SkAlignedSTStorage<N,T>* storage) {
|
|
this->init(array.fCount, storage->get(), N);
|
|
this->copy(array.fItemArray);
|
|
}
|
|
|
|
/**
|
|
* Copy a C array, using preallocated storage if preAllocCount >=
|
|
* count. Otherwise storage will only be used when array shrinks
|
|
* to fit.
|
|
*/
|
|
template <int N>
|
|
SkTArray(const T* array, int count, SkAlignedSTStorage<N,T>* storage) {
|
|
this->init(count, storage->get(), N);
|
|
this->copy(array);
|
|
}
|
|
|
|
void init(int count, void* preAllocStorage, int preAllocOrReserveCount) {
|
|
SkASSERT(count >= 0);
|
|
SkASSERT(preAllocOrReserveCount >= 0);
|
|
fCount = count;
|
|
fReserveCount = (preAllocOrReserveCount > 0) ?
|
|
preAllocOrReserveCount :
|
|
gMIN_ALLOC_COUNT;
|
|
fPreAllocMemArray = preAllocStorage;
|
|
if (fReserveCount >= fCount &&
|
|
preAllocStorage) {
|
|
fAllocCount = fReserveCount;
|
|
fMemArray = preAllocStorage;
|
|
} else {
|
|
fAllocCount = SkMax32(fCount, fReserveCount);
|
|
fMemArray = sk_malloc_throw(fAllocCount * sizeof(T));
|
|
}
|
|
}
|
|
|
|
private:
|
|
/** In the following move and copy methods, 'dst' is assumed to be uninitialized raw storage.
|
|
* In the following move methods, 'src' is destroyed leaving behind uninitialized raw storage.
|
|
*/
|
|
template <bool E = MEM_COPY> SK_WHEN(E, void) copy(const T* src) {
|
|
sk_careful_memcpy(fMemArray, src, fCount * sizeof(T));
|
|
}
|
|
template <bool E = MEM_COPY> SK_WHEN(E, void) move(int dst, int src) {
|
|
memcpy(&fItemArray[dst], &fItemArray[src], sizeof(T));
|
|
}
|
|
template <bool E = MEM_COPY> SK_WHEN(E, void) move(void* dst) {
|
|
sk_careful_memcpy(dst, fMemArray, fCount * sizeof(T));
|
|
}
|
|
|
|
template <bool E = MEM_COPY> SK_WHEN(!E, void) copy(const T* src) {
|
|
for (int i = 0; i < fCount; ++i) {
|
|
new (fItemArray + i) T(src[i]);
|
|
}
|
|
}
|
|
template <bool E = MEM_COPY> SK_WHEN(!E, void) move(int dst, int src) {
|
|
new (&fItemArray[dst]) T(std::move(fItemArray[src]));
|
|
fItemArray[src].~T();
|
|
}
|
|
template <bool E = MEM_COPY> SK_WHEN(!E, void) move(void* dst) {
|
|
for (int i = 0; i < fCount; ++i) {
|
|
new (static_cast<char*>(dst) + sizeof(T) * i) T(std::move(fItemArray[i]));
|
|
fItemArray[i].~T();
|
|
}
|
|
}
|
|
|
|
static const int gMIN_ALLOC_COUNT = 8;
|
|
|
|
// Helper function that makes space for n objects, adjusts the count, but does not initialize
|
|
// the new objects.
|
|
void* push_back_raw(int n) {
|
|
this->checkRealloc(n);
|
|
void* ptr = fItemArray + fCount;
|
|
fCount += n;
|
|
return ptr;
|
|
}
|
|
|
|
inline void checkRealloc(int delta) {
|
|
SkASSERT(fCount >= 0);
|
|
SkASSERT(fAllocCount >= 0);
|
|
|
|
SkASSERT(-delta <= fCount);
|
|
|
|
int newCount = fCount + delta;
|
|
int newAllocCount = fAllocCount;
|
|
|
|
if (newCount > fAllocCount || newCount < (fAllocCount / 3)) {
|
|
// whether we're growing or shrinking, we leave at least 50% extra space for future
|
|
// growth (clamped to the reserve count).
|
|
newAllocCount = SkMax32(newCount + ((newCount + 1) >> 1), fReserveCount);
|
|
}
|
|
if (newAllocCount != fAllocCount) {
|
|
|
|
fAllocCount = newAllocCount;
|
|
void* newMemArray;
|
|
|
|
if (fAllocCount == fReserveCount && fPreAllocMemArray) {
|
|
newMemArray = fPreAllocMemArray;
|
|
} else {
|
|
newMemArray = sk_malloc_throw(fAllocCount*sizeof(T));
|
|
}
|
|
|
|
this->move(newMemArray);
|
|
|
|
if (fMemArray != fPreAllocMemArray) {
|
|
sk_free(fMemArray);
|
|
}
|
|
fMemArray = newMemArray;
|
|
}
|
|
}
|
|
|
|
int fReserveCount;
|
|
int fCount;
|
|
int fAllocCount;
|
|
void* fPreAllocMemArray;
|
|
union {
|
|
T* fItemArray;
|
|
void* fMemArray;
|
|
};
|
|
};
|
|
|
|
/**
|
|
* Subclass of SkTArray that contains a preallocated memory block for the array.
|
|
*/
|
|
template <int N, typename T, bool MEM_COPY = false>
|
|
class SkSTArray : public SkTArray<T, MEM_COPY> {
|
|
private:
|
|
typedef SkTArray<T, MEM_COPY> INHERITED;
|
|
|
|
public:
|
|
SkSTArray() : INHERITED(&fStorage) {
|
|
}
|
|
|
|
SkSTArray(const SkSTArray& array)
|
|
: INHERITED(array, &fStorage) {
|
|
}
|
|
|
|
explicit SkSTArray(const INHERITED& array)
|
|
: INHERITED(array, &fStorage) {
|
|
}
|
|
|
|
explicit SkSTArray(int reserveCount)
|
|
: INHERITED(reserveCount) {
|
|
}
|
|
|
|
SkSTArray(const T* array, int count)
|
|
: INHERITED(array, count, &fStorage) {
|
|
}
|
|
|
|
SkSTArray& operator= (const SkSTArray& array) {
|
|
return *this = *(const INHERITED*)&array;
|
|
}
|
|
|
|
SkSTArray& operator= (const INHERITED& array) {
|
|
INHERITED::operator=(array);
|
|
return *this;
|
|
}
|
|
|
|
private:
|
|
SkAlignedSTStorage<N,T> fStorage;
|
|
};
|
|
|
|
#endif
|