c0bd9f9fe5
Current strategy: everything from the top Things to look at first are the manual changes: - added tools/rewrite_includes.py - removed -Idirectives from BUILD.gn - various compile.sh simplifications - tweak tools/embed_resources.py - update gn/find_headers.py to write paths from the top - update gn/gn_to_bp.py SkUserConfig.h layout so that #include "include/config/SkUserConfig.h" always gets the header we want. No-Presubmit: true Change-Id: I73a4b181654e0e38d229bc456c0d0854bae3363e Reviewed-on: https://skia-review.googlesource.com/c/skia/+/209706 Commit-Queue: Mike Klein <mtklein@google.com> Reviewed-by: Hal Canary <halcanary@google.com> Reviewed-by: Brian Osman <brianosman@google.com> Reviewed-by: Florin Malita <fmalita@chromium.org>
165 lines
5.4 KiB
C++
165 lines
5.4 KiB
C++
/*
|
|
* Copyright 2008 The Android Open Source Project
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "src/core/SkMathPriv.h"
|
|
#include "src/core/SkPointPriv.h"
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
void SkPoint::scale(SkScalar scale, SkPoint* dst) const {
|
|
SkASSERT(dst);
|
|
dst->set(fX * scale, fY * scale);
|
|
}
|
|
|
|
bool SkPoint::normalize() {
|
|
return this->setLength(fX, fY, SK_Scalar1);
|
|
}
|
|
|
|
bool SkPoint::setNormalize(SkScalar x, SkScalar y) {
|
|
return this->setLength(x, y, SK_Scalar1);
|
|
}
|
|
|
|
bool SkPoint::setLength(SkScalar length) {
|
|
return this->setLength(fX, fY, length);
|
|
}
|
|
|
|
/*
|
|
* We have to worry about 2 tricky conditions:
|
|
* 1. underflow of mag2 (compared against nearlyzero^2)
|
|
* 2. overflow of mag2 (compared w/ isfinite)
|
|
*
|
|
* If we underflow, we return false. If we overflow, we compute again using
|
|
* doubles, which is much slower (3x in a desktop test) but will not overflow.
|
|
*/
|
|
template <bool use_rsqrt> bool set_point_length(SkPoint* pt, float x, float y, float length,
|
|
float* orig_length = nullptr) {
|
|
SkASSERT(!use_rsqrt || (orig_length == nullptr));
|
|
|
|
// our mag2 step overflowed to infinity, so use doubles instead.
|
|
// much slower, but needed when x or y are very large, other wise we
|
|
// divide by inf. and return (0,0) vector.
|
|
double xx = x;
|
|
double yy = y;
|
|
double dmag = sqrt(xx * xx + yy * yy);
|
|
double dscale = sk_ieee_double_divide(length, dmag);
|
|
x *= dscale;
|
|
y *= dscale;
|
|
// check if we're not finite, or we're zero-length
|
|
if (!sk_float_isfinite(x) || !sk_float_isfinite(y) || (x == 0 && y == 0)) {
|
|
pt->set(0, 0);
|
|
return false;
|
|
}
|
|
float mag = 0;
|
|
if (orig_length) {
|
|
mag = sk_double_to_float(dmag);
|
|
}
|
|
pt->set(x, y);
|
|
if (orig_length) {
|
|
*orig_length = mag;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
SkScalar SkPoint::Normalize(SkPoint* pt) {
|
|
float mag;
|
|
if (set_point_length<false>(pt, pt->fX, pt->fY, 1.0f, &mag)) {
|
|
return mag;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) {
|
|
float mag2 = dx * dx + dy * dy;
|
|
if (SkScalarIsFinite(mag2)) {
|
|
return sk_float_sqrt(mag2);
|
|
} else {
|
|
double xx = dx;
|
|
double yy = dy;
|
|
return sk_double_to_float(sqrt(xx * xx + yy * yy));
|
|
}
|
|
}
|
|
|
|
bool SkPoint::setLength(float x, float y, float length) {
|
|
return set_point_length<false>(this, x, y, length);
|
|
}
|
|
|
|
bool SkPointPriv::SetLengthFast(SkPoint* pt, float length) {
|
|
return set_point_length<true>(pt, pt->fX, pt->fY, length);
|
|
}
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
SkScalar SkPointPriv::DistanceToLineBetweenSqd(const SkPoint& pt, const SkPoint& a,
|
|
const SkPoint& b,
|
|
Side* side) {
|
|
|
|
SkVector u = b - a;
|
|
SkVector v = pt - a;
|
|
|
|
SkScalar uLengthSqd = LengthSqd(u);
|
|
SkScalar det = u.cross(v);
|
|
if (side) {
|
|
SkASSERT(-1 == kLeft_Side &&
|
|
0 == kOn_Side &&
|
|
1 == kRight_Side);
|
|
*side = (Side) SkScalarSignAsInt(det);
|
|
}
|
|
SkScalar temp = sk_ieee_float_divide(det, uLengthSqd);
|
|
temp *= det;
|
|
// It's possible we have a degenerate line vector, or we're so far away it looks degenerate
|
|
// In this case, return squared distance to point A.
|
|
if (!SkScalarIsFinite(temp)) {
|
|
return LengthSqd(v);
|
|
}
|
|
return temp;
|
|
}
|
|
|
|
SkScalar SkPointPriv::DistanceToLineSegmentBetweenSqd(const SkPoint& pt, const SkPoint& a,
|
|
const SkPoint& b) {
|
|
// See comments to distanceToLineBetweenSqd. If the projection of c onto
|
|
// u is between a and b then this returns the same result as that
|
|
// function. Otherwise, it returns the distance to the closer of a and
|
|
// b. Let the projection of v onto u be v'. There are three cases:
|
|
// 1. v' points opposite to u. c is not between a and b and is closer
|
|
// to a than b.
|
|
// 2. v' points along u and has magnitude less than y. c is between
|
|
// a and b and the distance to the segment is the same as distance
|
|
// to the line ab.
|
|
// 3. v' points along u and has greater magnitude than u. c is not
|
|
// not between a and b and is closer to b than a.
|
|
// v' = (u dot v) * u / |u|. So if (u dot v)/|u| is less than zero we're
|
|
// in case 1. If (u dot v)/|u| is > |u| we are in case 3. Otherwise
|
|
// we're in case 2. We actually compare (u dot v) to 0 and |u|^2 to
|
|
// avoid a sqrt to compute |u|.
|
|
|
|
SkVector u = b - a;
|
|
SkVector v = pt - a;
|
|
|
|
SkScalar uLengthSqd = LengthSqd(u);
|
|
SkScalar uDotV = SkPoint::DotProduct(u, v);
|
|
|
|
// closest point is point A
|
|
if (uDotV <= 0) {
|
|
return LengthSqd(v);
|
|
// closest point is point B
|
|
} else if (uDotV > uLengthSqd) {
|
|
return DistanceToSqd(b, pt);
|
|
// closest point is inside segment
|
|
} else {
|
|
SkScalar det = u.cross(v);
|
|
SkScalar temp = sk_ieee_float_divide(det, uLengthSqd);
|
|
temp *= det;
|
|
// It's possible we have a degenerate segment, or we're so far away it looks degenerate
|
|
// In this case, return squared distance to point A.
|
|
if (!SkScalarIsFinite(temp)) {
|
|
return LengthSqd(v);
|
|
}
|
|
return temp;
|
|
}
|
|
}
|