0f7c10ef56
A color type that linearizes just after loading, and re-encodes to sRGB just before storing, mimicking the GPU formats that work the same way. Notes: - No mipmap support - No SkPngEncoder support (HashAndEncode's .pngs are ok, though?) - Needs better testing This is a re-creation of reviews.skia.org/392990 Change-Id: I4739c2280211e7176aae98ba0a8476a7fe5efa72 Reviewed-on: https://skia-review.googlesource.com/c/skia/+/438219 Commit-Queue: Brian Osman <brianosman@google.com> Reviewed-by: Brian Salomon <bsalomon@google.com>
1301 lines
66 KiB
C++
1301 lines
66 KiB
C++
/*
|
|
* Copyright 2020 Google LLC.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "include/core/SkCanvas.h"
|
|
#include "include/core/SkImage.h"
|
|
#include "include/core/SkSurface.h"
|
|
#include "include/effects/SkGradientShader.h"
|
|
#include "include/gpu/GrDirectContext.h"
|
|
#include "src/core/SkAutoPixmapStorage.h"
|
|
#include "src/core/SkConvertPixels.h"
|
|
#include "src/gpu/GrDirectContextPriv.h"
|
|
#include "src/gpu/GrImageInfo.h"
|
|
#include "src/gpu/SurfaceContext.h"
|
|
#include "src/gpu/SurfaceFillContext.h"
|
|
#include "src/gpu/effects/GrTextureEffect.h"
|
|
#include "tests/Test.h"
|
|
#include "tests/TestUtils.h"
|
|
#include "tools/ToolUtils.h"
|
|
#include "tools/gpu/BackendSurfaceFactory.h"
|
|
#include "tools/gpu/BackendTextureImageFactory.h"
|
|
#include "tools/gpu/GrContextFactory.h"
|
|
#include "tools/gpu/ProxyUtils.h"
|
|
|
|
#include <initializer_list>
|
|
|
|
static constexpr int min_rgb_channel_bits(SkColorType ct) {
|
|
switch (ct) {
|
|
case kUnknown_SkColorType: return 0;
|
|
case kAlpha_8_SkColorType: return 0;
|
|
case kA16_unorm_SkColorType: return 0;
|
|
case kA16_float_SkColorType: return 0;
|
|
case kRGB_565_SkColorType: return 5;
|
|
case kARGB_4444_SkColorType: return 4;
|
|
case kR8G8_unorm_SkColorType: return 8;
|
|
case kR16G16_unorm_SkColorType: return 16;
|
|
case kR16G16_float_SkColorType: return 16;
|
|
case kRGBA_8888_SkColorType: return 8;
|
|
case kSRGBA_8888_SkColorType: return 8;
|
|
case kRGB_888x_SkColorType: return 8;
|
|
case kBGRA_8888_SkColorType: return 8;
|
|
case kRGBA_1010102_SkColorType: return 10;
|
|
case kRGB_101010x_SkColorType: return 10;
|
|
case kBGRA_1010102_SkColorType: return 10;
|
|
case kBGR_101010x_SkColorType: return 10;
|
|
case kGray_8_SkColorType: return 8; // counting gray as "rgb"
|
|
case kRGBA_F16Norm_SkColorType: return 10; // just counting the mantissa
|
|
case kRGBA_F16_SkColorType: return 10; // just counting the mantissa
|
|
case kRGBA_F32_SkColorType: return 23; // just counting the mantissa
|
|
case kR16G16B16A16_unorm_SkColorType: return 16;
|
|
}
|
|
SkUNREACHABLE;
|
|
}
|
|
|
|
static constexpr int alpha_channel_bits(SkColorType ct) {
|
|
switch (ct) {
|
|
case kUnknown_SkColorType: return 0;
|
|
case kAlpha_8_SkColorType: return 8;
|
|
case kA16_unorm_SkColorType: return 16;
|
|
case kA16_float_SkColorType: return 16;
|
|
case kRGB_565_SkColorType: return 0;
|
|
case kARGB_4444_SkColorType: return 4;
|
|
case kR8G8_unorm_SkColorType: return 0;
|
|
case kR16G16_unorm_SkColorType: return 0;
|
|
case kR16G16_float_SkColorType: return 0;
|
|
case kRGBA_8888_SkColorType: return 8;
|
|
case kSRGBA_8888_SkColorType: return 8;
|
|
case kRGB_888x_SkColorType: return 0;
|
|
case kBGRA_8888_SkColorType: return 8;
|
|
case kRGBA_1010102_SkColorType: return 2;
|
|
case kRGB_101010x_SkColorType: return 0;
|
|
case kBGRA_1010102_SkColorType: return 2;
|
|
case kBGR_101010x_SkColorType: return 0;
|
|
case kGray_8_SkColorType: return 0;
|
|
case kRGBA_F16Norm_SkColorType: return 10; // just counting the mantissa
|
|
case kRGBA_F16_SkColorType: return 10; // just counting the mantissa
|
|
case kRGBA_F32_SkColorType: return 23; // just counting the mantissa
|
|
case kR16G16B16A16_unorm_SkColorType: return 16;
|
|
}
|
|
SkUNREACHABLE;
|
|
}
|
|
|
|
std::vector<SkIRect> make_long_rect_array(int w, int h) {
|
|
return {
|
|
// entire thing
|
|
SkIRect::MakeWH(w, h),
|
|
// larger on all sides
|
|
SkIRect::MakeLTRB(-10, -10, w + 10, h + 10),
|
|
// fully contained
|
|
SkIRect::MakeLTRB(w/4, h/4, 3*w/4, 3*h/4),
|
|
// outside top left
|
|
SkIRect::MakeLTRB(-10, -10, -1, -1),
|
|
// touching top left corner
|
|
SkIRect::MakeLTRB(-10, -10, 0, 0),
|
|
// overlapping top left corner
|
|
SkIRect::MakeLTRB(-10, -10, w/4, h/4),
|
|
// overlapping top left and top right corners
|
|
SkIRect::MakeLTRB(-10, -10, w + 10, h/4),
|
|
// touching entire top edge
|
|
SkIRect::MakeLTRB(-10, -10, w + 10, 0),
|
|
// overlapping top right corner
|
|
SkIRect::MakeLTRB(3*w/4, -10, w + 10, h/4),
|
|
// contained in x, overlapping top edge
|
|
SkIRect::MakeLTRB(w/4, -10, 3*w/4, h/4),
|
|
// outside top right corner
|
|
SkIRect::MakeLTRB(w + 1, -10, w + 10, -1),
|
|
// touching top right corner
|
|
SkIRect::MakeLTRB(w, -10, w + 10, 0),
|
|
// overlapping top left and bottom left corners
|
|
SkIRect::MakeLTRB(-10, -10, w/4, h + 10),
|
|
// touching entire left edge
|
|
SkIRect::MakeLTRB(-10, -10, 0, h + 10),
|
|
// overlapping bottom left corner
|
|
SkIRect::MakeLTRB(-10, 3*h/4, w/4, h + 10),
|
|
// contained in y, overlapping left edge
|
|
SkIRect::MakeLTRB(-10, h/4, w/4, 3*h/4),
|
|
// outside bottom left corner
|
|
SkIRect::MakeLTRB(-10, h + 1, -1, h + 10),
|
|
// touching bottom left corner
|
|
SkIRect::MakeLTRB(-10, h, 0, h + 10),
|
|
// overlapping bottom left and bottom right corners
|
|
SkIRect::MakeLTRB(-10, 3*h/4, w + 10, h + 10),
|
|
// touching entire left edge
|
|
SkIRect::MakeLTRB(0, h, w, h + 10),
|
|
// overlapping bottom right corner
|
|
SkIRect::MakeLTRB(3*w/4, 3*h/4, w + 10, h + 10),
|
|
// overlapping top right and bottom right corners
|
|
SkIRect::MakeLTRB(3*w/4, -10, w + 10, h + 10),
|
|
};
|
|
}
|
|
|
|
std::vector<SkIRect> make_short_rect_array(int w, int h) {
|
|
return {
|
|
// entire thing
|
|
SkIRect::MakeWH(w, h),
|
|
// fully contained
|
|
SkIRect::MakeLTRB(w/4, h/4, 3*w/4, 3*h/4),
|
|
// overlapping top right corner
|
|
SkIRect::MakeLTRB(3*w/4, -10, w + 10, h/4),
|
|
};
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct GpuReadPixelTestRules {
|
|
// Test unpremul sources? We could omit this and detect that creating the source of the read
|
|
// failed but having it lets us skip generating reference color data.
|
|
bool fAllowUnpremulSrc = true;
|
|
// Are reads that are overlapping but not contained by the src bounds expected to succeed?
|
|
bool fUncontainedRectSucceeds = true;
|
|
};
|
|
|
|
// Makes a src populated with the pixmap. The src should get its image info (or equivalent) from
|
|
// the pixmap.
|
|
template <typename T> using GpuSrcFactory = T(SkPixmap&);
|
|
|
|
enum class Result {
|
|
kFail,
|
|
kSuccess,
|
|
kExcusedFailure,
|
|
};
|
|
|
|
// Does a read from the T into the pixmap.
|
|
template <typename T>
|
|
using GpuReadSrcFn = Result(const T&, const SkIPoint& offset, const SkPixmap&);
|
|
|
|
// Makes a dst for testing writes.
|
|
template <typename T> using GpuDstFactory = T(const SkImageInfo& ii);
|
|
|
|
// Does a write from the pixmap to the T.
|
|
template <typename T>
|
|
using GpuWriteDstFn = Result(const T&, const SkIPoint& offset, const SkPixmap&);
|
|
|
|
// To test the results of the write we do a read. This reads the entire src T. It should do a non-
|
|
// converting read (i.e. the image info of the returned pixmap matches that of the T).
|
|
template <typename T>
|
|
using GpuReadDstFn = SkAutoPixmapStorage(const T&);
|
|
|
|
} // anonymous namespace
|
|
|
|
SkPixmap make_pixmap_have_valid_alpha_type(SkPixmap pm) {
|
|
if (pm.alphaType() == kUnknown_SkAlphaType) {
|
|
return {pm.info().makeAlphaType(kUnpremul_SkAlphaType), pm.addr(), pm.rowBytes()};
|
|
}
|
|
return pm;
|
|
}
|
|
|
|
static SkAutoPixmapStorage make_ref_data(const SkImageInfo& info, bool forceOpaque) {
|
|
SkAutoPixmapStorage result;
|
|
result.alloc(info);
|
|
auto surface = SkSurface::MakeRasterDirect(make_pixmap_have_valid_alpha_type(result));
|
|
if (!surface) {
|
|
return result;
|
|
}
|
|
|
|
SkPoint pts1[] = {{0, 0}, {float(info.width()), float(info.height())}};
|
|
static constexpr SkColor kColors1[] = {SK_ColorGREEN, SK_ColorRED};
|
|
SkPaint paint;
|
|
paint.setShader(SkGradientShader::MakeLinear(pts1, kColors1, nullptr, 2, SkTileMode::kClamp));
|
|
surface->getCanvas()->drawPaint(paint);
|
|
|
|
SkPoint pts2[] = {{float(info.width()), 0}, {0, float(info.height())}};
|
|
static constexpr SkColor kColors2[] = {SK_ColorBLUE, SK_ColorBLACK};
|
|
paint.setShader(SkGradientShader::MakeLinear(pts2, kColors2, nullptr, 2, SkTileMode::kClamp));
|
|
paint.setBlendMode(SkBlendMode::kPlus);
|
|
surface->getCanvas()->drawPaint(paint);
|
|
|
|
// If not opaque add some fractional alpha.
|
|
if (info.alphaType() != kOpaque_SkAlphaType && !forceOpaque) {
|
|
static constexpr SkColor kColors3[] = {SK_ColorWHITE,
|
|
SK_ColorWHITE,
|
|
0x60FFFFFF,
|
|
SK_ColorWHITE,
|
|
SK_ColorWHITE};
|
|
static constexpr SkScalar kPos3[] = {0.f, 0.15f, 0.5f, 0.85f, 1.f};
|
|
paint.setShader(SkGradientShader::MakeRadial({info.width()/2.f, info.height()/2.f},
|
|
(info.width() + info.height())/10.f,
|
|
kColors3, kPos3, 5, SkTileMode::kMirror));
|
|
paint.setBlendMode(SkBlendMode::kDstIn);
|
|
surface->getCanvas()->drawPaint(paint);
|
|
}
|
|
return result;
|
|
};
|
|
|
|
template <typename T>
|
|
static void gpu_read_pixels_test_driver(skiatest::Reporter* reporter,
|
|
const GpuReadPixelTestRules& rules,
|
|
const std::function<GpuSrcFactory<T>>& srcFactory,
|
|
const std::function<GpuReadSrcFn<T>>& read,
|
|
SkString label) {
|
|
if (!label.isEmpty()) {
|
|
// Add space for printing.
|
|
label.append(" ");
|
|
}
|
|
// Separate this out just to give it some line width to breathe. Note 'srcPixels' should have
|
|
// the same image info as src. We will do a converting readPixels() on it to get the data
|
|
// to compare with the results of 'read'.
|
|
auto runTest = [&](const T& src,
|
|
const SkPixmap& srcPixels,
|
|
const SkImageInfo& readInfo,
|
|
SkIPoint offset) {
|
|
const bool csConversion =
|
|
!SkColorSpace::Equals(readInfo.colorSpace(), srcPixels.info().colorSpace());
|
|
const auto readCT = readInfo.colorType();
|
|
const auto readAT = readInfo.alphaType();
|
|
const auto srcCT = srcPixels.info().colorType();
|
|
const auto srcAT = srcPixels.info().alphaType();
|
|
const auto rect = SkIRect::MakeWH(readInfo.width(), readInfo.height()).makeOffset(offset);
|
|
const auto surfBounds = SkIRect::MakeWH(srcPixels.width(), srcPixels.height());
|
|
const size_t readBpp = SkColorTypeBytesPerPixel(readCT);
|
|
|
|
// Make the row bytes in the dst be loose for extra stress.
|
|
const size_t dstRB = readBpp * readInfo.width() + 10 * readBpp;
|
|
// This will make the last row tight.
|
|
const size_t dstSize = readInfo.computeByteSize(dstRB);
|
|
std::unique_ptr<char[]> dstData(new char[dstSize]);
|
|
SkPixmap dstPixels(readInfo, dstData.get(), dstRB);
|
|
// Initialize with an arbitrary value for each byte. Later we will check that only the
|
|
// correct part of the destination gets overwritten by 'read'.
|
|
static constexpr auto kInitialByte = static_cast<char>(0x1B);
|
|
std::fill_n(static_cast<char*>(dstPixels.writable_addr()),
|
|
dstPixels.computeByteSize(),
|
|
kInitialByte);
|
|
|
|
const Result result = read(src, offset, dstPixels);
|
|
|
|
if (!SkIRect::Intersects(rect, surfBounds)) {
|
|
REPORTER_ASSERT(reporter, result != Result::kSuccess);
|
|
} else if (readCT == kUnknown_SkColorType) {
|
|
REPORTER_ASSERT(reporter, result != Result::kSuccess);
|
|
} else if ((readAT == kUnknown_SkAlphaType) != (srcAT == kUnknown_SkAlphaType)) {
|
|
REPORTER_ASSERT(reporter, result != Result::kSuccess);
|
|
} else if (!rules.fUncontainedRectSucceeds && !surfBounds.contains(rect)) {
|
|
REPORTER_ASSERT(reporter, result != Result::kSuccess);
|
|
} else if (result == Result::kFail) {
|
|
// TODO: Support RGB/BGR 101010x, BGRA 1010102 on the GPU.
|
|
if (SkColorTypeToGrColorType(readCT) != GrColorType::kUnknown) {
|
|
ERRORF(reporter,
|
|
"Read failed. %sSrc CT: %s, Src AT: %s Read CT: %s, Read AT: %s, "
|
|
"Rect [%d, %d, %d, %d], CS conversion: %d\n",
|
|
label.c_str(),
|
|
ToolUtils::colortype_name(srcCT), ToolUtils::alphatype_name(srcAT),
|
|
ToolUtils::colortype_name(readCT), ToolUtils::alphatype_name(readAT),
|
|
rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, csConversion);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
bool guardOk = true;
|
|
auto guardCheck = [](char x) { return x == kInitialByte; };
|
|
|
|
// Considering the rect we tried to read and the surface bounds figure out which pixels in
|
|
// both src and dst space should actually have been read and written.
|
|
SkIRect srcReadRect;
|
|
if (result == Result::kSuccess && srcReadRect.intersect(surfBounds, rect)) {
|
|
SkIRect dstWriteRect = srcReadRect.makeOffset(-rect.fLeft, -rect.fTop);
|
|
|
|
const bool lumConversion =
|
|
!(SkColorTypeChannelFlags(srcCT) & kGray_SkColorChannelFlag) &&
|
|
(SkColorTypeChannelFlags(readCT) & kGray_SkColorChannelFlag);
|
|
// A CS or luminance conversion allows a 3 value difference and otherwise a 2 value
|
|
// difference. Note that sometimes read back on GPU can be lossy even when there no
|
|
// conversion at all because GPU->CPU read may go to a lower bit depth format and then
|
|
// be promoted back to the original type. For example, GL ES cannot read to 1010102, so
|
|
// we go through 8888.
|
|
float numer = (lumConversion || csConversion) ? 3.f : 2.f;
|
|
// Allow some extra tolerance if unpremuling.
|
|
if (srcAT == kPremul_SkAlphaType && readAT == kUnpremul_SkAlphaType) {
|
|
numer += 1;
|
|
}
|
|
int rgbBits = std::min({min_rgb_channel_bits(readCT), min_rgb_channel_bits(srcCT), 8});
|
|
float tol = numer / (1 << rgbBits);
|
|
float alphaTol = 0;
|
|
if (readAT != kOpaque_SkAlphaType && srcAT != kOpaque_SkAlphaType) {
|
|
// Alpha can also get squashed down to 8 bits going through an intermediate
|
|
// color format.
|
|
const int alphaBits = std::min({alpha_channel_bits(readCT),
|
|
alpha_channel_bits(srcCT),
|
|
8});
|
|
alphaTol = 2.f / (1 << alphaBits);
|
|
}
|
|
|
|
const float tols[4] = {tol, tol, tol, alphaTol};
|
|
auto error = std::function<ComparePixmapsErrorReporter>([&](int x, int y,
|
|
const float diffs[4]) {
|
|
SkASSERT(x >= 0 && y >= 0);
|
|
ERRORF(reporter,
|
|
"%sSrc CT: %s, Src AT: %s, Read CT: %s, Read AT: %s, Rect [%d, %d, %d, %d]"
|
|
", CS conversion: %d\n"
|
|
"Error at %d, %d. Diff in floats: (%f, %f, %f, %f)",
|
|
label.c_str(),
|
|
ToolUtils::colortype_name(srcCT), ToolUtils::alphatype_name(srcAT),
|
|
ToolUtils::colortype_name(readCT), ToolUtils::alphatype_name(readAT),
|
|
rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, csConversion, x, y,
|
|
diffs[0], diffs[1], diffs[2], diffs[3]);
|
|
});
|
|
SkAutoPixmapStorage ref;
|
|
SkImageInfo refInfo = readInfo.makeDimensions(dstWriteRect.size());
|
|
ref.alloc(refInfo);
|
|
if (readAT == kUnknown_SkAlphaType) {
|
|
// Do a spoofed read where src and dst alpha type are both kUnpremul. This will
|
|
// allow SkPixmap readPixels to succeed and won't do any alpha type conversion.
|
|
SkPixmap unpremulRef(refInfo.makeAlphaType(kUnpremul_SkAlphaType),
|
|
ref.addr(),
|
|
ref.rowBytes());
|
|
SkPixmap unpremulSRc(srcPixels.info().makeAlphaType(kUnpremul_SkAlphaType),
|
|
srcPixels.addr(),
|
|
srcPixels.rowBytes());
|
|
|
|
unpremulSRc.readPixels(unpremulRef, srcReadRect.x(), srcReadRect.y());
|
|
} else {
|
|
srcPixels.readPixels(ref, srcReadRect.x(), srcReadRect.y());
|
|
}
|
|
// This is the part of dstPixels that should have been updated.
|
|
SkPixmap actual;
|
|
SkAssertResult(dstPixels.extractSubset(&actual, dstWriteRect));
|
|
ComparePixels(ref, actual, tols, error);
|
|
|
|
const auto* v = dstData.get();
|
|
const auto* end = dstData.get() + dstSize;
|
|
guardOk = std::all_of(v, v + dstWriteRect.top() * dstPixels.rowBytes(), guardCheck);
|
|
v += dstWriteRect.top() * dstPixels.rowBytes();
|
|
for (int y = dstWriteRect.top(); y < dstWriteRect.bottom(); ++y) {
|
|
guardOk |= std::all_of(v, v + dstWriteRect.left() * readBpp, guardCheck);
|
|
auto pad = v + dstWriteRect.right() * readBpp;
|
|
auto rowEnd = std::min(end, v + dstPixels.rowBytes());
|
|
// min protects against reading past the end of the tight last row.
|
|
guardOk |= std::all_of(pad, rowEnd, guardCheck);
|
|
v = rowEnd;
|
|
}
|
|
guardOk |= std::all_of(v, end, guardCheck);
|
|
} else {
|
|
guardOk = std::all_of(dstData.get(), dstData.get() + dstSize, guardCheck);
|
|
}
|
|
if (!guardOk) {
|
|
ERRORF(reporter,
|
|
"Result pixels modified result outside read rect [%d, %d, %d, %d]. "
|
|
"%sSrc CT: %s, Read CT: %s, CS conversion: %d",
|
|
rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, label.c_str(),
|
|
ToolUtils::colortype_name(srcCT), ToolUtils::colortype_name(readCT),
|
|
csConversion);
|
|
}
|
|
return result;
|
|
};
|
|
|
|
static constexpr int kW = 16;
|
|
static constexpr int kH = 16;
|
|
|
|
const std::vector<SkIRect> longRectArray = make_long_rect_array(kW, kH);
|
|
const std::vector<SkIRect> shortRectArray = make_short_rect_array(kW, kH);
|
|
|
|
// We ensure we use the long array once per src and read color type and otherwise use the
|
|
// short array to improve test run time.
|
|
// Also, some color types have no alpha values and thus Opaque Premul and Unpremul are
|
|
// equivalent. Just ensure each redundant AT is tested once with each CT (src and read).
|
|
// Similarly, alpha-only color types behave the same for all alpha types so just test premul
|
|
// after one iter.
|
|
// We consider a src or read CT thoroughly tested once it has run through the long rect array
|
|
// and full complement of alpha types with one successful read in the loop.
|
|
std::array<bool, kLastEnum_SkColorType + 1> srcCTTestedThoroughly = {},
|
|
readCTTestedThoroughly = {};
|
|
for (int sat = 0; sat < kLastEnum_SkAlphaType; ++sat) {
|
|
const auto srcAT = static_cast<SkAlphaType>(sat);
|
|
if (srcAT == kUnpremul_SkAlphaType && !rules.fAllowUnpremulSrc) {
|
|
continue;
|
|
}
|
|
for (int sct = 0; sct <= kLastEnum_SkColorType; ++sct) {
|
|
const auto srcCT = static_cast<SkColorType>(sct);
|
|
// We always make our ref data as F32
|
|
auto refInfo = SkImageInfo::Make(kW, kH,
|
|
kRGBA_F32_SkColorType,
|
|
srcAT,
|
|
SkColorSpace::MakeSRGB());
|
|
// 1010102 formats have an issue where it's easy to make a resulting
|
|
// color where r, g, or b is greater than a. CPU/GPU differ in whether the stored color
|
|
// channels are clipped to the alpha value. CPU clips but GPU does not.
|
|
// Note that we only currently use srcCT for the 1010102 workaround. If we remove this
|
|
// we can also put the ref data setup above the srcCT loop.
|
|
bool forceOpaque = srcAT == kPremul_SkAlphaType &&
|
|
(srcCT == kRGBA_1010102_SkColorType || srcCT == kBGRA_1010102_SkColorType);
|
|
|
|
SkAutoPixmapStorage srcPixels = make_ref_data(refInfo, forceOpaque);
|
|
auto src = srcFactory(srcPixels);
|
|
if (!src) {
|
|
continue;
|
|
}
|
|
if (SkColorTypeIsAlwaysOpaque(srcCT) && srcCTTestedThoroughly[srcCT] &&
|
|
(kPremul_SkAlphaType == srcAT || kUnpremul_SkAlphaType == srcAT)) {
|
|
continue;
|
|
}
|
|
if (SkColorTypeIsAlphaOnly(srcCT) && srcCTTestedThoroughly[srcCT] &&
|
|
(kUnpremul_SkAlphaType == srcAT ||
|
|
kOpaque_SkAlphaType == srcAT ||
|
|
kUnknown_SkAlphaType == srcAT)) {
|
|
continue;
|
|
}
|
|
for (int rct = 0; rct <= kLastEnum_SkColorType; ++rct) {
|
|
const auto readCT = static_cast<SkColorType>(rct);
|
|
for (const sk_sp<SkColorSpace>& readCS :
|
|
{SkColorSpace::MakeSRGB(), SkColorSpace::MakeSRGBLinear()}) {
|
|
for (int at = 0; at <= kLastEnum_SkAlphaType; ++at) {
|
|
const auto readAT = static_cast<SkAlphaType>(at);
|
|
if (srcAT != kOpaque_SkAlphaType && readAT == kOpaque_SkAlphaType) {
|
|
// This doesn't make sense.
|
|
continue;
|
|
}
|
|
if (SkColorTypeIsAlwaysOpaque(readCT) && readCTTestedThoroughly[readCT] &&
|
|
(kPremul_SkAlphaType == readAT || kUnpremul_SkAlphaType == readAT)) {
|
|
continue;
|
|
}
|
|
if (SkColorTypeIsAlphaOnly(readCT) && readCTTestedThoroughly[readCT] &&
|
|
(kUnpremul_SkAlphaType == readAT ||
|
|
kOpaque_SkAlphaType == readAT ||
|
|
kUnknown_SkAlphaType == readAT)) {
|
|
continue;
|
|
}
|
|
const auto& rects =
|
|
srcCTTestedThoroughly[sct] && readCTTestedThoroughly[rct]
|
|
? shortRectArray
|
|
: longRectArray;
|
|
for (const auto& rect : rects) {
|
|
const auto readInfo = SkImageInfo::Make(rect.width(), rect.height(),
|
|
readCT, readAT, readCS);
|
|
const SkIPoint offset = rect.topLeft();
|
|
Result r = runTest(src, srcPixels, readInfo, offset);
|
|
if (r == Result::kSuccess) {
|
|
srcCTTestedThoroughly[sct] = true;
|
|
readCTTestedThoroughly[rct] = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SurfaceContextReadPixels, reporter, ctxInfo) {
|
|
using Surface = std::unique_ptr<skgpu::SurfaceContext>;
|
|
GrDirectContext* direct = ctxInfo.directContext();
|
|
auto reader = std::function<GpuReadSrcFn<Surface>>(
|
|
[direct](const Surface& surface, const SkIPoint& offset, const SkPixmap& pixels) {
|
|
if (surface->readPixels(direct, pixels, offset)) {
|
|
return Result::kSuccess;
|
|
} else {
|
|
// Reading from a non-renderable format is not guaranteed to work on GL.
|
|
// We'd have to be able to force a copy or draw draw to a renderable format.
|
|
const auto& caps = *direct->priv().caps();
|
|
if (direct->backend() == GrBackendApi::kOpenGL &&
|
|
!caps.isFormatRenderable(surface->asSurfaceProxy()->backendFormat(), 1)) {
|
|
return Result::kExcusedFailure;
|
|
}
|
|
return Result::kFail;
|
|
}
|
|
});
|
|
GpuReadPixelTestRules rules;
|
|
rules.fAllowUnpremulSrc = true;
|
|
rules.fUncontainedRectSucceeds = true;
|
|
|
|
for (auto renderable : {GrRenderable::kNo, GrRenderable::kYes}) {
|
|
for (GrSurfaceOrigin origin : {kTopLeft_GrSurfaceOrigin, kBottomLeft_GrSurfaceOrigin}) {
|
|
auto factory = std::function<GpuSrcFactory<Surface>>(
|
|
[direct, origin, renderable](const SkPixmap& src) {
|
|
auto sc = CreateSurfaceContext(
|
|
direct, src.info(), SkBackingFit::kExact, origin, renderable);
|
|
if (sc) {
|
|
sc->writePixels(direct, src, {0, 0});
|
|
}
|
|
return sc;
|
|
});
|
|
auto label = SkStringPrintf("Renderable: %d, Origin: %d", (int)renderable, origin);
|
|
gpu_read_pixels_test_driver(reporter, rules, factory, reader, label);
|
|
}
|
|
}
|
|
}
|
|
|
|
DEF_GPUTEST_FOR_ALL_CONTEXTS(ReadPixels_InvalidRowBytes_Gpu, reporter, ctxInfo) {
|
|
auto srcII = SkImageInfo::Make({10, 10}, kRGBA_8888_SkColorType, kPremul_SkAlphaType);
|
|
auto surf = SkSurface::MakeRenderTarget(ctxInfo.directContext(), SkBudgeted::kYes, srcII);
|
|
for (int ct = 0; ct < kLastEnum_SkColorType + 1; ++ct) {
|
|
auto colorType = static_cast<SkColorType>(ct);
|
|
size_t bpp = SkColorTypeBytesPerPixel(colorType);
|
|
if (bpp <= 1) {
|
|
continue;
|
|
}
|
|
auto dstII = srcII.makeColorType(colorType);
|
|
size_t badRowBytes = (surf->width() + 1)*bpp - 1;
|
|
auto storage = std::make_unique<char[]>(badRowBytes*surf->height());
|
|
REPORTER_ASSERT(reporter, !surf->readPixels(dstII, storage.get(), badRowBytes, 0, 0));
|
|
}
|
|
}
|
|
|
|
DEF_GPUTEST_FOR_ALL_CONTEXTS(WritePixels_InvalidRowBytes_Gpu, reporter, ctxInfo) {
|
|
auto dstII = SkImageInfo::Make({10, 10}, kRGBA_8888_SkColorType, kPremul_SkAlphaType);
|
|
auto surf = SkSurface::MakeRenderTarget(ctxInfo.directContext(), SkBudgeted::kYes, dstII);
|
|
for (int ct = 0; ct < kLastEnum_SkColorType + 1; ++ct) {
|
|
auto colorType = static_cast<SkColorType>(ct);
|
|
size_t bpp = SkColorTypeBytesPerPixel(colorType);
|
|
if (bpp <= 1) {
|
|
continue;
|
|
}
|
|
auto srcII = dstII.makeColorType(colorType);
|
|
size_t badRowBytes = (surf->width() + 1)*bpp - 1;
|
|
auto storage = std::make_unique<char[]>(badRowBytes*surf->height());
|
|
memset(storage.get(), 0, badRowBytes * surf->height());
|
|
// SkSurface::writePixels doesn't report bool, SkCanvas's does.
|
|
REPORTER_ASSERT(reporter,
|
|
!surf->getCanvas()->writePixels(srcII, storage.get(), badRowBytes, 0, 0));
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
struct AsyncContext {
|
|
bool fCalled = false;
|
|
std::unique_ptr<const SkImage::AsyncReadResult> fResult;
|
|
};
|
|
} // anonymous namespace
|
|
|
|
// Making this a lambda in the test functions caused:
|
|
// "error: cannot compile this forwarded non-trivially copyable parameter yet"
|
|
// on x86/Win/Clang bot, referring to 'result'.
|
|
static void async_callback(void* c, std::unique_ptr<const SkImage::AsyncReadResult> result) {
|
|
auto context = static_cast<AsyncContext*>(c);
|
|
context->fResult = std::move(result);
|
|
context->fCalled = true;
|
|
};
|
|
|
|
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SurfaceAsyncReadPixels, reporter, ctxInfo) {
|
|
using Surface = sk_sp<SkSurface>;
|
|
auto reader = std::function<GpuReadSrcFn<Surface>>(
|
|
[](const Surface& surface, const SkIPoint& offset, const SkPixmap& pixels) {
|
|
auto direct = surface->recordingContext()->asDirectContext();
|
|
SkASSERT(direct);
|
|
|
|
AsyncContext context;
|
|
auto rect = SkIRect::MakeSize(pixels.dimensions()).makeOffset(offset);
|
|
|
|
// Rescale quality and linearity don't matter since we're doing a non-scaling
|
|
// readback.
|
|
surface->asyncRescaleAndReadPixels(pixels.info(), rect,
|
|
SkImage::RescaleGamma::kSrc,
|
|
SkImage::RescaleMode::kNearest,
|
|
async_callback, &context);
|
|
direct->submit();
|
|
while (!context.fCalled) {
|
|
direct->checkAsyncWorkCompletion();
|
|
}
|
|
if (!context.fResult) {
|
|
return Result::kFail;
|
|
}
|
|
SkRectMemcpy(pixels.writable_addr(), pixels.rowBytes(), context.fResult->data(0),
|
|
context.fResult->rowBytes(0), pixels.info().minRowBytes(),
|
|
pixels.height());
|
|
return Result::kSuccess;
|
|
});
|
|
GpuReadPixelTestRules rules;
|
|
rules.fAllowUnpremulSrc = false;
|
|
rules.fUncontainedRectSucceeds = false;
|
|
|
|
for (GrSurfaceOrigin origin : {kTopLeft_GrSurfaceOrigin, kBottomLeft_GrSurfaceOrigin}) {
|
|
auto factory = std::function<GpuSrcFactory<Surface>>(
|
|
[context = ctxInfo.directContext(), origin](const SkPixmap& src) {
|
|
auto surf = SkSurface::MakeRenderTarget(context,
|
|
SkBudgeted::kYes,
|
|
src.info(),
|
|
1,
|
|
origin,
|
|
nullptr);
|
|
if (surf) {
|
|
surf->writePixels(src, 0, 0);
|
|
}
|
|
return surf;
|
|
});
|
|
auto label = SkStringPrintf("Origin: %d", origin);
|
|
gpu_read_pixels_test_driver(reporter, rules, factory, reader, label);
|
|
auto backendRTFactory = std::function<GpuSrcFactory<Surface>>(
|
|
[context = ctxInfo.directContext(), origin](const SkPixmap& src) {
|
|
// Dawn backend implementation of backend render targets doesn't support
|
|
// reading.
|
|
if (context->backend() == GrBackendApi::kDawn) {
|
|
return Surface();
|
|
}
|
|
auto surf = sk_gpu_test::MakeBackendRenderTargetSurface(context,
|
|
src.info(),
|
|
origin,
|
|
1);
|
|
if (surf) {
|
|
surf->writePixels(src, 0, 0);
|
|
}
|
|
return surf;
|
|
});
|
|
label = SkStringPrintf("BERT Origin: %d", origin);
|
|
gpu_read_pixels_test_driver(reporter, rules, backendRTFactory, reader, label);
|
|
}
|
|
}
|
|
|
|
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageAsyncReadPixels, reporter, ctxInfo) {
|
|
using Image = sk_sp<SkImage>;
|
|
auto context = ctxInfo.directContext();
|
|
auto reader = std::function<GpuReadSrcFn<Image>>([context](const Image& image,
|
|
const SkIPoint& offset,
|
|
const SkPixmap& pixels) {
|
|
AsyncContext asyncContext;
|
|
auto rect = SkIRect::MakeSize(pixels.dimensions()).makeOffset(offset);
|
|
// The GPU implementation is based on rendering and will fail for non-renderable color
|
|
// types.
|
|
auto ct = SkColorTypeToGrColorType(image->colorType());
|
|
auto format = context->priv().caps()->getDefaultBackendFormat(ct, GrRenderable::kYes);
|
|
if (!context->priv().caps()->isFormatAsColorTypeRenderable(ct, format)) {
|
|
return Result::kExcusedFailure;
|
|
}
|
|
|
|
// Rescale quality and linearity don't matter since we're doing a non-scaling readback.
|
|
image->asyncRescaleAndReadPixels(pixels.info(), rect,
|
|
SkImage::RescaleGamma::kSrc,
|
|
SkImage::RescaleMode::kNearest,
|
|
async_callback, &asyncContext);
|
|
context->submit();
|
|
while (!asyncContext.fCalled) {
|
|
context->checkAsyncWorkCompletion();
|
|
}
|
|
if (!asyncContext.fResult) {
|
|
return Result::kFail;
|
|
}
|
|
SkRectMemcpy(pixels.writable_addr(), pixels.rowBytes(), asyncContext.fResult->data(0),
|
|
asyncContext.fResult->rowBytes(0), pixels.info().minRowBytes(),
|
|
pixels.height());
|
|
return Result::kSuccess;
|
|
});
|
|
|
|
GpuReadPixelTestRules rules;
|
|
rules.fAllowUnpremulSrc = true;
|
|
rules.fUncontainedRectSucceeds = false;
|
|
|
|
for (auto origin : {kTopLeft_GrSurfaceOrigin, kBottomLeft_GrSurfaceOrigin}) {
|
|
for (auto renderable : {GrRenderable::kNo, GrRenderable::kYes}) {
|
|
auto factory = std::function<GpuSrcFactory<Image>>([&](const SkPixmap& src) {
|
|
return sk_gpu_test::MakeBackendTextureImage(ctxInfo.directContext(), src,
|
|
renderable, origin);
|
|
});
|
|
auto label = SkStringPrintf("Renderable: %d, Origin: %d", (int)renderable, origin);
|
|
gpu_read_pixels_test_driver(reporter, rules, factory, reader, label);
|
|
}
|
|
}
|
|
}
|
|
|
|
DEF_GPUTEST(AsyncReadPixelsContextShutdown, reporter, options) {
|
|
const auto ii = SkImageInfo::Make(10, 10, kRGBA_8888_SkColorType, kPremul_SkAlphaType,
|
|
SkColorSpace::MakeSRGB());
|
|
enum class ShutdownSequence {
|
|
kFreeResult_DestroyContext,
|
|
kDestroyContext_FreeResult,
|
|
kFreeResult_ReleaseAndAbandon_DestroyContext,
|
|
kFreeResult_Abandon_DestroyContext,
|
|
kReleaseAndAbandon_FreeResult_DestroyContext,
|
|
kAbandon_FreeResult_DestroyContext,
|
|
kReleaseAndAbandon_DestroyContext_FreeResult,
|
|
kAbandon_DestroyContext_FreeResult,
|
|
};
|
|
for (int t = 0; t < sk_gpu_test::GrContextFactory::kContextTypeCnt; ++t) {
|
|
auto type = static_cast<sk_gpu_test::GrContextFactory::ContextType>(t);
|
|
for (auto sequence : {ShutdownSequence::kFreeResult_DestroyContext,
|
|
ShutdownSequence::kDestroyContext_FreeResult,
|
|
ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext,
|
|
ShutdownSequence::kFreeResult_Abandon_DestroyContext,
|
|
ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext,
|
|
ShutdownSequence::kAbandon_FreeResult_DestroyContext,
|
|
ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult,
|
|
ShutdownSequence::kAbandon_DestroyContext_FreeResult}) {
|
|
// Vulkan and D3D context abandoning without resource release has issues outside of the
|
|
// scope of this test.
|
|
if ((type == sk_gpu_test::GrContextFactory::kVulkan_ContextType ||
|
|
type == sk_gpu_test::GrContextFactory::kDirect3D_ContextType) &&
|
|
(sequence == ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext ||
|
|
sequence == ShutdownSequence::kFreeResult_Abandon_DestroyContext ||
|
|
sequence == ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext ||
|
|
sequence == ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult ||
|
|
sequence == ShutdownSequence::kAbandon_FreeResult_DestroyContext ||
|
|
sequence == ShutdownSequence::kAbandon_DestroyContext_FreeResult)) {
|
|
continue;
|
|
}
|
|
for (bool yuv : {false, true}) {
|
|
sk_gpu_test::GrContextFactory factory(options);
|
|
auto direct = factory.get(type);
|
|
if (!direct) {
|
|
continue;
|
|
}
|
|
// This test is only meaningful for contexts that support transfer buffers for
|
|
// reads.
|
|
if (!direct->priv().caps()->transferFromSurfaceToBufferSupport()) {
|
|
continue;
|
|
}
|
|
auto surf = SkSurface::MakeRenderTarget(direct, SkBudgeted::kYes, ii, 1, nullptr);
|
|
if (!surf) {
|
|
continue;
|
|
}
|
|
AsyncContext cbContext;
|
|
if (yuv) {
|
|
surf->asyncRescaleAndReadPixelsYUV420(
|
|
kIdentity_SkYUVColorSpace, SkColorSpace::MakeSRGB(), ii.bounds(),
|
|
ii.dimensions(), SkImage::RescaleGamma::kSrc,
|
|
SkImage::RescaleMode::kNearest, &async_callback, &cbContext);
|
|
} else {
|
|
surf->asyncRescaleAndReadPixels(ii, ii.bounds(), SkImage::RescaleGamma::kSrc,
|
|
SkImage::RescaleMode::kNearest, &async_callback,
|
|
&cbContext);
|
|
}
|
|
direct->submit();
|
|
while (!cbContext.fCalled) {
|
|
direct->checkAsyncWorkCompletion();
|
|
}
|
|
if (!cbContext.fResult) {
|
|
ERRORF(reporter, "Callback failed on %s. is YUV: %d",
|
|
sk_gpu_test::GrContextFactory::ContextTypeName(type), yuv);
|
|
continue;
|
|
}
|
|
// For vulkan we need to release all refs to the GrDirectContext before trying to
|
|
// destroy the test context. The surface here is holding a ref.
|
|
surf.reset();
|
|
|
|
// The real test is that we don't crash, get Vulkan validation errors, etc, during
|
|
// this shutdown sequence.
|
|
switch (sequence) {
|
|
case ShutdownSequence::kFreeResult_DestroyContext:
|
|
case ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext:
|
|
case ShutdownSequence::kFreeResult_Abandon_DestroyContext:
|
|
break;
|
|
case ShutdownSequence::kDestroyContext_FreeResult:
|
|
factory.destroyContexts();
|
|
break;
|
|
case ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext:
|
|
factory.releaseResourcesAndAbandonContexts();
|
|
break;
|
|
case ShutdownSequence::kAbandon_FreeResult_DestroyContext:
|
|
factory.abandonContexts();
|
|
break;
|
|
case ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult:
|
|
factory.releaseResourcesAndAbandonContexts();
|
|
factory.destroyContexts();
|
|
break;
|
|
case ShutdownSequence::kAbandon_DestroyContext_FreeResult:
|
|
factory.abandonContexts();
|
|
factory.destroyContexts();
|
|
break;
|
|
}
|
|
cbContext.fResult.reset();
|
|
switch (sequence) {
|
|
case ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext:
|
|
factory.releaseResourcesAndAbandonContexts();
|
|
break;
|
|
case ShutdownSequence::kFreeResult_Abandon_DestroyContext:
|
|
factory.abandonContexts();
|
|
break;
|
|
case ShutdownSequence::kFreeResult_DestroyContext:
|
|
case ShutdownSequence::kDestroyContext_FreeResult:
|
|
case ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext:
|
|
case ShutdownSequence::kAbandon_FreeResult_DestroyContext:
|
|
case ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult:
|
|
case ShutdownSequence::kAbandon_DestroyContext_FreeResult:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
static void gpu_write_pixels_test_driver(skiatest::Reporter* reporter,
|
|
const std::function<GpuDstFactory<T>>& dstFactory,
|
|
const std::function<GpuWriteDstFn<T>>& write,
|
|
const std::function<GpuReadDstFn<T>>& read) {
|
|
// Separate this out just to give it some line width to breathe.
|
|
auto runTest = [&](const T& dst,
|
|
const SkImageInfo& dstInfo,
|
|
const SkPixmap& srcPixels,
|
|
SkIPoint offset) {
|
|
const bool csConversion =
|
|
!SkColorSpace::Equals(dstInfo.colorSpace(), srcPixels.info().colorSpace());
|
|
const auto writeCT = srcPixels.colorType();
|
|
const auto writeAT = srcPixels.alphaType();
|
|
const auto dstCT = dstInfo.colorType();
|
|
const auto dstAT = dstInfo.alphaType();
|
|
const auto rect = SkIRect::MakePtSize(offset, srcPixels.dimensions());
|
|
const auto surfBounds = SkIRect::MakeSize(dstInfo.dimensions());
|
|
|
|
// Do an initial read before the write.
|
|
SkAutoPixmapStorage firstReadPM = read(dst);
|
|
if (!firstReadPM.addr()) {
|
|
// Particularly with GLES 2 we can have formats that are unreadable with our current
|
|
// implementation of read pixels. If the format can't be attached to a FBO we don't have
|
|
// a code path that draws it to another readable color type/format combo and reads from
|
|
// that.
|
|
return Result::kExcusedFailure;
|
|
}
|
|
|
|
const Result result = write(dst, offset, srcPixels);
|
|
|
|
if (!SkIRect::Intersects(rect, surfBounds)) {
|
|
REPORTER_ASSERT(reporter, result != Result::kSuccess);
|
|
} else if (writeCT == kUnknown_SkColorType) {
|
|
REPORTER_ASSERT(reporter, result != Result::kSuccess);
|
|
} else if ((writeAT == kUnknown_SkAlphaType) != (dstAT == kUnknown_SkAlphaType)) {
|
|
REPORTER_ASSERT(reporter, result != Result::kSuccess);
|
|
} else if (result == Result::kExcusedFailure) {
|
|
return result;
|
|
} else if (result == Result::kFail) {
|
|
// TODO: Support RGB/BGR 101010x, BGRA 1010102 on the GPU.
|
|
if (SkColorTypeToGrColorType(writeCT) != GrColorType::kUnknown) {
|
|
ERRORF(reporter,
|
|
"Write failed. Write CT: %s, Write AT: %s Dst CT: %s, Dst AT: %s, "
|
|
"Rect [%d, %d, %d, %d], CS conversion: %d\n",
|
|
ToolUtils::colortype_name(writeCT), ToolUtils::alphatype_name(writeAT),
|
|
ToolUtils::colortype_name(dstCT), ToolUtils::alphatype_name(dstAT),
|
|
rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, csConversion);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
SkIRect checkRect;
|
|
if (result != Result::kSuccess || !checkRect.intersect(surfBounds, rect)) {
|
|
return result;
|
|
}
|
|
|
|
// Do an initial read before the write. We'll use this to verify that areas outside the
|
|
// write are unaffected.
|
|
SkAutoPixmapStorage secondReadPM = read(dst);
|
|
if (!secondReadPM.addr()) {
|
|
// The first read succeeded so this one should, too.
|
|
ERRORF(reporter,
|
|
"could not read from dst (CT: %s, AT: %s)\n",
|
|
ToolUtils::colortype_name(dstCT),
|
|
ToolUtils::alphatype_name(dstAT));
|
|
return Result::kFail;
|
|
}
|
|
|
|
// Sometimes wider types go through 8bit unorm intermediates because of API
|
|
// restrictions.
|
|
int rgbBits = std::min({min_rgb_channel_bits(writeCT), min_rgb_channel_bits(dstCT), 8});
|
|
float tol = 2.f/(1 << rgbBits);
|
|
float alphaTol = 0;
|
|
if (writeAT != kOpaque_SkAlphaType && dstAT != kOpaque_SkAlphaType) {
|
|
// Alpha can also get squashed down to 8 bits going through an intermediate
|
|
// color format.
|
|
const int alphaBits = std::min({alpha_channel_bits(writeCT),
|
|
alpha_channel_bits(dstCT),
|
|
8});
|
|
alphaTol = 2.f/(1 << alphaBits);
|
|
}
|
|
|
|
const float tols[4] = {tol, tol, tol, alphaTol};
|
|
auto error = std::function<ComparePixmapsErrorReporter>([&](int x,
|
|
int y,
|
|
const float diffs[4]) {
|
|
SkASSERT(x >= 0 && y >= 0);
|
|
ERRORF(reporter,
|
|
"Write CT: %s, Write AT: %s, Dst CT: %s, Dst AT: %s, Rect [%d, %d, %d, %d]"
|
|
", CS conversion: %d\n"
|
|
"Error at %d, %d. Diff in floats: (%f, %f, %f, %f)",
|
|
ToolUtils::colortype_name(writeCT),
|
|
ToolUtils::alphatype_name(writeAT),
|
|
ToolUtils::colortype_name(dstCT),
|
|
ToolUtils::alphatype_name(dstAT),
|
|
rect.fLeft,
|
|
rect.fTop,
|
|
rect.fRight,
|
|
rect.fBottom,
|
|
csConversion,
|
|
x,
|
|
y,
|
|
diffs[0],
|
|
diffs[1],
|
|
diffs[2],
|
|
diffs[3]);
|
|
});
|
|
|
|
SkAutoPixmapStorage ref;
|
|
ref.alloc(secondReadPM.info().makeDimensions(checkRect.size()));
|
|
// Here we use the CPU backend to do the equivalent conversion as the write we're
|
|
// testing, using kUnpremul instead of kUnknown since CPU requires a valid alpha type.
|
|
SkAssertResult(make_pixmap_have_valid_alpha_type(srcPixels).readPixels(
|
|
make_pixmap_have_valid_alpha_type(ref),
|
|
std::max(0, -offset.fX),
|
|
std::max(0, -offset.fY)));
|
|
// This is the part of secondReadPixels that should have been updated by the write.
|
|
SkPixmap actual;
|
|
SkAssertResult(secondReadPM.extractSubset(&actual, checkRect));
|
|
ComparePixels(ref, actual, tols, error);
|
|
// The area around written rect should be the same in the first and second read.
|
|
SkIRect borders[]{
|
|
{ 0, 0, secondReadPM.width(), secondReadPM.height()},
|
|
{checkRect.fRight, 0, checkRect.fLeft, secondReadPM.height()},
|
|
{ checkRect.fLeft, 0, checkRect.fRight, checkRect.fTop},
|
|
{ checkRect.fLeft, checkRect.fBottom, checkRect.fRight, secondReadPM.height()}
|
|
};
|
|
for (const auto r : borders) {
|
|
if (!r.isEmpty()) {
|
|
// Make a copy because MSVC for some reason doesn't correctly capture 'r'.
|
|
SkIPoint tl = r.topLeft();
|
|
auto guardError = std::function<ComparePixmapsErrorReporter>(
|
|
[&](int x, int y, const float diffs[4]) {
|
|
x += tl.x();
|
|
y += tl.y();
|
|
ERRORF(reporter,
|
|
"Write CT: %s, Write AT: %s, Dst CT: %s, Dst AT: %s,"
|
|
"Rect [%d, %d, %d, %d], CS conversion: %d\n"
|
|
"Error in guard region %d, %d. Diff in floats: (%f, %f, %f, %f)",
|
|
ToolUtils::colortype_name(writeCT),
|
|
ToolUtils::alphatype_name(writeAT),
|
|
ToolUtils::colortype_name(dstCT),
|
|
ToolUtils::alphatype_name(dstAT),
|
|
rect.fLeft,
|
|
rect.fTop,
|
|
rect.fRight,
|
|
rect.fBottom,
|
|
csConversion,
|
|
x,
|
|
y,
|
|
diffs[0],
|
|
diffs[1],
|
|
diffs[2],
|
|
diffs[3]);
|
|
});
|
|
SkPixmap a, b;
|
|
SkAssertResult(firstReadPM.extractSubset(&a, r));
|
|
SkAssertResult(firstReadPM.extractSubset(&b, r));
|
|
float zeroTols[4] = {};
|
|
ComparePixels(a, b, zeroTols, guardError);
|
|
}
|
|
}
|
|
return result;
|
|
};
|
|
|
|
static constexpr int kW = 16;
|
|
static constexpr int kH = 16;
|
|
|
|
const std::vector<SkIRect> longRectArray = make_long_rect_array(kW, kH);
|
|
const std::vector<SkIRect> shortRectArray = make_short_rect_array(kW, kH);
|
|
|
|
// We ensure we use the long array once per src and read color type and otherwise use the
|
|
// short array to improve test run time.
|
|
// Also, some color types have no alpha values and thus Opaque Premul and Unpremul are
|
|
// equivalent. Just ensure each redundant AT is tested once with each CT (dst and write).
|
|
// Similarly, alpha-only color types behave the same for all alpha types so just test premul
|
|
// after one iter.
|
|
// We consider a dst or write CT thoroughly tested once it has run through the long rect array
|
|
// and full complement of alpha types with one successful read in the loop.
|
|
std::array<bool, kLastEnum_SkColorType + 1> dstCTTestedThoroughly = {},
|
|
writeCTTestedThoroughly = {};
|
|
for (int dat = 0; dat < kLastEnum_SkAlphaType; ++dat) {
|
|
const auto dstAT = static_cast<SkAlphaType>(dat);
|
|
for (int dct = 0; dct <= kLastEnum_SkColorType; ++dct) {
|
|
const auto dstCT = static_cast<SkColorType>(dct);
|
|
const auto dstInfo = SkImageInfo::Make(kW, kH, dstCT, dstAT, SkColorSpace::MakeSRGB());
|
|
auto dst = dstFactory(dstInfo);
|
|
if (!dst) {
|
|
continue;
|
|
}
|
|
if (SkColorTypeIsAlwaysOpaque(dstCT) && dstCTTestedThoroughly[dstCT] &&
|
|
(kPremul_SkAlphaType == dstAT || kUnpremul_SkAlphaType == dstAT)) {
|
|
continue;
|
|
}
|
|
if (SkColorTypeIsAlphaOnly(dstCT) && dstCTTestedThoroughly[dstCT] &&
|
|
(kUnpremul_SkAlphaType == dstAT ||
|
|
kOpaque_SkAlphaType == dstAT ||
|
|
kUnknown_SkAlphaType == dstAT)) {
|
|
continue;
|
|
}
|
|
for (int wct = 0; wct <= kLastEnum_SkColorType; ++wct) {
|
|
const auto writeCT = static_cast<SkColorType>(wct);
|
|
for (const sk_sp<SkColorSpace>& writeCS : {SkColorSpace::MakeSRGB(),
|
|
SkColorSpace::MakeSRGBLinear()}) {
|
|
for (int wat = 0; wat <= kLastEnum_SkAlphaType; ++wat) {
|
|
const auto writeAT = static_cast<SkAlphaType>(wat);
|
|
if (writeAT != kOpaque_SkAlphaType && dstAT == kOpaque_SkAlphaType) {
|
|
// This doesn't make sense.
|
|
continue;
|
|
}
|
|
if (SkColorTypeIsAlwaysOpaque(writeCT) &&
|
|
writeCTTestedThoroughly[writeCT] &&
|
|
(kPremul_SkAlphaType == writeAT || kUnpremul_SkAlphaType == writeAT)) {
|
|
continue;
|
|
}
|
|
if (SkColorTypeIsAlphaOnly(writeCT) && writeCTTestedThoroughly[writeCT] &&
|
|
(kUnpremul_SkAlphaType == writeAT ||
|
|
kOpaque_SkAlphaType == writeAT ||
|
|
kUnknown_SkAlphaType == writeAT)) {
|
|
continue;
|
|
}
|
|
const auto& rects =
|
|
dstCTTestedThoroughly[dct] && writeCTTestedThoroughly[wct]
|
|
? shortRectArray
|
|
: longRectArray;
|
|
for (const auto& rect : rects) {
|
|
auto writeInfo = SkImageInfo::Make(rect.size(),
|
|
writeCT,
|
|
writeAT,
|
|
writeCS);
|
|
// CPU and GPU handle 1010102 differently. CPU clamps RGB to A, GPU
|
|
// doesn't.
|
|
bool forceOpaque = writeCT == kRGBA_1010102_SkColorType ||
|
|
writeCT == kBGRA_1010102_SkColorType;
|
|
SkAutoPixmapStorage writePixels = make_ref_data(writeInfo, forceOpaque);
|
|
const SkIPoint offset = rect.topLeft();
|
|
Result r = runTest(dst, dstInfo, writePixels, offset);
|
|
if (r == Result::kSuccess) {
|
|
dstCTTestedThoroughly[dct] = true;
|
|
writeCTTestedThoroughly[wct] = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SurfaceContextWritePixels, reporter, ctxInfo) {
|
|
using Surface = std::unique_ptr<skgpu::SurfaceContext>;
|
|
GrDirectContext* direct = ctxInfo.directContext();
|
|
auto writer = std::function<GpuWriteDstFn<Surface>>(
|
|
[direct](const Surface& surface, const SkIPoint& offset, const SkPixmap& pixels) {
|
|
if (surface->writePixels(direct, pixels, offset)) {
|
|
return Result::kSuccess;
|
|
} else {
|
|
return Result::kFail;
|
|
}
|
|
});
|
|
auto reader = std::function<GpuReadDstFn<Surface>>([direct](const Surface& s) {
|
|
SkAutoPixmapStorage result;
|
|
auto grInfo = s->imageInfo();
|
|
SkColorType ct = GrColorTypeToSkColorType(grInfo.colorType());
|
|
SkASSERT(ct != kUnknown_SkColorType);
|
|
auto skInfo = SkImageInfo::Make(grInfo.dimensions(), ct, grInfo.alphaType(),
|
|
grInfo.refColorSpace());
|
|
result.alloc(skInfo);
|
|
if (!s->readPixels(direct, result, {0, 0})) {
|
|
SkAutoPixmapStorage badResult;
|
|
return badResult;
|
|
}
|
|
return result;
|
|
});
|
|
|
|
for (auto renderable : {GrRenderable::kNo, GrRenderable::kYes}) {
|
|
for (GrSurfaceOrigin origin : {kTopLeft_GrSurfaceOrigin, kBottomLeft_GrSurfaceOrigin}) {
|
|
auto factory = std::function<GpuDstFactory<Surface>>(
|
|
[direct, origin, renderable](const SkImageInfo& info) {
|
|
return CreateSurfaceContext(direct,
|
|
info,
|
|
SkBackingFit::kExact,
|
|
origin,
|
|
renderable);
|
|
});
|
|
|
|
gpu_write_pixels_test_driver(reporter, factory, writer, reader);
|
|
}
|
|
}
|
|
}
|
|
|
|
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SurfaceContextWritePixelsMipped, reporter, ctxInfo) {
|
|
auto direct = ctxInfo.directContext();
|
|
if (!direct->priv().caps()->mipmapSupport()) {
|
|
return;
|
|
}
|
|
static constexpr int kW = 25,
|
|
kH = 37;
|
|
SkAutoPixmapStorage refP = make_ref_data(SkImageInfo::Make({kW, kH},
|
|
kRGBA_F32_SkColorType,
|
|
kPremul_SkAlphaType,
|
|
nullptr),
|
|
false);
|
|
SkAutoPixmapStorage refO = make_ref_data(SkImageInfo::Make({kW, kH},
|
|
kRGBA_F32_SkColorType,
|
|
kOpaque_SkAlphaType,
|
|
nullptr),
|
|
true);
|
|
|
|
for (int c = 0; c < kGrColorTypeCnt; ++c) {
|
|
auto ct = static_cast<GrColorType>(c);
|
|
// Below we use rendering to read the level pixels back.
|
|
auto format = direct->priv().caps()->getDefaultBackendFormat(ct, GrRenderable::kYes);
|
|
if (!format.isValid()) {
|
|
continue;
|
|
}
|
|
SkAlphaType at = GrColorTypeHasAlpha(ct) ? kPremul_SkAlphaType : kOpaque_SkAlphaType;
|
|
GrImageInfo info(ct, at, nullptr, kW, kH);
|
|
SkTArray<GrCPixmap> levels;
|
|
const auto& ref = at == kPremul_SkAlphaType ? refP : refO;
|
|
for (int w = kW, h = kH; w || h; w/=2, h/=2) {
|
|
auto level = GrPixmap::Allocate(info.makeWH(std::max(w, 1), std::max(h, 1)));
|
|
SkPixmap src;
|
|
SkAssertResult(ref.extractSubset(&src, SkIRect::MakeSize(level.dimensions())));
|
|
SkAssertResult(GrConvertPixels(level, src));
|
|
levels.push_back(level);
|
|
}
|
|
|
|
for (bool unowned : {false, true}) { // test a GrCPixmap that doesn't own its storage.
|
|
for (auto renderable : {GrRenderable::kNo, GrRenderable::kYes}) {
|
|
for (GrSurfaceOrigin origin : {kTopLeft_GrSurfaceOrigin,
|
|
kBottomLeft_GrSurfaceOrigin}) {
|
|
auto sc = CreateSurfaceContext(direct,
|
|
info,
|
|
SkBackingFit::kExact,
|
|
origin,
|
|
renderable,
|
|
/*sample count*/ 1,
|
|
GrMipmapped::kYes);
|
|
if (!sc) {
|
|
continue;
|
|
}
|
|
// Keeps pixels in unowned case alive until after writePixels is called but no
|
|
// longer.
|
|
GrPixmap keepAlive;
|
|
GrCPixmap savedLevel = levels[1];
|
|
if (unowned) {
|
|
// Also test non-tight row bytes with the unowned pixmap, bump width by 1.
|
|
int w = levels[1].width() + 1;
|
|
int h = levels[1].height();
|
|
keepAlive = GrPixmap::Allocate(levels[1].info().makeWH(w, h));
|
|
SkPixmap src;
|
|
// These pixel values will be the same as the original level 1.
|
|
SkAssertResult(ref.extractSubset(&src, SkIRect::MakeWH(w, h)));
|
|
SkAssertResult(GrConvertPixels(keepAlive, src));
|
|
levels[1] = GrCPixmap(levels[1].info(),
|
|
keepAlive.addr(),
|
|
keepAlive.rowBytes());
|
|
}
|
|
// Going through intermediate textures is not supported for MIP levels (because
|
|
// we don't support rendering to non-base levels). So it's hard to have any hard
|
|
// rules about when we expect success.
|
|
if (!sc->writePixels(direct, levels.begin(), levels.count())) {
|
|
continue;
|
|
}
|
|
// Make sure the pixels from the unowned pixmap are released and then put the
|
|
// original level back in for the comparison after the read below.
|
|
keepAlive = {};
|
|
levels[1] = savedLevel;
|
|
|
|
// TODO: Update this when read pixels supports reading back levels to read
|
|
// directly rather than using minimizing draws.
|
|
auto dstSC = CreateSurfaceContext(direct,
|
|
info,
|
|
SkBackingFit::kExact,
|
|
kBottomLeft_GrSurfaceOrigin,
|
|
GrRenderable::kYes);
|
|
SkASSERT(dstSC);
|
|
GrSamplerState sampler(SkFilterMode::kNearest, SkMipmapMode::kNearest);
|
|
for (int i = 1; i <= 1; ++i) {
|
|
auto te = GrTextureEffect::Make(sc->readSurfaceView(),
|
|
info.alphaType(),
|
|
SkMatrix::I(),
|
|
sampler,
|
|
*direct->priv().caps());
|
|
dstSC->asFillContext()->fillRectToRectWithFP(
|
|
SkIRect::MakeSize(sc->dimensions()),
|
|
SkIRect::MakeSize(levels[i].dimensions()),
|
|
std::move(te));
|
|
GrImageInfo readInfo =
|
|
dstSC->imageInfo().makeDimensions(levels[i].dimensions());
|
|
GrPixmap read = GrPixmap::Allocate(readInfo);
|
|
if (!dstSC->readPixels(direct, read, {0, 0})) {
|
|
continue;
|
|
}
|
|
|
|
auto skCT = GrColorTypeToSkColorType(info.colorType());
|
|
int rgbBits = std::min(min_rgb_channel_bits(skCT), 8);
|
|
float rgbTol = 2.f / ((1 << rgbBits) - 1);
|
|
int alphaBits = std::min(alpha_channel_bits(skCT), 8);
|
|
float alphaTol = 2.f / ((1 << alphaBits) - 1);
|
|
float tol[] = {rgbTol, rgbTol, rgbTol, alphaTol};
|
|
|
|
GrCPixmap a = levels[i];
|
|
GrCPixmap b = read;
|
|
// The compare code will linearize when reading the srgb data. This will
|
|
// magnify differences at the high end. Rather than adjusting the tolerance
|
|
// to compensate we do the comparison without going through srgb->linear.
|
|
if (ct == GrColorType::kRGBA_8888_SRGB) {
|
|
a = GrCPixmap(a.info().makeColorType(GrColorType::kRGBA_8888),
|
|
a.addr(),
|
|
a.rowBytes());
|
|
b = GrCPixmap(b.info().makeColorType(GrColorType::kRGBA_8888),
|
|
b.addr(),
|
|
b.rowBytes());
|
|
}
|
|
|
|
auto error = std::function<ComparePixmapsErrorReporter>(
|
|
[&](int x, int y, const float diffs[4]) {
|
|
SkASSERT(x >= 0 && y >= 0);
|
|
ERRORF(reporter,
|
|
"CT: %s, Level %d, Unowned: %d. "
|
|
"Error at %d, %d. Diff in floats:"
|
|
"(%f, %f, %f, %f)",
|
|
GrColorTypeToStr(info.colorType()), i, unowned, x, y,
|
|
diffs[0], diffs[1], diffs[2], diffs[3]);
|
|
});
|
|
ComparePixels(a, b, tol, error);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Tests a bug found in OOP-R canvas2d in Chrome. The GPU backend would incorrectly not bind
|
|
// buffer 0 to GL_PIXEL_PACK_BUFFER before a glReadPixels() that was supposed to read into
|
|
// client memory if a GrDirectContext::resetContext() occurred.
|
|
DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(GLReadPixelsUnbindPBO, reporter, ctxInfo) {
|
|
// Start with a async read so that we bind to GL_PIXEL_PACK_BUFFER.
|
|
auto info = SkImageInfo::Make(16, 16, kRGBA_8888_SkColorType, kPremul_SkAlphaType);
|
|
SkAutoPixmapStorage pmap = make_ref_data(info, /*forceOpaque=*/false);
|
|
auto image = SkImage::MakeFromRaster(pmap, nullptr, nullptr);
|
|
image = image->makeTextureImage(ctxInfo.directContext());
|
|
if (!image) {
|
|
ERRORF(reporter, "Couldn't make texture image.");
|
|
return;
|
|
}
|
|
|
|
AsyncContext asyncContext;
|
|
image->asyncRescaleAndReadPixels(info,
|
|
SkIRect::MakeSize(info.dimensions()),
|
|
SkImage::RescaleGamma::kSrc,
|
|
SkImage::RescaleMode::kNearest,
|
|
async_callback,
|
|
&asyncContext);
|
|
|
|
// This will force the async readback to finish.
|
|
ctxInfo.directContext()->flushAndSubmit(true);
|
|
if (!asyncContext.fCalled) {
|
|
ERRORF(reporter, "async_callback not called.");
|
|
}
|
|
if (!asyncContext.fResult) {
|
|
ERRORF(reporter, "async read failed.");
|
|
}
|
|
|
|
SkPixmap asyncResult(info, asyncContext.fResult->data(0), asyncContext.fResult->rowBytes(0));
|
|
|
|
// Bug was that this would cause GrGLGpu to think no buffer was left bound to
|
|
// GL_PIXEL_PACK_BUFFER even though async transfer did leave one bound. So the sync read
|
|
// wouldn't bind buffer 0.
|
|
ctxInfo.directContext()->resetContext();
|
|
|
|
SkBitmap syncResult;
|
|
syncResult.allocPixels(info);
|
|
syncResult.eraseARGB(0xFF, 0xFF, 0xFF, 0xFF);
|
|
|
|
image->readPixels(ctxInfo.directContext(), syncResult.pixmap(), 0, 0);
|
|
|
|
float tol[4] = {}; // expect exactly same pixels, no conversions.
|
|
auto error = std::function<ComparePixmapsErrorReporter>([&](int x, int y,
|
|
const float diffs[4]) {
|
|
SkASSERT(x >= 0 && y >= 0);
|
|
ERRORF(reporter, "Expect sync and async read to be the same. "
|
|
"Error at %d, %d. Diff in floats: (%f, %f, %f, %f)",
|
|
x, y, diffs[0], diffs[1], diffs[2], diffs[3]);
|
|
});
|
|
|
|
ComparePixels(syncResult.pixmap(), asyncResult, tol, error);
|
|
}
|