skia2/include/core/SkScalar.h
Brian Osman 4428f2c39f Remove SkScalarSinCos
This differed from the separate versions in that it snapped to zero.
It was also strictly worse than calling the two separate versions.
Most clients don't need the snapping, so just call the two existing
functions. For clients that need the snapping, call new variants of
each that do snap.

Change-Id: Ia4e09fd9651932fe15caeab1399df7f6281bdc17
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/205303
Commit-Queue: Brian Osman <brianosman@google.com>
Reviewed-by: Mike Reed <reed@google.com>
2019-04-02 15:46:57 +00:00

214 lines
7.4 KiB
C

/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkScalar_DEFINED
#define SkScalar_DEFINED
#include "../private/SkFloatingPoint.h"
#undef SK_SCALAR_IS_FLOAT
#define SK_SCALAR_IS_FLOAT 1
typedef float SkScalar;
#define SK_Scalar1 1.0f
#define SK_ScalarHalf 0.5f
#define SK_ScalarSqrt2 1.41421356f
#define SK_ScalarPI 3.14159265f
#define SK_ScalarTanPIOver8 0.414213562f
#define SK_ScalarRoot2Over2 0.707106781f
#define SK_ScalarMax 3.402823466e+38f
#define SK_ScalarInfinity SK_FloatInfinity
#define SK_ScalarNegativeInfinity SK_FloatNegativeInfinity
#define SK_ScalarNaN SK_FloatNaN
#define SkScalarFloorToScalar(x) sk_float_floor(x)
#define SkScalarCeilToScalar(x) sk_float_ceil(x)
#define SkScalarRoundToScalar(x) sk_float_floor((x) + 0.5f)
#define SkScalarTruncToScalar(x) sk_float_trunc(x)
#define SkScalarFloorToInt(x) sk_float_floor2int(x)
#define SkScalarCeilToInt(x) sk_float_ceil2int(x)
#define SkScalarRoundToInt(x) sk_float_round2int(x)
#define SkScalarAbs(x) sk_float_abs(x)
#define SkScalarCopySign(x, y) sk_float_copysign(x, y)
#define SkScalarMod(x, y) sk_float_mod(x,y)
#define SkScalarSqrt(x) sk_float_sqrt(x)
#define SkScalarPow(b, e) sk_float_pow(b, e)
#define SkScalarSin(radians) (float)sk_float_sin(radians)
#define SkScalarCos(radians) (float)sk_float_cos(radians)
#define SkScalarTan(radians) (float)sk_float_tan(radians)
#define SkScalarASin(val) (float)sk_float_asin(val)
#define SkScalarACos(val) (float)sk_float_acos(val)
#define SkScalarATan2(y, x) (float)sk_float_atan2(y,x)
#define SkScalarExp(x) (float)sk_float_exp(x)
#define SkScalarLog(x) (float)sk_float_log(x)
#define SkScalarLog2(x) (float)sk_float_log2(x)
//////////////////////////////////////////////////////////////////////////////////////////////////
#define SkIntToScalar(x) static_cast<SkScalar>(x)
#define SkIntToFloat(x) static_cast<float>(x)
#define SkScalarTruncToInt(x) sk_float_saturate2int(x)
#define SkScalarToFloat(x) static_cast<float>(x)
#define SkFloatToScalar(x) static_cast<SkScalar>(x)
#define SkScalarToDouble(x) static_cast<double>(x)
#define SkDoubleToScalar(x) sk_double_to_float(x)
#define SK_ScalarMin (-SK_ScalarMax)
static inline bool SkScalarIsNaN(SkScalar x) { return x != x; }
/** Returns true if x is not NaN and not infinite
*/
static inline bool SkScalarIsFinite(SkScalar x) { return sk_float_isfinite(x); }
static inline bool SkScalarsAreFinite(SkScalar a, SkScalar b) {
return sk_float_isfinite(a) && sk_float_isfinite(b);
}
static inline bool SkScalarsAreFinite(const SkScalar array[], int count) {
SkScalar prod = 0;
for (int i = 0; i < count; ++i) {
prod *= array[i];
}
// At this point, prod will either be NaN or 0
return prod == 0; // if prod is NaN, this check will return false
}
/**
* Variant of SkScalarRoundToInt, that performs the rounding step (adding 0.5) explicitly using
* double, to avoid possibly losing the low bit(s) of the answer before calling floor().
*
* This routine will likely be slower than SkScalarRoundToInt(), and should only be used when the
* extra precision is known to be valuable.
*
* In particular, this catches the following case:
* SkScalar x = 0.49999997;
* int ix = SkScalarRoundToInt(x);
* SkASSERT(0 == ix); // <--- fails
* ix = SkDScalarRoundToInt(x);
* SkASSERT(0 == ix); // <--- succeeds
*/
static inline int SkDScalarRoundToInt(SkScalar x) {
double xx = x;
xx += 0.5;
return (int)floor(xx);
}
/** Returns the fractional part of the scalar. */
static inline SkScalar SkScalarFraction(SkScalar x) {
return x - SkScalarTruncToScalar(x);
}
static inline SkScalar SkScalarClampMax(SkScalar x, SkScalar max) {
x = SkTMin(x, max);
x = SkTMax<SkScalar>(x, 0);
return x;
}
static inline SkScalar SkScalarPin(SkScalar x, SkScalar min, SkScalar max) {
return SkTPin(x, min, max);
}
static inline SkScalar SkScalarSquare(SkScalar x) { return x * x; }
#define SkScalarInvert(x) sk_ieee_float_divide_TODO_IS_DIVIDE_BY_ZERO_SAFE_HERE(SK_Scalar1, (x))
#define SkScalarAve(a, b) (((a) + (b)) * SK_ScalarHalf)
#define SkScalarHalf(a) ((a) * SK_ScalarHalf)
#define SkDegreesToRadians(degrees) ((degrees) * (SK_ScalarPI / 180))
#define SkRadiansToDegrees(radians) ((radians) * (180 / SK_ScalarPI))
static inline SkScalar SkMaxScalar(SkScalar a, SkScalar b) { return a > b ? a : b; }
static inline SkScalar SkMinScalar(SkScalar a, SkScalar b) { return a < b ? a : b; }
static inline bool SkScalarIsInt(SkScalar x) {
return x == SkScalarFloorToScalar(x);
}
/**
* Returns -1 || 0 || 1 depending on the sign of value:
* -1 if x < 0
* 0 if x == 0
* 1 if x > 0
*/
static inline int SkScalarSignAsInt(SkScalar x) {
return x < 0 ? -1 : (x > 0);
}
// Scalar result version of above
static inline SkScalar SkScalarSignAsScalar(SkScalar x) {
return x < 0 ? -SK_Scalar1 : ((x > 0) ? SK_Scalar1 : 0);
}
#define SK_ScalarNearlyZero (SK_Scalar1 / (1 << 12))
static inline bool SkScalarNearlyZero(SkScalar x,
SkScalar tolerance = SK_ScalarNearlyZero) {
SkASSERT(tolerance >= 0);
return SkScalarAbs(x) <= tolerance;
}
static inline bool SkScalarNearlyEqual(SkScalar x, SkScalar y,
SkScalar tolerance = SK_ScalarNearlyZero) {
SkASSERT(tolerance >= 0);
return SkScalarAbs(x-y) <= tolerance;
}
static inline float SkScalarSinSnapToZero(SkScalar radians) {
float v = SkScalarSin(radians);
return SkScalarNearlyZero(v) ? 0.0f : v;
}
static inline float SkScalarCosSnapToZero(SkScalar radians) {
float v = SkScalarCos(radians);
return SkScalarNearlyZero(v) ? 0.0f : v;
}
/** Linearly interpolate between A and B, based on t.
If t is 0, return A
If t is 1, return B
else interpolate.
t must be [0..SK_Scalar1]
*/
static inline SkScalar SkScalarInterp(SkScalar A, SkScalar B, SkScalar t) {
SkASSERT(t >= 0 && t <= SK_Scalar1);
return A + (B - A) * t;
}
/** Interpolate along the function described by (keys[length], values[length])
for the passed searchKey. SearchKeys outside the range keys[0]-keys[Length]
clamp to the min or max value. This function was inspired by a desire
to change the multiplier for thickness in fakeBold; therefore it assumes
the number of pairs (length) will be small, and a linear search is used.
Repeated keys are allowed for discontinuous functions (so long as keys is
monotonically increasing), and if key is the value of a repeated scalar in
keys, the first one will be used. However, that may change if a binary
search is used.
*/
SkScalar SkScalarInterpFunc(SkScalar searchKey, const SkScalar keys[],
const SkScalar values[], int length);
/*
* Helper to compare an array of scalars.
*/
static inline bool SkScalarsEqual(const SkScalar a[], const SkScalar b[], int n) {
SkASSERT(n >= 0);
for (int i = 0; i < n; ++i) {
if (a[i] != b[i]) {
return false;
}
}
return true;
}
#endif