skia2/include/core/SkCanvas.h
Mike Reed 12e946b4bf deprecate odd variants of SkCanvas::readPixels
Bug: skia:6513
Change-Id: I51179a85f0912d3f899c368c30a943d346dd1d05
Reviewed-on: https://skia-review.googlesource.com/13589
Reviewed-by: Florin Malita <fmalita@chromium.org>
Reviewed-by: Matt Sarett <msarett@google.com>
Commit-Queue: Mike Reed <reed@google.com>
2017-04-17 15:22:42 +00:00

1655 lines
73 KiB
C++

/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkCanvas_DEFINED
#define SkCanvas_DEFINED
#include "SkBlendMode.h"
#include "SkClipOp.h"
#include "SkDeque.h"
#include "SkPaint.h"
#include "SkRasterHandleAllocator.h"
#include "SkSurfaceProps.h"
#include "SkLights.h"
#include "../private/SkShadowParams.h"
class GrContext;
class GrRenderTargetContext;
class SkBaseDevice;
class SkBitmap;
class SkClipStack;
class SkData;
class SkDraw;
class SkDrawable;
class SkDrawFilter;
class SkImage;
class SkImageFilter;
class SkMetaData;
class SkPath;
class SkPicture;
class SkPixmap;
class SkRasterClip;
class SkRegion;
class SkRRect;
struct SkRSXform;
class SkSurface;
class SkSurface_Base;
class SkTextBlob;
class SkVertices;
/** \class SkCanvas
A Canvas encapsulates all of the state about drawing into a device (bitmap).
This includes a reference to the device itself, and a stack of matrix/clip
values. For any given draw call (e.g. drawRect), the geometry of the object
being drawn is transformed by the concatenation of all the matrices in the
stack. The transformed geometry is clipped by the intersection of all of
the clips in the stack.
While the Canvas holds the state of the drawing device, the state (style)
of the object being drawn is held by the Paint, which is provided as a
parameter to each of the draw() methods. The Paint holds attributes such as
color, typeface, textSize, strokeWidth, shader (e.g. gradients, patterns),
etc.
*/
class SK_API SkCanvas : SkNoncopyable {
enum PrivateSaveLayerFlags {
kDontClipToLayer_PrivateSaveLayerFlag = 1U << 31,
};
public:
/**
* Attempt to allocate raster canvas, matching the ImageInfo, that will draw directly into the
* specified pixels. To access the pixels after drawing to them, the caller should call
* flush() or call peekPixels(...).
*
* On failure, return NULL. This can fail for several reasons:
* 1. invalid ImageInfo (e.g. negative dimensions)
* 2. unsupported ImageInfo for a canvas
* - kUnknown_SkColorType, kIndex_8_SkColorType
* - kUnknown_SkAlphaType
* - this list is not complete, so others may also be unsupported
*
* Note: it is valid to request a supported ImageInfo, but with zero
* dimensions.
*/
static std::unique_ptr<SkCanvas> MakeRasterDirect(const SkImageInfo&, void*, size_t);
static std::unique_ptr<SkCanvas> MakeRasterDirectN32(int width, int height, SkPMColor* pixels,
size_t rowBytes) {
return MakeRasterDirect(SkImageInfo::MakeN32Premul(width, height), pixels, rowBytes);
}
/**
* Creates an empty canvas with no backing device/pixels, and zero
* dimensions.
*/
SkCanvas();
/**
* Creates a canvas of the specified dimensions, but explicitly not backed
* by any device/pixels. Typically this use used by subclasses who handle
* the draw calls in some other way.
*/
SkCanvas(int width, int height, const SkSurfaceProps* = NULL);
/** Construct a canvas with the specified device to draw into.
@param device Specifies a device for the canvas to draw into.
*/
explicit SkCanvas(SkBaseDevice* device);
/** Construct a canvas with the specified bitmap to draw into.
@param bitmap Specifies a bitmap for the canvas to draw into. Its
structure are copied to the canvas.
*/
explicit SkCanvas(const SkBitmap& bitmap);
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
enum class ColorBehavior {
kLegacy,
};
/**
* Android framework only constructor.
* Allows the creation of a legacy SkCanvas even though the |bitmap|
* and its pixel ref may have an SkColorSpace.
*/
SkCanvas(const SkBitmap& bitmap, ColorBehavior);
#endif
/** Construct a canvas with the specified bitmap to draw into.
@param bitmap Specifies a bitmap for the canvas to draw into. Its
structure are copied to the canvas.
@param props New canvas surface properties.
*/
SkCanvas(const SkBitmap& bitmap, const SkSurfaceProps& props);
virtual ~SkCanvas();
SkMetaData& getMetaData();
/**
* Return ImageInfo for this canvas. If the canvas is not backed by pixels
* (cpu or gpu), then the info's ColorType will be kUnknown_SkColorType.
*/
SkImageInfo imageInfo() const;
/**
* If the canvas is backed by pixels (cpu or gpu), this writes a copy of the SurfaceProps
* for the canvas to the location supplied by the caller, and returns true. Otherwise,
* return false and leave the supplied props unchanged.
*/
bool getProps(SkSurfaceProps*) const;
///////////////////////////////////////////////////////////////////////////
/**
* Trigger the immediate execution of all pending draw operations. For the GPU
* backend this will resolve all rendering to the GPU surface backing the
* SkSurface that owns this canvas.
*/
void flush();
/**
* Gets the size of the base or root layer in global canvas coordinates. The
* origin of the base layer is always (0,0). The current drawable area may be
* smaller (due to clipping or saveLayer).
*/
virtual SkISize getBaseLayerSize() const;
/**
* Create a new surface matching the specified info, one that attempts to
* be maximally compatible when used with this canvas. If there is no matching Surface type,
* NULL is returned.
*
* If surfaceprops is specified, those are passed to the new surface, otherwise the new surface
* inherits the properties of the surface that owns this canvas. If this canvas has no parent
* surface, then the new surface is created with default properties.
*/
sk_sp<SkSurface> makeSurface(const SkImageInfo&, const SkSurfaceProps* = nullptr);
/**
* Return the GPU context of the device that is associated with the canvas.
* For a canvas with non-GPU device, NULL is returned.
*/
GrContext* getGrContext();
///////////////////////////////////////////////////////////////////////////
/**
* If the canvas has writable pixels in its top layer (and is not recording to a picture
* or other non-raster target) and has direct access to its pixels (i.e. they are in
* local RAM) return the address of those pixels, and if not null,
* return the ImageInfo, rowBytes and origin. The returned address is only valid
* while the canvas object is in scope and unchanged. Any API calls made on
* canvas (or its parent surface if any) will invalidate the
* returned address (and associated information).
*
* On failure, returns NULL and the info, rowBytes, and origin parameters are ignored.
*/
void* accessTopLayerPixels(SkImageInfo* info, size_t* rowBytes, SkIPoint* origin = NULL);
SkRasterHandleAllocator::Handle accessTopRasterHandle() const;
/**
* If the canvas has readable pixels in its base layer (and is not recording to a picture
* or other non-raster target) and has direct access to its pixels (i.e. they are in
* local RAM) return true, and if not null, return in the pixmap parameter information about
* the pixels. The pixmap's pixel address is only valid
* while the canvas object is in scope and unchanged. Any API calls made on
* canvas (or its parent surface if any) will invalidate the pixel address
* (and associated information).
*
* On failure, returns false and the pixmap parameter will be ignored.
*/
bool peekPixels(SkPixmap*);
/**
* Copy the pixels from the base-layer into the specified buffer (pixels + rowBytes),
* converting them into the requested format (SkImageInfo). The base-layer pixels are read
* starting at the specified (srcX,srcY) location in the coordinate system of the base-layer.
*
* The specified ImageInfo and (srcX,srcY) offset specifies a source rectangle
*
* srcR.setXYWH(srcX, srcY, dstInfo.width(), dstInfo.height());
*
* srcR is intersected with the bounds of the base-layer. If this intersection is not empty,
* then we have two sets of pixels (of equal size). Replace the dst pixels with the
* corresponding src pixels, performing any colortype/alphatype transformations needed
* (in the case where the src and dst have different colortypes or alphatypes).
*
* This call can fail, returning false, for several reasons:
* - If srcR does not intersect the base-layer bounds.
* - If the requested colortype/alphatype cannot be converted from the base-layer's types.
* - If this canvas is not backed by pixels (e.g. picture or PDF)
*/
bool readPixels(const SkImageInfo& dstInfo, void* dstPixels, size_t dstRowBytes,
int srcX, int srcY);
bool readPixels(const SkPixmap&, int srcX, int srcY);
bool readPixels(const SkBitmap&, int srcX, int srcY);
#ifdef SK_SUPPORT_LEGACY_CANVAS_READPIXELS
/**
* Helper for calling readPixels(info, ...). This call will check if bitmap has been allocated.
* If not, it will attempt to call allocPixels(). If this fails, it will return false. If not,
* it calls through to readPixels(info, ...) and returns its result.
*/
bool readPixels(SkBitmap* bitmap, int srcX, int srcY);
/**
* Helper for allocating pixels and then calling readPixels(info, ...). The bitmap is resized
* to the intersection of srcRect and the base-layer bounds. On success, pixels will be
* allocated in bitmap and true returned. On failure, false is returned and bitmap will be
* set to empty.
*/
bool readPixels(const SkIRect& srcRect, SkBitmap* bitmap);
#endif
/**
* This method affects the pixels in the base-layer, and operates in pixel coordinates,
* ignoring the matrix and clip.
*
* The specified ImageInfo and (x,y) offset specifies a rectangle: target.
*
* target.setXYWH(x, y, info.width(), info.height());
*
* Target is intersected with the bounds of the base-layer. If this intersection is not empty,
* then we have two sets of pixels (of equal size), the "src" specified by info+pixels+rowBytes
* and the "dst" by the canvas' backend. Replace the dst pixels with the corresponding src
* pixels, performing any colortype/alphatype transformations needed (in the case where the
* src and dst have different colortypes or alphatypes).
*
* This call can fail, returning false, for several reasons:
* - If the src colortype/alphatype cannot be converted to the canvas' types
* - If this canvas is not backed by pixels (e.g. picture or PDF)
*/
bool writePixels(const SkImageInfo&, const void* pixels, size_t rowBytes, int x, int y);
/**
* Helper for calling writePixels(info, ...) by passing its pixels and rowbytes. If the bitmap
* is just wrapping a texture, returns false and does nothing.
*/
bool writePixels(const SkBitmap& bitmap, int x, int y);
///////////////////////////////////////////////////////////////////////////
/** This call saves the current matrix, clip, and drawFilter, and pushes a
copy onto a private stack. Subsequent calls to translate, scale,
rotate, skew, concat or clipRect, clipPath, and setDrawFilter all
operate on this copy.
When the balancing call to restore() is made, the previous matrix, clip,
and drawFilter are restored.
@return The value to pass to restoreToCount() to balance this save()
*/
int save();
/** This behaves the same as save(), but in addition it allocates an
offscreen bitmap. All drawing calls are directed there, and only when
the balancing call to restore() is made is that offscreen transfered to
the canvas (or the previous layer).
@param bounds (may be null) This rect, if non-null, is used as a hint to
limit the size of the offscreen, and thus drawing may be
clipped to it, though that clipping is not guaranteed to
happen. If exact clipping is desired, use clipRect().
@param paint (may be null) This is copied, and is applied to the
offscreen when restore() is called
@return The value to pass to restoreToCount() to balance this save()
*/
int saveLayer(const SkRect* bounds, const SkPaint* paint);
int saveLayer(const SkRect& bounds, const SkPaint* paint) {
return this->saveLayer(&bounds, paint);
}
/**
* Temporary name.
* Will allow any requests for LCD text to be respected, so the caller must be careful to
* only draw on top of opaque sections of the layer to get good results.
*/
int saveLayerPreserveLCDTextRequests(const SkRect* bounds, const SkPaint* paint);
/** This behaves the same as save(), but in addition it allocates an
offscreen bitmap. All drawing calls are directed there, and only when
the balancing call to restore() is made is that offscreen transfered to
the canvas (or the previous layer).
@param bounds (may be null) This rect, if non-null, is used as a hint to
limit the size of the offscreen, and thus drawing may be
clipped to it, though that clipping is not guaranteed to
happen. If exact clipping is desired, use clipRect().
@param alpha This is applied to the offscreen when restore() is called.
@return The value to pass to restoreToCount() to balance this save()
*/
int saveLayerAlpha(const SkRect* bounds, U8CPU alpha);
enum {
kIsOpaque_SaveLayerFlag = 1 << 0,
kPreserveLCDText_SaveLayerFlag = 1 << 1,
/** initialize the new layer with the contents of the previous layer */
kInitWithPrevious_SaveLayerFlag = 1 << 2,
#ifdef SK_SUPPORT_LEGACY_CLIPTOLAYERFLAG
kDontClipToLayer_Legacy_SaveLayerFlag = kDontClipToLayer_PrivateSaveLayerFlag,
#endif
};
typedef uint32_t SaveLayerFlags;
struct SaveLayerRec {
SaveLayerRec()
: fBounds(nullptr), fPaint(nullptr), fBackdrop(nullptr), fSaveLayerFlags(0)
{}
SaveLayerRec(const SkRect* bounds, const SkPaint* paint, SaveLayerFlags saveLayerFlags = 0)
: fBounds(bounds)
, fPaint(paint)
, fBackdrop(nullptr)
, fSaveLayerFlags(saveLayerFlags)
{}
SaveLayerRec(const SkRect* bounds, const SkPaint* paint, const SkImageFilter* backdrop,
SaveLayerFlags saveLayerFlags)
: fBounds(bounds)
, fPaint(paint)
, fBackdrop(backdrop)
, fSaveLayerFlags(saveLayerFlags)
{}
const SkRect* fBounds; // optional
const SkPaint* fPaint; // optional
const SkImageFilter* fBackdrop; // optional
SaveLayerFlags fSaveLayerFlags;
};
int saveLayer(const SaveLayerRec&);
/** This call balances a previous call to save(), and is used to remove all
modifications to the matrix/clip/drawFilter state since the last save
call.
It is an error to call restore() more times than save() was called.
*/
void restore();
/** Returns the number of matrix/clip states on the SkCanvas' private stack.
This will equal # save() calls - # restore() calls + 1. The save count on
a new canvas is 1.
*/
int getSaveCount() const;
/** Efficient way to pop any calls to save() that happened after the save
count reached saveCount. It is an error for saveCount to be greater than
getSaveCount(). To pop all the way back to the initial matrix/clip context
pass saveCount == 1.
@param saveCount The number of save() levels to restore from
*/
void restoreToCount(int saveCount);
/** Preconcat the current matrix with the specified translation
@param dx The distance to translate in X
@param dy The distance to translate in Y
*/
void translate(SkScalar dx, SkScalar dy);
/** Preconcat the current matrix with the specified scale.
@param sx The amount to scale in X
@param sy The amount to scale in Y
*/
void scale(SkScalar sx, SkScalar sy);
/** Preconcat the current matrix with the specified rotation about the origin.
@param degrees The amount to rotate, in degrees
*/
void rotate(SkScalar degrees);
/** Preconcat the current matrix with the specified rotation about a given point.
@param degrees The amount to rotate, in degrees
@param px The x coordinate of the point to rotate about.
@param py The y coordinate of the point to rotate about.
*/
void rotate(SkScalar degrees, SkScalar px, SkScalar py);
/** Preconcat the current matrix with the specified skew.
@param sx The amount to skew in X
@param sy The amount to skew in Y
*/
void skew(SkScalar sx, SkScalar sy);
/** Preconcat the current matrix with the specified matrix.
@param matrix The matrix to preconcatenate with the current matrix
*/
void concat(const SkMatrix& matrix);
/** Replace the current matrix with a copy of the specified matrix.
@param matrix The matrix that will be copied into the current matrix.
*/
void setMatrix(const SkMatrix& matrix);
/** Helper for setMatrix(identity). Sets the current matrix to identity.
*/
void resetMatrix();
#ifdef SK_EXPERIMENTAL_SHADOWING
/** Add the specified translation to the current draw depth of the canvas.
@param z The distance to translate in Z.
Negative into screen, positive out of screen.
Without translation, the draw depth defaults to 0.
*/
void translateZ(SkScalar z);
/** Set the current set of lights in the canvas.
@param lights The lights that we want the canvas to have.
*/
void setLights(sk_sp<SkLights> lights);
/** Returns the current set of lights the canvas uses
*/
sk_sp<SkLights> getLights() const;
#endif
/**
* Modify the current clip with the specified rectangle.
* @param rect The rect to combine with the current clip
* @param op The region op to apply to the current clip
* @param doAntiAlias true if the clip should be antialiased
*/
void clipRect(const SkRect& rect, SkClipOp, bool doAntiAlias);
void clipRect(const SkRect& rect, SkClipOp op) {
this->clipRect(rect, op, false);
}
void clipRect(const SkRect& rect, bool doAntiAlias = false) {
this->clipRect(rect, SkClipOp::kIntersect, doAntiAlias);
}
/**
* Sets the max clip rectangle, which can be set by clipRect, clipRRect and
* clipPath and intersect the current clip with the specified rect.
* The max clip affects only future ops (it is not retroactive).
* We DON'T record the clip restriction in pictures.
* This is private API to be used only by Android framework.
* @param rect The maximum allowed clip in device coordinates.
* Empty rect means max clip is not enforced.
*/
void androidFramework_setDeviceClipRestriction(const SkIRect& rect);
/**
* Modify the current clip with the specified SkRRect.
* @param rrect The rrect to combine with the current clip
* @param op The region op to apply to the current clip
* @param doAntiAlias true if the clip should be antialiased
*/
void clipRRect(const SkRRect& rrect, SkClipOp op, bool doAntiAlias);
void clipRRect(const SkRRect& rrect, SkClipOp op) {
this->clipRRect(rrect, op, false);
}
void clipRRect(const SkRRect& rrect, bool doAntiAlias = false) {
this->clipRRect(rrect, SkClipOp::kIntersect, doAntiAlias);
}
/**
* Modify the current clip with the specified path.
* @param path The path to combine with the current clip
* @param op The region op to apply to the current clip
* @param doAntiAlias true if the clip should be antialiased
*/
void clipPath(const SkPath& path, SkClipOp op, bool doAntiAlias);
void clipPath(const SkPath& path, SkClipOp op) {
this->clipPath(path, op, false);
}
void clipPath(const SkPath& path, bool doAntiAlias = false) {
this->clipPath(path, SkClipOp::kIntersect, doAntiAlias);
}
/** EXPERIMENTAL -- only used for testing
Set to simplify clip stack using path ops.
*/
void setAllowSimplifyClip(bool allow) {
fAllowSimplifyClip = allow;
}
/** Modify the current clip with the specified region. Note that unlike
clipRect() and clipPath() which transform their arguments by the current
matrix, clipRegion() assumes its argument is already in device
coordinates, and so no transformation is performed.
@param deviceRgn The region to apply to the current clip
@param op The region op to apply to the current clip
*/
void clipRegion(const SkRegion& deviceRgn, SkClipOp op = SkClipOp::kIntersect);
/** Return true if the specified rectangle, after being transformed by the
current matrix, would lie completely outside of the current clip. Call
this to check if an area you intend to draw into is clipped out (and
therefore you can skip making the draw calls).
@param rect the rect to compare with the current clip
@return true if the rect (transformed by the canvas' matrix) does not
intersect with the canvas' clip
*/
bool quickReject(const SkRect& rect) const;
/** Return true if the specified path, after being transformed by the
current matrix, would lie completely outside of the current clip. Call
this to check if an area you intend to draw into is clipped out (and
therefore you can skip making the draw calls). Note, for speed it may
return false even if the path itself might not intersect the clip
(i.e. the bounds of the path intersects, but the path does not).
@param path The path to compare with the current clip
@return true if the path (transformed by the canvas' matrix) does not
intersect with the canvas' clip
*/
bool quickReject(const SkPath& path) const;
/**
* Return the bounds of the current clip in local coordinates. If the clip is empty,
* return { 0, 0, 0, 0 }.
*/
SkRect getLocalClipBounds() const { return this->onGetLocalClipBounds(); }
/**
* Returns true if the clip bounds are non-empty.
*/
bool getLocalClipBounds(SkRect* bounds) const {
*bounds = this->onGetLocalClipBounds();
return !bounds->isEmpty();
}
/**
* Return the bounds of the current clip in device coordinates. If the clip is empty,
* return { 0, 0, 0, 0 }.
*/
SkIRect getDeviceClipBounds() const { return this->onGetDeviceClipBounds(); }
/**
* Returns true if the clip bounds are non-empty.
*/
bool getDeviceClipBounds(SkIRect* bounds) const {
*bounds = this->onGetDeviceClipBounds();
return !bounds->isEmpty();
}
/** Fill the entire canvas' bitmap (restricted to the current clip) with the
specified color and mode.
@param color the color to draw with
@param mode the mode to apply the color in (defaults to SrcOver)
*/
void drawColor(SkColor color, SkBlendMode mode = SkBlendMode::kSrcOver);
/**
* Helper method for drawing a color in SRC mode, completely replacing all the pixels
* in the current clip with this color.
*/
void clear(SkColor color) {
this->drawColor(color, SkBlendMode::kSrc);
}
/**
* This makes the contents of the canvas undefined. Subsequent calls that
* require reading the canvas contents will produce undefined results. Examples
* include blending and readPixels. The actual implementation is backend-
* dependent and one legal implementation is to do nothing. This method
* ignores the current clip.
*
* This function should only be called if the caller intends to subsequently
* draw to the canvas. The canvas may do real work at discard() time in order
* to optimize performance on subsequent draws. Thus, if you call this and then
* never draw to the canvas subsequently you may pay a perfomance penalty.
*/
void discard() { this->onDiscard(); }
/**
* Fill the entire canvas (restricted to the current clip) with the
* specified paint.
* @param paint The paint used to fill the canvas
*/
void drawPaint(const SkPaint& paint);
enum PointMode {
/** drawPoints draws each point separately */
kPoints_PointMode,
/** drawPoints draws each pair of points as a line segment */
kLines_PointMode,
/** drawPoints draws the array of points as a polygon */
kPolygon_PointMode
};
/** Draw a series of points, interpreted based on the PointMode mode. For
all modes, the count parameter is interpreted as the total number of
points. For kLine mode, count/2 line segments are drawn.
For kPoint mode, each point is drawn centered at its coordinate, and its
size is specified by the paint's stroke-width. It draws as a square,
unless the paint's cap-type is round, in which the points are drawn as
circles.
For kLine mode, each pair of points is drawn as a line segment,
respecting the paint's settings for cap/join/width.
For kPolygon mode, the entire array is drawn as a series of connected
line segments.
Note that, while similar, kLine and kPolygon modes draw slightly
differently than the equivalent path built with a series of moveto,
lineto calls, in that the path will draw all of its contours at once,
with no interactions if contours intersect each other (think XOR
xfermode). drawPoints always draws each element one at a time.
@param mode PointMode specifying how to draw the array of points.
@param count The number of points in the array
@param pts Array of points to draw
@param paint The paint used to draw the points
*/
void drawPoints(PointMode mode, size_t count, const SkPoint pts[], const SkPaint& paint);
/** Helper method for drawing a single point. See drawPoints() for more details.
*/
void drawPoint(SkScalar x, SkScalar y, const SkPaint& paint);
/** Draw a line segment with the specified start and stop x,y coordinates,
using the specified paint. NOTE: since a line is always "framed", the
paint's Style is ignored.
@param x0 The x-coordinate of the start point of the line
@param y0 The y-coordinate of the start point of the line
@param x1 The x-coordinate of the end point of the line
@param y1 The y-coordinate of the end point of the line
@param paint The paint used to draw the line
*/
void drawLine(SkScalar x0, SkScalar y0, SkScalar x1, SkScalar y1, const SkPaint& paint);
/** Draw the specified rectangle using the specified paint. The rectangle
will be filled or stroked based on the Style in the paint.
@param rect The rect to be drawn
@param paint The paint used to draw the rect
*/
void drawRect(const SkRect& rect, const SkPaint& paint);
/** Draw the specified rectangle using the specified paint. The rectangle
will be filled or framed based on the Style in the paint.
@param rect The rect to be drawn
@param paint The paint used to draw the rect
*/
void drawIRect(const SkIRect& rect, const SkPaint& paint) {
SkRect r;
r.set(rect); // promotes the ints to scalars
this->drawRect(r, paint);
}
/** Draw the outline of the specified region using the specified paint.
@param region The region to be drawn
@param paint The paint used to draw the region
*/
void drawRegion(const SkRegion& region, const SkPaint& paint);
/** Draw the specified oval using the specified paint. The oval will be
filled or framed based on the Style in the paint.
@param oval The rectangle bounds of the oval to be drawn
@param paint The paint used to draw the oval
*/
void drawOval(const SkRect& oval, const SkPaint&);
/**
* Draw the specified RRect using the specified paint The rrect will be filled or stroked
* based on the Style in the paint.
*
* @param rrect The round-rect to draw
* @param paint The paint used to draw the round-rect
*/
void drawRRect(const SkRRect& rrect, const SkPaint& paint);
/**
* Draw the annulus formed by the outer and inner rrects. The results
* are undefined if the outer does not contain the inner.
*/
void drawDRRect(const SkRRect& outer, const SkRRect& inner, const SkPaint&);
/** Draw the specified circle using the specified paint. If radius is <= 0,
then nothing will be drawn. The circle will be filled
or framed based on the Style in the paint.
@param cx The x-coordinate of the center of the cirle to be drawn
@param cy The y-coordinate of the center of the cirle to be drawn
@param radius The radius of the cirle to be drawn
@param paint The paint used to draw the circle
*/
void drawCircle(SkScalar cx, SkScalar cy, SkScalar radius, const SkPaint& paint);
/** Draw the specified arc, which will be scaled to fit inside the
specified oval. Sweep angles are not treated as modulo 360 and thus can
exceed a full sweep of the oval. Note that this differs slightly from
SkPath::arcTo, which treats the sweep angle mod 360. If the oval is empty
or the sweep angle is zero nothing is drawn. If useCenter is true the oval
center is inserted into the implied path before the arc and the path is
closed back to the, center forming a wedge. Otherwise, the implied path
contains just the arc and is not closed.
@param oval The bounds of oval used to define the shape of the arc.
@param startAngle Starting angle (in degrees) where the arc begins
@param sweepAngle Sweep angle (in degrees) measured clockwise.
@param useCenter true means include the center of the oval.
@param paint The paint used to draw the arc
*/
void drawArc(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle,
bool useCenter, const SkPaint& paint);
/** Draw the specified round-rect using the specified paint. The round-rect
will be filled or framed based on the Style in the paint.
@param rect The rectangular bounds of the roundRect to be drawn
@param rx The x-radius of the oval used to round the corners
@param ry The y-radius of the oval used to round the corners
@param paint The paint used to draw the roundRect
*/
void drawRoundRect(const SkRect& rect, SkScalar rx, SkScalar ry, const SkPaint& paint);
/** Draw the specified path using the specified paint. The path will be
filled or framed based on the Style in the paint.
@param path The path to be drawn
@param paint The paint used to draw the path
*/
void drawPath(const SkPath& path, const SkPaint& paint);
/** Draw the specified image, with its top/left corner at (x,y), using the
specified paint, transformed by the current matrix.
@param image The image to be drawn
@param left The position of the left side of the image being drawn
@param top The position of the top side of the image being drawn
@param paint The paint used to draw the image, or NULL
*/
void drawImage(const SkImage* image, SkScalar left, SkScalar top, const SkPaint* paint = NULL);
void drawImage(const sk_sp<SkImage>& image, SkScalar left, SkScalar top,
const SkPaint* paint = NULL) {
this->drawImage(image.get(), left, top, paint);
}
/**
* Controls the behavior at the edge of the src-rect, when specified in drawImageRect,
* trading off speed for exactness.
*
* When filtering is enabled (in the Paint), skia may need to sample in a neighborhood around
* the pixels in the image. If there is a src-rect specified, it is intended to restrict the
* pixels that will be read. However, for performance reasons, some implementations may slow
* down if they cannot read 1-pixel past the src-rect boundary at times.
*
* This enum allows the caller to specify if such a 1-pixel "slop" will be visually acceptable.
* If it is, the caller should pass kFast, and it may result in a faster draw. If the src-rect
* must be strictly respected, the caller should pass kStrict.
*/
enum SrcRectConstraint {
/**
* If kStrict is specified, the implementation must respect the src-rect
* (if specified) strictly, and will never sample outside of those bounds during sampling
* even when filtering. This may be slower than kFast.
*/
kStrict_SrcRectConstraint,
/**
* If kFast is specified, the implementation may sample outside of the src-rect
* (if specified) by half the width of filter. This allows greater flexibility
* to the implementation and can make the draw much faster.
*/
kFast_SrcRectConstraint,
};
/** Draw the specified image, scaling and translating so that it fills the specified
* dst rect. If the src rect is non-null, only that subset of the image is transformed
* and drawn.
*
* @param image The image to be drawn
* @param src Optional: specify the subset of the image to be drawn
* @param dst The destination rectangle where the scaled/translated
* image will be drawn
* @param paint The paint used to draw the image, or NULL
* @param constraint Control the tradeoff between speed and exactness w.r.t. the src-rect.
*/
void drawImageRect(const SkImage* image, const SkRect& src, const SkRect& dst,
const SkPaint* paint,
SrcRectConstraint constraint = kStrict_SrcRectConstraint);
// variant that takes src SkIRect
void drawImageRect(const SkImage* image, const SkIRect& isrc, const SkRect& dst,
const SkPaint* paint, SrcRectConstraint = kStrict_SrcRectConstraint);
// variant that assumes src == image-bounds
void drawImageRect(const SkImage* image, const SkRect& dst, const SkPaint* paint,
SrcRectConstraint = kStrict_SrcRectConstraint);
void drawImageRect(const sk_sp<SkImage>& image, const SkRect& src, const SkRect& dst,
const SkPaint* paint,
SrcRectConstraint constraint = kStrict_SrcRectConstraint) {
this->drawImageRect(image.get(), src, dst, paint, constraint);
}
void drawImageRect(const sk_sp<SkImage>& image, const SkIRect& isrc, const SkRect& dst,
const SkPaint* paint, SrcRectConstraint cons = kStrict_SrcRectConstraint) {
this->drawImageRect(image.get(), isrc, dst, paint, cons);
}
void drawImageRect(const sk_sp<SkImage>& image, const SkRect& dst, const SkPaint* paint,
SrcRectConstraint cons = kStrict_SrcRectConstraint) {
this->drawImageRect(image.get(), dst, paint, cons);
}
/**
* Draw the image stretched differentially to fit into dst.
* center is a rect within the image, and logically divides the image
* into 9 sections (3x3). For example, if the middle pixel of a [5x5]
* image is the "center", then the center-rect should be [2, 2, 3, 3].
*
* If the dst is >= the image size, then...
* - The 4 corners are not stretched at all.
* - The sides are stretched in only one axis.
* - The center is stretched in both axes.
* Else, for each axis where dst < image,
* - The corners shrink proportionally
* - The sides (along the shrink axis) and center are not drawn
*/
void drawImageNine(const SkImage*, const SkIRect& center, const SkRect& dst,
const SkPaint* paint = nullptr);
void drawImageNine(const sk_sp<SkImage>& image, const SkIRect& center, const SkRect& dst,
const SkPaint* paint = nullptr) {
this->drawImageNine(image.get(), center, dst, paint);
}
/** Draw the specified bitmap, with its top/left corner at (x,y), using the
specified paint, transformed by the current matrix. Note: if the paint
contains a maskfilter that generates a mask which extends beyond the
bitmap's original width/height, then the bitmap will be drawn as if it
were in a Shader with CLAMP mode. Thus the color outside of the original
width/height will be the edge color replicated.
If a shader is present on the paint it will be ignored, except in the
case where the bitmap is kAlpha_8_SkColorType. In that case, the color is
generated by the shader.
@param bitmap The bitmap to be drawn
@param left The position of the left side of the bitmap being drawn
@param top The position of the top side of the bitmap being drawn
@param paint The paint used to draw the bitmap, or NULL
*/
void drawBitmap(const SkBitmap& bitmap, SkScalar left, SkScalar top,
const SkPaint* paint = NULL);
/** Draw the specified bitmap, scaling and translating so that it fills the specified
* dst rect. If the src rect is non-null, only that subset of the bitmap is transformed
* and drawn.
*
* @param bitmap The bitmap to be drawn
* @param src Optional: specify the subset of the bitmap to be drawn
* @param dst The destination rectangle where the scaled/translated
* bitmap will be drawn
* @param paint The paint used to draw the bitmap, or NULL
* @param constraint Control the tradeoff between speed and exactness w.r.t. the src-rect.
*/
void drawBitmapRect(const SkBitmap& bitmap, const SkRect& src, const SkRect& dst,
const SkPaint* paint, SrcRectConstraint = kStrict_SrcRectConstraint);
// variant where src is SkIRect
void drawBitmapRect(const SkBitmap& bitmap, const SkIRect& isrc, const SkRect& dst,
const SkPaint* paint, SrcRectConstraint = kStrict_SrcRectConstraint);
void drawBitmapRect(const SkBitmap& bitmap, const SkRect& dst, const SkPaint* paint,
SrcRectConstraint = kStrict_SrcRectConstraint);
/**
* Draw the bitmap stretched or shrunk differentially to fit into dst.
* center is a rect within the bitmap, and logically divides the bitmap
* into 9 sections (3x3). For example, if the middle pixel of a [5x5]
* bitmap is the "center", then the center-rect should be [2, 2, 3, 3].
*
* If the dst is >= the bitmap size, then...
* - The 4 corners are not stretched at all.
* - The sides are stretched in only one axis.
* - The center is stretched in both axes.
* Else, for each axis where dst < bitmap,
* - The corners shrink proportionally
* - The sides (along the shrink axis) and center are not drawn
*/
void drawBitmapNine(const SkBitmap& bitmap, const SkIRect& center, const SkRect& dst,
const SkPaint* paint = NULL);
/**
* Specifies coordinates to divide a bitmap into (xCount*yCount) rects.
*
* If the lattice divs or bounds are invalid, the entire lattice
* struct will be ignored on the draw call.
*/
struct Lattice {
enum Flags : uint8_t {
// If set, indicates that we should not draw corresponding rect.
kTransparent_Flags = 1 << 0,
};
// An array of x-coordinates that divide the bitmap vertically.
// These must be unique, increasing, and in the set [fBounds.fLeft, fBounds.fRight).
// Does not have ownership.
const int* fXDivs;
// An array of y-coordinates that divide the bitmap horizontally.
// These must be unique, increasing, and in the set [fBounds.fTop, fBounds.fBottom).
// Does not have ownership.
const int* fYDivs;
// If non-null, the length of this array must be equal to
// (fXCount + 1) * (fYCount + 1). Note that we allow the first rect
// in each direction to be empty (ex: fXDivs[0] = fBounds.fLeft).
// In this case, the caller still must specify a flag (as a placeholder)
// for these empty rects.
// The flags correspond to the rects in the lattice, first moving
// left to right and then top to bottom.
const Flags* fFlags;
// The number of fXDivs.
int fXCount;
// The number of fYDivs.
int fYCount;
// The bound to draw from. Must be contained by the src that is being drawn,
// non-empty, and non-inverted.
// If nullptr, the bounds are the entire src.
const SkIRect* fBounds;
};
/**
* Draw the bitmap stretched or shrunk differentially to fit into dst.
*
* Moving horizontally across the bitmap, alternating rects will be "scalable"
* (in the x-dimension) to fit into dst or must be left "fixed". The first rect
* is treated as "fixed", but it's possible to specify an empty first rect by
* making lattice.fXDivs[0] = 0.
*
* The scale factor for all "scalable" rects will be the same, and may be greater
* than or less than 1 (meaning we can stretch or shrink). If the number of
* "fixed" pixels is greater than the width of the dst, we will collapse all of
* the "scalable" regions and appropriately downscale the "fixed" regions.
*
* The same interpretation also applies to the y-dimension.
*/
void drawBitmapLattice(const SkBitmap& bitmap, const Lattice& lattice, const SkRect& dst,
const SkPaint* paint = nullptr);
void drawImageLattice(const SkImage* image, const Lattice& lattice, const SkRect& dst,
const SkPaint* paint = nullptr);
/** Draw the text, with origin at (x,y), using the specified paint.
The origin is interpreted based on the Align setting in the paint.
@param text The text to be drawn
@param byteLength The number of bytes to read from the text parameter
@param x The x-coordinate of the origin of the text being drawn
@param y The y-coordinate of the origin of the text being drawn
@param paint The paint used for the text (e.g. color, size, style)
*/
void drawText(const void* text, size_t byteLength, SkScalar x, SkScalar y,
const SkPaint& paint);
/** Draw the text, with each character/glyph origin specified by the pos[]
array. The origin is interpreted by the Align setting in the paint.
@param text The text to be drawn
@param byteLength The number of bytes to read from the text parameter
@param pos Array of positions, used to position each character
@param paint The paint used for the text (e.g. color, size, style)
*/
void drawPosText(const void* text, size_t byteLength, const SkPoint pos[],
const SkPaint& paint);
/** Draw the text, with each character/glyph origin specified by the x
coordinate taken from the xpos[] array, and the y from the constY param.
The origin is interpreted by the Align setting in the paint.
@param text The text to be drawn
@param byteLength The number of bytes to read from the text parameter
@param xpos Array of x-positions, used to position each character
@param constY The shared Y coordinate for all of the positions
@param paint The paint used for the text (e.g. color, size, style)
*/
void drawPosTextH(const void* text, size_t byteLength, const SkScalar xpos[], SkScalar constY,
const SkPaint& paint);
/** Draw the text, with origin at (x,y), using the specified paint, along
the specified path. The paint's Align setting determins where along the
path to start the text.
@param text The text to be drawn
@param byteLength The number of bytes to read from the text parameter
@param path The path the text should follow for its baseline
@param hOffset The distance along the path to add to the text's
starting position
@param vOffset The distance above(-) or below(+) the path to
position the text
@param paint The paint used for the text
*/
void drawTextOnPathHV(const void* text, size_t byteLength, const SkPath& path, SkScalar hOffset,
SkScalar vOffset, const SkPaint& paint);
/** Draw the text, with origin at (x,y), using the specified paint, along
the specified path. The paint's Align setting determins where along the
path to start the text.
@param text The text to be drawn
@param byteLength The number of bytes to read from the text parameter
@param path The path the text should follow for its baseline
@param matrix (may be null) Applied to the text before it is
mapped onto the path
@param paint The paint used for the text
*/
void drawTextOnPath(const void* text, size_t byteLength, const SkPath& path,
const SkMatrix* matrix, const SkPaint& paint);
/**
* Draw the text with each character/glyph individually transformed by its xform.
* If cullRect is not null, it is a conservative bounds of what will be drawn
* taking into account the xforms and the paint, and will be used to accelerate culling.
*/
void drawTextRSXform(const void* text, size_t byteLength, const SkRSXform[],
const SkRect* cullRect, const SkPaint& paint);
/** Draw the text blob, offset by (x,y), using the specified paint.
@param blob The text blob to be drawn
@param x The x-offset of the text being drawn
@param y The y-offset of the text being drawn
@param paint The paint used for the text (e.g. color, size, style)
*/
void drawTextBlob(const SkTextBlob* blob, SkScalar x, SkScalar y, const SkPaint& paint);
void drawTextBlob(const sk_sp<SkTextBlob>& blob, SkScalar x, SkScalar y, const SkPaint& paint) {
this->drawTextBlob(blob.get(), x, y, paint);
}
/** Draw the picture into this canvas. This method effective brackets the
playback of the picture's draw calls with save/restore, so the state
of this canvas will be unchanged after this call.
@param picture The recorded drawing commands to playback into this
canvas.
*/
void drawPicture(const SkPicture* picture) {
this->drawPicture(picture, NULL, NULL);
}
void drawPicture(const sk_sp<SkPicture>& picture) {
this->drawPicture(picture.get());
}
/**
* Draw the picture into this canvas.
*
* If matrix is non-null, apply that matrix to the CTM when drawing this picture. This is
* logically equivalent to
* save/concat/drawPicture/restore
*
* If paint is non-null, draw the picture into a temporary buffer, and then apply the paint's
* alpha/colorfilter/imagefilter/xfermode to that buffer as it is drawn to the canvas.
* This is logically equivalent to
* saveLayer(paint)/drawPicture/restore
*/
void drawPicture(const SkPicture*, const SkMatrix* matrix, const SkPaint* paint);
void drawPicture(const sk_sp<SkPicture>& picture, const SkMatrix* matrix, const SkPaint* paint) {
this->drawPicture(picture.get(), matrix, paint);
}
#ifdef SK_EXPERIMENTAL_SHADOWING
/**
* Draw the picture into this canvas, with shadows!
*
* We will use the canvas's lights along with the picture information (draw depths of
* objects, etc) to first create a set of shadowmaps for the light-picture pairs, and
* then use that set of shadowmaps to render the scene with shadows.
*
* If matrix is non-null, apply that matrix to the CTM when drawing this picture. This is
* logically equivalent to
* save/concat/drawPicture/restore
*
* If paint is non-null, draw the picture into a temporary buffer, and then apply the paint's
* alpha/colorfilter/imagefilter/xfermode to that buffer as it is drawn to the canvas.
* This is logically equivalent to
* saveLayer(paint)/drawPicture/restore
*
* We also support using variance shadow maps for blurred shadows; the user can specify
* what shadow mapping algorithm to use with params.
* - Variance Shadow Mapping works by storing both the depth and depth^2 in the shadow map.
* - Then, the shadow map can be blurred, and when reading from it, the fragment shader
* can calculate the variance of the depth at a position by doing E(x^2) - E(x)^2.
* - We can then use the depth variance and depth at a fragment to arrive at an upper bound
* of the probability that the current surface is shadowed by using Chebyshev's
* inequality, and then use that to shade the fragment.
*
* - There are a few problems with VSM.
* * Light Bleeding | Areas with high variance, such as near the edges of high up rects,
* will cause their shadow penumbras to overwrite otherwise solid
* shadows.
* * Shape Distortion | We can combat Light Bleeding by biasing the shadow (setting
* mostly shaded fragments to completely shaded) and increasing
* the minimum allowed variance. However, this warps and rounds
* out the shape of the shadow.
*/
void drawShadowedPicture(const SkPicture*,
const SkMatrix* matrix,
const SkPaint* paint,
const SkShadowParams& params);
void drawShadowedPicture(const sk_sp<SkPicture>& picture,
const SkMatrix* matrix,
const SkPaint* paint,
const SkShadowParams& params) {
this->drawShadowedPicture(picture.get(), matrix, paint, params);
}
#endif
/** Draw vertices from an immutable SkVertices object.
@param vertices The mesh to draw.
@param mode Used if both texs and colors are present and paint has a
shader. In this case the colors are combined with the texture
using mode, before being drawn using the paint.
@param paint Specifies the shader/texture if present.
*/
void drawVertices(const SkVertices* vertices, SkBlendMode mode, const SkPaint& paint);
void drawVertices(const sk_sp<SkVertices>& vertices, SkBlendMode mode, const SkPaint& paint);
/**
Draw a cubic coons patch
@param cubic specifies the 4 bounding cubic bezier curves of a patch with clockwise order
starting at the top left corner.
@param colors specifies the colors for the corners which will be bilerp across the patch,
their order is clockwise starting at the top left corner.
@param texCoords specifies the texture coordinates that will be bilerp across the patch,
their order is the same as the colors.
@param mode specifies how are the colors and the textures combined if both of them are
present.
@param paint Specifies the shader/texture if present.
*/
void drawPatch(const SkPoint cubics[12], const SkColor colors[4],
const SkPoint texCoords[4], SkBlendMode mode, const SkPaint& paint);
void drawPatch(const SkPoint cubics[12], const SkColor colors[4],
const SkPoint texCoords[4], const SkPaint& paint) {
this->drawPatch(cubics, colors, texCoords, SkBlendMode::kModulate, paint);
}
/**
* Draw a set of sprites from the atlas. Each is specified by a tex rectangle in the
* coordinate space of the atlas, and a corresponding xform which transforms the tex rectangle
* into a quad.
*
* xform maps [0, 0, tex.width, tex.height] -> quad
*
* The color array is optional. When specified, each color modulates the pixels in its
* corresponding quad (via the specified SkBlendMode).
*
* The cullRect is optional. When specified, it must be a conservative bounds of all of the
* resulting transformed quads, allowing the canvas to skip drawing if the cullRect does not
* intersect the current clip.
*
* The paint is optional. If specified, its antialiasing, alpha, color-filter, image-filter
* and blendmode are used to affect each of the quads.
*/
void drawAtlas(const SkImage* atlas, const SkRSXform xform[], const SkRect tex[],
const SkColor colors[], int count, SkBlendMode, const SkRect* cullRect,
const SkPaint* paint);
void drawAtlas(const sk_sp<SkImage>& atlas, const SkRSXform xform[], const SkRect tex[],
const SkColor colors[], int count, SkBlendMode mode, const SkRect* cullRect,
const SkPaint* paint) {
this->drawAtlas(atlas.get(), xform, tex, colors, count, mode, cullRect, paint);
}
void drawAtlas(const SkImage* atlas, const SkRSXform xform[], const SkRect tex[], int count,
const SkRect* cullRect, const SkPaint* paint) {
this->drawAtlas(atlas, xform, tex, nullptr, count, SkBlendMode::kDst, cullRect, paint);
}
void drawAtlas(const sk_sp<SkImage>& atlas, const SkRSXform xform[], const SkRect tex[],
int count, const SkRect* cullRect, const SkPaint* paint) {
this->drawAtlas(atlas.get(), xform, tex, nullptr, count, SkBlendMode::kDst,
cullRect, paint);
}
/**
* Draw the contents of this drawable into the canvas. If the canvas is async
* (e.g. it is recording into a picture) then the drawable will be referenced instead,
* to have its draw() method called when the picture is finalized.
*
* If the intent is to force the contents of the drawable into this canvas immediately,
* then drawable->draw(canvas) may be called.
*/
void drawDrawable(SkDrawable* drawable, const SkMatrix* = NULL);
void drawDrawable(SkDrawable*, SkScalar x, SkScalar y);
/**
* Send an "annotation" to the canvas. The annotation is a key/value pair, where the key is
* a null-terminated utf8 string, and the value is a blob of data stored in an SkData
* (which may be null). The annotation is associated with the specified rectangle.
*
* The caller still retains its ownership of the data (if any).
*
* Note: on may canvas types, this information is ignored, but some canvases (e.g. recording
* a picture or drawing to a PDF document) will pass on this information.
*/
void drawAnnotation(const SkRect&, const char key[], SkData* value);
void drawAnnotation(const SkRect& rect, const char key[], const sk_sp<SkData>& value) {
this->drawAnnotation(rect, key, value.get());
}
//////////////////////////////////////////////////////////////////////////
#ifdef SK_INTERNAL
#ifndef SK_SUPPORT_LEGACY_DRAWFILTER
#define SK_SUPPORT_LEGACY_DRAWFILTER
#endif
#endif
#ifdef SK_SUPPORT_LEGACY_DRAWFILTER
/** Get the current filter object. The filter's reference count is not
affected. The filter is saved/restored, just like the matrix and clip.
@return the canvas' filter (or NULL).
*/
SK_ATTR_EXTERNALLY_DEPRECATED("getDrawFilter use is deprecated")
SkDrawFilter* getDrawFilter() const;
/** Set the new filter (or NULL). Pass NULL to clear any existing filter.
As a convenience, the parameter is returned. If an existing filter
exists, its refcnt is decrement. If the new filter is not null, its
refcnt is incremented. The filter is saved/restored, just like the
matrix and clip.
@param filter the new filter (or NULL)
@return the new filter
*/
SK_ATTR_EXTERNALLY_DEPRECATED("setDrawFilter use is deprecated")
virtual SkDrawFilter* setDrawFilter(SkDrawFilter* filter);
#endif
//////////////////////////////////////////////////////////////////////////
/**
* Return true if the current clip is empty (i.e. nothing will draw).
* Note: this is not always a free call, so it should not be used
* more often than necessary. However, once the canvas has computed this
* result, subsequent calls will be cheap (until the clip state changes,
* which can happen on any clip..() or restore() call.
*/
virtual bool isClipEmpty() const;
/**
* Returns true if the current clip is just a (non-empty) rectangle.
* Returns false if the clip is empty, or if it is complex.
*/
virtual bool isClipRect() const;
/** Return the current matrix on the canvas.
This does not account for the translate in any of the devices.
@return The current matrix on the canvas.
*/
const SkMatrix& getTotalMatrix() const;
///////////////////////////////////////////////////////////////////////////
// don't call
GrRenderTargetContext* internal_private_accessTopLayerRenderTargetContext();
// don't call
static void Internal_Private_SetIgnoreSaveLayerBounds(bool);
static bool Internal_Private_GetIgnoreSaveLayerBounds();
static void Internal_Private_SetTreatSpriteAsBitmap(bool);
static bool Internal_Private_GetTreatSpriteAsBitmap();
// TEMP helpers until we switch virtual over to const& for src-rect
void legacy_drawImageRect(const SkImage* image, const SkRect* src, const SkRect& dst,
const SkPaint* paint,
SrcRectConstraint constraint = kStrict_SrcRectConstraint);
void legacy_drawBitmapRect(const SkBitmap& bitmap, const SkRect* src, const SkRect& dst,
const SkPaint* paint,
SrcRectConstraint constraint = kStrict_SrcRectConstraint);
// expose minimum amount of information necessary for transitional refactoring
/**
* Returns CTM and clip bounds, translated from canvas coordinates to top layer coordinates.
*/
void temporary_internal_describeTopLayer(SkMatrix* matrix, SkIRect* clip_bounds);
/**
* Returns the global clip as a region. If the clip contains AA, then only the bounds
* of the clip may be returned.
*/
void temporary_internal_getRgnClip(SkRegion*);
protected:
#ifdef SK_EXPERIMENTAL_SHADOWING
/** Returns the current (cumulative) draw depth of the canvas.
*/
SkScalar getZ() const;
sk_sp<SkLights> fLights;
#endif
// default impl defers to getDevice()->newSurface(info)
virtual sk_sp<SkSurface> onNewSurface(const SkImageInfo&, const SkSurfaceProps&);
// default impl defers to its device
virtual bool onPeekPixels(SkPixmap*);
virtual bool onAccessTopLayerPixels(SkPixmap*);
virtual SkImageInfo onImageInfo() const;
virtual bool onGetProps(SkSurfaceProps*) const;
virtual void onFlush();
// Subclass save/restore notifiers.
// Overriders should call the corresponding INHERITED method up the inheritance chain.
// getSaveLayerStrategy()'s return value may suppress full layer allocation.
enum SaveLayerStrategy {
kFullLayer_SaveLayerStrategy,
kNoLayer_SaveLayerStrategy,
};
virtual void willSave() {}
// Overriders should call the corresponding INHERITED method up the inheritance chain.
virtual SaveLayerStrategy getSaveLayerStrategy(const SaveLayerRec&) {
return kFullLayer_SaveLayerStrategy;
}
virtual void willRestore() {}
virtual void didRestore() {}
virtual void didConcat(const SkMatrix&) {}
virtual void didSetMatrix(const SkMatrix&) {}
virtual void didTranslate(SkScalar dx, SkScalar dy) {
this->didConcat(SkMatrix::MakeTrans(dx, dy));
}
#ifdef SK_EXPERIMENTAL_SHADOWING
virtual void didTranslateZ(SkScalar) {}
#endif
virtual SkRect onGetLocalClipBounds() const;
virtual SkIRect onGetDeviceClipBounds() const;
virtual void onDrawAnnotation(const SkRect&, const char key[], SkData* value);
virtual void onDrawDRRect(const SkRRect&, const SkRRect&, const SkPaint&);
virtual void onDrawText(const void* text, size_t byteLength, SkScalar x,
SkScalar y, const SkPaint& paint);
virtual void onDrawPosText(const void* text, size_t byteLength,
const SkPoint pos[], const SkPaint& paint);
virtual void onDrawPosTextH(const void* text, size_t byteLength,
const SkScalar xpos[], SkScalar constY,
const SkPaint& paint);
virtual void onDrawTextOnPath(const void* text, size_t byteLength,
const SkPath& path, const SkMatrix* matrix,
const SkPaint& paint);
virtual void onDrawTextRSXform(const void* text, size_t byteLength, const SkRSXform[],
const SkRect* cullRect, const SkPaint& paint);
virtual void onDrawTextBlob(const SkTextBlob* blob, SkScalar x, SkScalar y,
const SkPaint& paint);
virtual void onDrawPatch(const SkPoint cubics[12], const SkColor colors[4],
const SkPoint texCoords[4], SkBlendMode, const SkPaint& paint);
virtual void onDrawDrawable(SkDrawable*, const SkMatrix*);
virtual void onDrawPaint(const SkPaint&);
virtual void onDrawRect(const SkRect&, const SkPaint&);
virtual void onDrawRegion(const SkRegion& region, const SkPaint& paint);
virtual void onDrawOval(const SkRect&, const SkPaint&);
virtual void onDrawArc(const SkRect&, SkScalar startAngle, SkScalar sweepAngle, bool useCenter,
const SkPaint&);
virtual void onDrawRRect(const SkRRect&, const SkPaint&);
virtual void onDrawPoints(PointMode, size_t count, const SkPoint pts[], const SkPaint&);
virtual void onDrawVerticesObject(const SkVertices*, SkBlendMode, const SkPaint&);
virtual void onDrawAtlas(const SkImage*, const SkRSXform[], const SkRect[], const SkColor[],
int count, SkBlendMode, const SkRect* cull, const SkPaint*);
virtual void onDrawPath(const SkPath&, const SkPaint&);
virtual void onDrawImage(const SkImage*, SkScalar dx, SkScalar dy, const SkPaint*);
virtual void onDrawImageRect(const SkImage*, const SkRect*, const SkRect&, const SkPaint*,
SrcRectConstraint);
virtual void onDrawImageNine(const SkImage*, const SkIRect& center, const SkRect& dst,
const SkPaint*);
virtual void onDrawImageLattice(const SkImage*, const Lattice& lattice, const SkRect& dst,
const SkPaint*);
virtual void onDrawBitmap(const SkBitmap&, SkScalar dx, SkScalar dy, const SkPaint*);
virtual void onDrawBitmapRect(const SkBitmap&, const SkRect*, const SkRect&, const SkPaint*,
SrcRectConstraint);
virtual void onDrawBitmapNine(const SkBitmap&, const SkIRect& center, const SkRect& dst,
const SkPaint*);
virtual void onDrawBitmapLattice(const SkBitmap&, const Lattice& lattice, const SkRect& dst,
const SkPaint*);
enum ClipEdgeStyle {
kHard_ClipEdgeStyle,
kSoft_ClipEdgeStyle
};
virtual void onClipRect(const SkRect& rect, SkClipOp, ClipEdgeStyle);
virtual void onClipRRect(const SkRRect& rrect, SkClipOp, ClipEdgeStyle);
virtual void onClipPath(const SkPath& path, SkClipOp, ClipEdgeStyle);
virtual void onClipRegion(const SkRegion& deviceRgn, SkClipOp);
virtual void onDiscard();
virtual void onDrawPicture(const SkPicture*, const SkMatrix*, const SkPaint*);
#ifdef SK_EXPERIMENTAL_SHADOWING
virtual void onDrawShadowedPicture(const SkPicture*,
const SkMatrix*,
const SkPaint*,
const SkShadowParams& params);
#endif
// Clip rectangle bounds. Called internally by saveLayer.
// returns false if the entire rectangle is entirely clipped out
// If non-NULL, The imageFilter parameter will be used to expand the clip
// and offscreen bounds for any margin required by the filter DAG.
bool clipRectBounds(const SkRect* bounds, SaveLayerFlags, SkIRect* intersection,
const SkImageFilter* imageFilter = NULL);
private:
/** After calling saveLayer(), there can be any number of devices that make
up the top-most drawing area. LayerIter can be used to iterate through
those devices. Note that the iterator is only valid until the next API
call made on the canvas. Ownership of all pointers in the iterator stays
with the canvas, so none of them should be modified or deleted.
*/
class LayerIter /*: SkNoncopyable*/ {
public:
/** Initialize iterator with canvas, and set values for 1st device */
LayerIter(SkCanvas*);
~LayerIter();
/** Return true if the iterator is done */
bool done() const { return fDone; }
/** Cycle to the next device */
void next();
// These reflect the current device in the iterator
SkBaseDevice* device() const;
const SkMatrix& matrix() const;
void clip(SkRegion*) const;
const SkPaint& paint() const;
int x() const;
int y() const;
private:
// used to embed the SkDrawIter object directly in our instance, w/o
// having to expose that class def to the public. There is an assert
// in our constructor to ensure that fStorage is large enough
// (though needs to be a compile-time-assert!). We use intptr_t to work
// safely with 32 and 64 bit machines (to ensure the storage is enough)
intptr_t fStorage[32];
class SkDrawIter* fImpl; // this points at fStorage
SkPaint fDefaultPaint;
bool fDone;
};
static bool BoundsAffectsClip(SaveLayerFlags);
static SaveLayerFlags LegacySaveFlagsToSaveLayerFlags(uint32_t legacySaveFlags);
static void DrawDeviceWithFilter(SkBaseDevice* src, const SkImageFilter* filter,
SkBaseDevice* dst, const SkIPoint& dstOrigin,
const SkMatrix& ctm);
enum ShaderOverrideOpacity {
kNone_ShaderOverrideOpacity, //!< there is no overriding shader (bitmap or image)
kOpaque_ShaderOverrideOpacity, //!< the overriding shader is opaque
kNotOpaque_ShaderOverrideOpacity, //!< the overriding shader may not be opaque
};
// notify our surface (if we have one) that we are about to draw, so it
// can perform copy-on-write or invalidate any cached images
void predrawNotify(bool willOverwritesEntireSurface = false);
void predrawNotify(const SkRect* rect, const SkPaint* paint, ShaderOverrideOpacity);
void predrawNotify(const SkRect* rect, const SkPaint* paint, bool shaderOverrideIsOpaque) {
this->predrawNotify(rect, paint, shaderOverrideIsOpaque ? kOpaque_ShaderOverrideOpacity
: kNotOpaque_ShaderOverrideOpacity);
}
SkBaseDevice* getDevice() const;
SkBaseDevice* getTopDevice() const;
class MCRec;
SkDeque fMCStack;
// points to top of stack
MCRec* fMCRec;
// the first N recs that can fit here mean we won't call malloc
enum {
kMCRecSize = 128, // most recent measurement
kMCRecCount = 32, // common depth for save/restores
kDeviceCMSize = 184, // most recent measurement
};
intptr_t fMCRecStorage[kMCRecSize * kMCRecCount / sizeof(intptr_t)];
intptr_t fDeviceCMStorage[kDeviceCMSize / sizeof(intptr_t)];
const SkSurfaceProps fProps;
int fSaveCount; // value returned by getSaveCount()
SkMetaData* fMetaData;
std::unique_ptr<SkRasterHandleAllocator> fAllocator;
SkSurface_Base* fSurfaceBase;
SkSurface_Base* getSurfaceBase() const { return fSurfaceBase; }
void setSurfaceBase(SkSurface_Base* sb) {
fSurfaceBase = sb;
}
friend class SkSurface_Base;
friend class SkSurface_Gpu;
SkIRect fClipRestrictionRect = SkIRect::MakeEmpty();
void doSave();
void checkForDeferredSave();
void internalSetMatrix(const SkMatrix&);
friend class SkDrawIter; // needs setupDrawForLayerDevice()
friend class AutoDrawLooper;
friend class SkDebugCanvas; // needs experimental fAllowSimplifyClip
friend class SkSurface_Raster; // needs getDevice()
friend class SkRecorder; // resetForNextPicture
friend class SkLiteRecorder; // resetForNextPicture
friend class SkNoDrawCanvas; // InitFlags
friend class SkPictureImageFilter; // SkCanvas(SkBaseDevice*, SkSurfaceProps*, InitFlags)
friend class SkPictureRecord; // predrawNotify (why does it need it? <reed>)
friend class SkPicturePlayback; // SaveFlagsToSaveLayerFlags
friend class SkDeferredCanvas; // For use of resetForNextPicture
friend class SkOverdrawCanvas;
friend class SkRasterHandleAllocator;
enum InitFlags {
kDefault_InitFlags = 0,
kConservativeRasterClip_InitFlag = 1 << 0,
};
SkCanvas(const SkIRect& bounds, InitFlags);
SkCanvas(SkBaseDevice* device, InitFlags);
SkCanvas(const SkBitmap&, std::unique_ptr<SkRasterHandleAllocator>,
SkRasterHandleAllocator::Handle);
void resetForNextPicture(const SkIRect& bounds);
// needs gettotalclip()
friend class SkCanvasStateUtils;
// call this each time we attach ourselves to a device
// - constructor
// - internalSaveLayer
void setupDevice(SkBaseDevice*);
SkBaseDevice* init(SkBaseDevice*, InitFlags);
/**
* Gets the bounds of the top level layer in global canvas coordinates. We don't want this
* to be public because it exposes decisions about layer sizes that are internal to the canvas.
*/
SkIRect getTopLayerBounds() const;
void internalDrawBitmapRect(const SkBitmap& bitmap, const SkRect* src,
const SkRect& dst, const SkPaint* paint,
SrcRectConstraint);
void internalDrawPaint(const SkPaint& paint);
void internalSaveLayer(const SaveLayerRec&, SaveLayerStrategy);
void internalDrawDevice(SkBaseDevice*, int x, int y, const SkPaint*);
// shared by save() and saveLayer()
void internalSave();
void internalRestore();
/*
* Returns true if drawing the specified rect (or all if it is null) with the specified
* paint (or default if null) would overwrite the entire root device of the canvas
* (i.e. the canvas' surface if it had one).
*/
bool wouldOverwriteEntireSurface(const SkRect*, const SkPaint*, ShaderOverrideOpacity) const;
/**
* Returns true if the paint's imagefilter can be invoked directly, without needed a layer.
*/
bool canDrawBitmapAsSprite(SkScalar x, SkScalar y, int w, int h, const SkPaint&);
/**
* Returns true if the clip (for any active layer) contains antialiasing.
* If the clip is empty, this will return false.
*/
bool androidFramework_isClipAA() const;
/**
* Keep track of the device clip bounds and if the matrix is scale-translate. This allows
* us to do a fast quick reject in the common case.
*/
bool fIsScaleTranslate;
SkRect fDeviceClipBounds;
bool fAllowSoftClip;
bool fAllowSimplifyClip;
class AutoValidateClip : ::SkNoncopyable {
public:
explicit AutoValidateClip(SkCanvas* canvas) : fCanvas(canvas) {
fCanvas->validateClip();
}
~AutoValidateClip() { fCanvas->validateClip(); }
private:
const SkCanvas* fCanvas;
};
#ifdef SK_DEBUG
void validateClip() const;
#else
void validateClip() const {}
#endif
typedef SkRefCnt INHERITED;
};
/** Stack helper class to automatically call restoreToCount() on the canvas
when this object goes out of scope. Use this to guarantee that the canvas
is restored to a known state.
*/
class SkAutoCanvasRestore : SkNoncopyable {
public:
SkAutoCanvasRestore(SkCanvas* canvas, bool doSave) : fCanvas(canvas), fSaveCount(0) {
if (fCanvas) {
fSaveCount = canvas->getSaveCount();
if (doSave) {
canvas->save();
}
}
}
~SkAutoCanvasRestore() {
if (fCanvas) {
fCanvas->restoreToCount(fSaveCount);
}
}
/**
* Perform the restore now, instead of waiting for the destructor. Will
* only do this once.
*/
void restore() {
if (fCanvas) {
fCanvas->restoreToCount(fSaveCount);
fCanvas = NULL;
}
}
private:
SkCanvas* fCanvas;
int fSaveCount;
};
#define SkAutoCanvasRestore(...) SK_REQUIRE_LOCAL_VAR(SkAutoCanvasRestore)
#endif