skia2/experimental/Intersection/CubicIntersection.cpp
skia.committer@gmail.com 12eea2b10d Sanitizing source files in Skia_Periodic_House_Keeping
git-svn-id: http://skia.googlecode.com/svn/trunk@7875 2bbb7eff-a529-9590-31e7-b0007b416f81
2013-02-27 07:10:10 +00:00

537 lines
23 KiB
C++

/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "CubicUtilities.h"
#include "CurveIntersection.h"
#include "Intersections.h"
#include "IntersectionUtilities.h"
#include "LineIntersection.h"
#include "LineUtilities.h"
#include "QuadraticUtilities.h"
#if ONE_OFF_DEBUG
static const double tLimits[2][2] = {{0.772784538, 0.77278492}, {0.999111748, 0.999112129}};
#endif
#define DEBUG_QUAD_PART 0
#define SWAP_TOP_DEBUG 0
static int quadPart(const Cubic& cubic, double tStart, double tEnd, Quadratic& simple) {
Cubic part;
sub_divide(cubic, tStart, tEnd, part);
Quadratic quad;
demote_cubic_to_quad(part, quad);
// FIXME: should reduceOrder be looser in this use case if quartic is going to blow up on an
// extremely shallow quadratic?
int order = reduceOrder(quad, simple, kReduceOrder_TreatAsFill);
#if DEBUG_QUAD_PART
SkDebugf("%s cubic=(%1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g) t=(%1.17g,%1.17g)\n",
__FUNCTION__, cubic[0].x, cubic[0].y, cubic[1].x, cubic[1].y, cubic[2].x, cubic[2].y,
cubic[3].x, cubic[3].y, tStart, tEnd);
SkDebugf("%s part=(%1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g)"
" quad=(%1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g)\n", __FUNCTION__, part[0].x, part[0].y,
part[1].x, part[1].y, part[2].x, part[2].y, part[3].x, part[3].y, quad[0].x, quad[0].y,
quad[1].x, quad[1].y, quad[2].x, quad[2].y);
SkDebugf("%s simple=(%1.17g,%1.17g", __FUNCTION__, simple[0].x, simple[0].y);
if (order > 1) {
SkDebugf(" %1.17g,%1.17g", simple[1].x, simple[1].y);
}
if (order > 2) {
SkDebugf(" %1.17g,%1.17g", simple[2].x, simple[2].y);
}
SkDebugf(")\n");
SkASSERT(order < 4 && order > 0);
#endif
return order;
}
static void intersectWithOrder(const Quadratic& simple1, int order1, const Quadratic& simple2,
int order2, Intersections& i) {
if (order1 == 3 && order2 == 3) {
intersect2(simple1, simple2, i);
} else if (order1 <= 2 && order2 <= 2) {
intersect((const _Line&) simple1, (const _Line&) simple2, i);
} else if (order1 == 3 && order2 <= 2) {
intersect(simple1, (const _Line&) simple2, i);
} else {
SkASSERT(order1 <= 2 && order2 == 3);
intersect(simple2, (const _Line&) simple1, i);
for (int s = 0; s < i.fUsed; ++s) {
SkTSwap(i.fT[0][s], i.fT[1][s]);
}
}
}
static double distanceFromEnd(double t) {
return t > 0.5 ? 1 - t : t;
}
// OPTIMIZATION: this used to try to guess the value for delta, and that may still be worthwhile
static void bumpForRetry(double t1, double t2, double& s1, double& e1, double& s2, double& e2) {
double dt1 = distanceFromEnd(t1);
double dt2 = distanceFromEnd(t2);
double delta = 1.0 / gPrecisionUnit;
if (dt1 < dt2) {
if (t1 == dt1) {
s1 = SkTMax(s1 - delta, 0.);
} else {
e1 = SkTMin(e1 + delta, 1.);
}
} else {
if (t2 == dt2) {
s2 = SkTMax(s2 - delta, 0.);
} else {
e2 = SkTMin(e2 + delta, 1.);
}
}
}
static bool doIntersect(const Cubic& cubic1, double t1s, double t1m, double t1e,
const Cubic& cubic2, double t2s, double t2m, double t2e, Intersections& i) {
bool result = false;
i.upDepth();
// divide the quadratics at the new t value and try again
double p1s = t1s;
double p1e = t1m;
for (int p1 = 0; p1 < 2; ++p1) {
Quadratic s1a;
int o1a = quadPart(cubic1, p1s, p1e, s1a);
double p2s = t2s;
double p2e = t2m;
for (int p2 = 0; p2 < 2; ++p2) {
Quadratic s2a;
int o2a = quadPart(cubic2, p2s, p2e, s2a);
Intersections locals;
#if ONE_OFF_DEBUG
if (tLimits[0][0] >= p1s && tLimits[0][1] <= p1e
&& tLimits[1][0] >= p2s && tLimits[1][1] <= p2e) {
SkDebugf("t1=(%1.9g,%1.9g) o1=%d t2=(%1.9g,%1.9g) o2=%d\n",
p1s, p1e, o1a, p2s, p2e, o2a);
if (o1a == 2) {
SkDebugf("{{%1.9g,%1.9g}, {%1.9g,%1.9g}},\n",
s1a[0].x, s1a[0].y, s1a[1].x, s1a[1].y);
} else {
SkDebugf("{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n",
s1a[0].x, s1a[0].y, s1a[1].x, s1a[1].y, s1a[2].x, s1a[2].y);
}
if (o2a == 2) {
SkDebugf("{{%1.9g,%1.9g}, {%1.9g,%1.9g}},\n",
s2a[0].x, s2a[0].y, s2a[1].x, s2a[1].y);
} else {
SkDebugf("{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n",
s2a[0].x, s2a[0].y, s2a[1].x, s2a[1].y, s2a[2].x, s2a[2].y);
}
Intersections xlocals;
intersectWithOrder(s1a, o1a, s2a, o2a, xlocals);
SkDebugf("xlocals.fUsed=%d depth=%d\n", xlocals.used(), i.depth());
}
#endif
intersectWithOrder(s1a, o1a, s2a, o2a, locals);
for (int tIdx = 0; tIdx < locals.used(); ++tIdx) {
double to1 = p1s + (p1e - p1s) * locals.fT[0][tIdx];
double to2 = p2s + (p2e - p2s) * locals.fT[1][tIdx];
// if the computed t is not sufficiently precise, iterate
_Point p1, p2;
xy_at_t(cubic1, to1, p1.x, p1.y);
xy_at_t(cubic2, to2, p2.x, p2.y);
#if ONE_OFF_DEBUG
SkDebugf("to1=%1.9g p1=(%1.9g,%1.9g) to2=%1.9g p2=(%1.9g,%1.9g) d=%1.9g\n",
to1, p1.x, p1.y, to2, p2.x, p2.y, p1.distance(p2));
#endif
if (p1.approximatelyEqualHalf(p2)) {
i.insertSwap(to1, to2, p1);
result = true;
} else {
result = doIntersect(cubic1, p1s, to1, p1e, cubic2, p2s, to2, p2e, i);
if (!result && p1.approximatelyEqual(p2)) {
i.insertSwap(to1, to2, p1);
#if SWAP_TOP_DEBUG
SkDebugf("!!!\n");
#endif
result = true;
} else
// if both cubics curve in the same direction, the quadratic intersection
// may mark a range that does not contain the cubic intersection. If no
// intersection is found, look again including the t distance of the
// of the quadratic intersection nearest a quadratic end (which in turn is
// nearest the actual cubic)
if (!result) {
double b1s = p1s;
double b1e = p1e;
double b2s = p2s;
double b2e = p2e;
bumpForRetry(locals.fT[0][tIdx], locals.fT[1][tIdx], b1s, b1e, b2s, b2e);
result = doIntersect(cubic1, b1s, to1, b1e, cubic2, b2s, to2, b2e, i);
}
}
}
p2s = p2e;
p2e = t2e;
}
p1s = p1e;
p1e = t1e;
}
i.downDepth();
return result;
}
// this flavor approximates the cubics with quads to find the intersecting ts
// OPTIMIZE: if this strategy proves successful, the quad approximations, or the ts used
// to create the approximations, could be stored in the cubic segment
// FIXME: this strategy needs to intersect the convex hull on either end with the opposite to
// account for inset quadratics that cause the endpoint intersection to avoid detection
// the segments can be very short -- the length of the maximum quadratic error (precision)
static bool intersect2(const Cubic& cubic1, double t1s, double t1e, const Cubic& cubic2,
double t2s, double t2e, double precisionScale, Intersections& i) {
Cubic c1, c2;
sub_divide(cubic1, t1s, t1e, c1);
sub_divide(cubic2, t2s, t2e, c2);
SkTDArray<double> ts1;
cubic_to_quadratics(c1, calcPrecision(c1) * precisionScale, ts1);
SkTDArray<double> ts2;
cubic_to_quadratics(c2, calcPrecision(c2) * precisionScale, ts2);
double t1Start = t1s;
int ts1Count = ts1.count();
for (int i1 = 0; i1 <= ts1Count; ++i1) {
const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1;
const double t1 = t1s + (t1e - t1s) * tEnd1;
Quadratic s1;
int o1 = quadPart(cubic1, t1Start, t1, s1);
double t2Start = t2s;
int ts2Count = ts2.count();
for (int i2 = 0; i2 <= ts2Count; ++i2) {
const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1;
const double t2 = t2s + (t2e - t2s) * tEnd2;
Quadratic s2;
int o2 = quadPart(cubic2, t2Start, t2, s2);
#if ONE_OFF_DEBUG
if (tLimits[0][0] >= t1Start && tLimits[0][1] <= t1
&& tLimits[1][0] >= t2Start && tLimits[1][1] <= t2) {
Cubic cSub1, cSub2;
sub_divide(cubic1, t1Start, tEnd1, cSub1);
sub_divide(cubic2, t2Start, tEnd2, cSub2);
SkDebugf("t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)\n",
t1Start, t1, t2Start, t2);
Intersections xlocals;
intersectWithOrder(s1, o1, s2, o2, xlocals);
SkDebugf("xlocals.fUsed=%d\n", xlocals.used());
}
#endif
Intersections locals;
intersectWithOrder(s1, o1, s2, o2, locals);
for (int tIdx = 0; tIdx < locals.used(); ++tIdx) {
double to1 = t1Start + (t1 - t1Start) * locals.fT[0][tIdx];
double to2 = t2Start + (t2 - t2Start) * locals.fT[1][tIdx];
// if the computed t is not sufficiently precise, iterate
_Point p1, p2;
xy_at_t(cubic1, to1, p1.x, p1.y);
xy_at_t(cubic2, to2, p2.x, p2.y);
if (p1.approximatelyEqual(p2)) {
i.insert(to1, to2, p1);
} else {
#if ONE_OFF_DEBUG
if (tLimits[0][0] >= t1Start && tLimits[0][1] <= t1
&& tLimits[1][0] >= t2Start && tLimits[1][1] <= t2) {
SkDebugf("t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)\n",
t1Start, t1, t2Start, t2);
}
#endif
bool found = doIntersect(cubic1, t1Start, to1, t1, cubic2, t2Start, to2, t2, i);
if (!found) {
double b1s = t1Start;
double b1e = t1;
double b2s = t2Start;
double b2e = t2;
bumpForRetry(locals.fT[0][tIdx], locals.fT[1][tIdx], b1s, b1e, b2s, b2e);
doIntersect(cubic1, b1s, to1, b1e, cubic2, b2s, to2, b2e, i);
}
}
}
int coincidentCount = locals.coincidentUsed();
if (coincidentCount) {
// FIXME: one day, we'll probably need to allow coincident + non-coincident pts
SkASSERT(coincidentCount == locals.used());
SkASSERT(coincidentCount == 2);
double coTs[2][2];
for (int tIdx = 0; tIdx < coincidentCount; ++tIdx) {
if (locals.fIsCoincident[0] & (1 << tIdx)) {
coTs[0][tIdx] = t1Start + (t1 - t1Start) * locals.fT[0][tIdx];
}
if (locals.fIsCoincident[1] & (1 << tIdx)) {
coTs[1][tIdx] = t2Start + (t2 - t2Start) * locals.fT[1][tIdx];
}
}
i.insertCoincidentPair(coTs[0][0], coTs[0][1], coTs[1][0], coTs[1][1],
locals.fPt[0], locals.fPt[1]);
}
t2Start = t2;
}
t1Start = t1;
}
return i.intersected();
}
// this flavor centers potential intersections recursively. In contrast, '2' may inadvertently
// chase intersections near quadratic ends, requiring odd hacks to find them.
static bool intersect3(const Cubic& cubic1, double t1s, double t1e, const Cubic& cubic2,
double t2s, double t2e, double precisionScale, Intersections& i) {
i.upDepth();
bool result = false;
Cubic c1, c2;
sub_divide(cubic1, t1s, t1e, c1);
sub_divide(cubic2, t2s, t2e, c2);
SkTDArray<double> ts1;
cubic_to_quadratics(c1, calcPrecision(c1) * precisionScale, ts1);
SkTDArray<double> ts2;
cubic_to_quadratics(c2, calcPrecision(c2) * precisionScale, ts2);
double t1Start = t1s;
int ts1Count = ts1.count();
for (int i1 = 0; i1 <= ts1Count; ++i1) {
const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1;
const double t1 = t1s + (t1e - t1s) * tEnd1;
Quadratic s1;
int o1 = quadPart(cubic1, t1Start, t1, s1);
double t2Start = t2s;
int ts2Count = ts2.count();
for (int i2 = 0; i2 <= ts2Count; ++i2) {
const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1;
const double t2 = t2s + (t2e - t2s) * tEnd2;
if (cubic1 == cubic2 && t1Start >= t2Start) {
t2Start = t2;
continue;
}
Quadratic s2;
int o2 = quadPart(cubic2, t2Start, t2, s2);
#if ONE_OFF_DEBUG
if (tLimits[0][0] >= t1Start && tLimits[0][1] <= t1
&& tLimits[1][0] >= t2Start && tLimits[1][1] <= t2) {
Cubic cSub1, cSub2;
sub_divide(cubic1, t1Start, tEnd1, cSub1);
sub_divide(cubic2, t2Start, tEnd2, cSub2);
SkDebugf("t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)\n",
t1Start, t1, t2Start, t2);
Intersections xlocals;
intersectWithOrder(s1, o1, s2, o2, xlocals);
SkDebugf("xlocals.fUsed=%d\n", xlocals.used());
}
#endif
Intersections locals;
intersectWithOrder(s1, o1, s2, o2, locals);
double coStart[2] = { -1 };
_Point coPoint;
for (int tIdx = 0; tIdx < locals.used(); ++tIdx) {
double to1 = t1Start + (t1 - t1Start) * locals.fT[0][tIdx];
double to2 = t2Start + (t2 - t2Start) * locals.fT[1][tIdx];
// if the computed t is not sufficiently precise, iterate
_Point p1, p2;
xy_at_t(cubic1, to1, p1.x, p1.y);
xy_at_t(cubic2, to2, p2.x, p2.y);
if (p1.approximatelyEqual(p2)) {
if (locals.fIsCoincident[0] & 1 << tIdx) {
if (coStart[0] < 0) {
coStart[0] = to1;
coStart[1] = to2;
coPoint = p1;
} else {
i.insertCoincidentPair(coStart[0], to1, coStart[1], to2, coPoint, p1);
coStart[0] = -1;
}
result = true;
} else if (cubic1 != cubic2 || !approximately_equal(to1, to2)) {
if (i.swapped()) { // FIXME: insert should respect swap
i.insert(to2, to1, p1);
} else {
i.insert(to1, to2, p1);
}
result = true;
}
} else {
double offset = precisionScale / 16; // FIME: const is arbitrary -- test & refine
double c1Min = SkTMax(0., to1 - offset);
double c1Max = SkTMin(1., to1 + offset);
double c2Min = SkTMax(0., to2 - offset);
double c2Max = SkTMin(1., to2 + offset);
bool found = intersect3(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
if (false && !found) {
// either offset was overagressive or cubics didn't really intersect
// if they didn't intersect, then quad tangents ought to be nearly parallel
offset = precisionScale / 2; // try much less agressive offset
c1Min = SkTMax(0., to1 - offset);
c1Max = SkTMin(1., to1 + offset);
c2Min = SkTMax(0., to2 - offset);
c2Max = SkTMin(1., to2 + offset);
found = intersect3(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
if (found) {
SkDebugf("%s *** over-aggressive? offset=%1.9g depth=%d\n", __FUNCTION__,
offset, i.depth());
}
// try parallel measure
_Vector d1 = dxdy_at_t(cubic1, to1);
_Vector d2 = dxdy_at_t(cubic2, to2);
double shallow = d1.cross(d2);
#if 1 || ONE_OFF_DEBUG // not sure this is worth debugging
if (!approximately_zero(shallow)) {
SkDebugf("%s *** near-miss? shallow=%1.9g depth=%d\n", __FUNCTION__,
offset, i.depth());
}
#endif
if (i.depth() == 1 && shallow < 0.6) {
SkDebugf("%s !!! near-miss? shallow=%1.9g depth=%d\n", __FUNCTION__,
offset, i.depth());
}
}
}
}
SkASSERT(coStart[0] == -1);
t2Start = t2;
}
t1Start = t1;
}
i.downDepth();
return result;
}
// intersect the end of the cubic with the other. Try lines from the end to control and opposite
// end to determine range of t on opposite cubic.
static bool intersectEnd(const Cubic& cubic1, bool start, const Cubic& cubic2, const _Rect& bounds2,
Intersections& i) {
_Line line;
int t1Index = start ? 0 : 3;
line[0] = cubic1[t1Index];
// don't bother if the two cubics are connnected
if (line[0].approximatelyEqual(cubic2[0]) || line[0].approximatelyEqual(cubic2[3])) {
return false;
}
double tMin = 1, tMax = 0;
for (int index = 0; index < 4; ++index) {
if (index == t1Index) {
continue;
}
_Vector dxy1 = cubic1[index] - line[0];
dxy1 /= gPrecisionUnit;
line[1] = line[0] + dxy1;
_Rect lineBounds;
lineBounds.setBounds(line);
if (!bounds2.intersects(lineBounds)) {
continue;
}
Intersections local;
if (!intersect(cubic2, line, local)) {
continue;
}
for (int index = 0; index < local.fUsed; ++index) {
tMin = SkTMin(tMin, local.fT[0][index]);
tMax = SkTMax(tMax, local.fT[0][index]);
}
}
if (tMin > tMax) {
return false;
}
double tMin1 = start ? 0 : 1 - 1.0 / gPrecisionUnit;
double tMax1 = start ? 1.0 / gPrecisionUnit : 1;
double tMin2 = SkTMax(tMin - 1.0 / gPrecisionUnit, 0.0);
double tMax2 = SkTMin(tMax + 1.0 / gPrecisionUnit, 1.0);
return intersect3(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, i);
}
// FIXME: add intersection of convex hull on cubics' ends with the opposite cubic. The hull line
// segments can be constructed to be only as long as the calculated precision suggests. If the hull
// line segments intersect the cubic, then use the intersections to construct a subdivision for
// quadratic curve fitting.
bool intersect2(const Cubic& c1, const Cubic& c2, Intersections& i) {
bool result = intersect2(c1, 0, 1, c2, 0, 1, 1, i);
// FIXME: pass in cached bounds from caller
_Rect c1Bounds, c2Bounds;
c1Bounds.setBounds(c1); // OPTIMIZE use setRawBounds ?
c2Bounds.setBounds(c2);
result |= intersectEnd(c1, false, c2, c2Bounds, i);
result |= intersectEnd(c1, true, c2, c2Bounds, i);
i.swap();
result |= intersectEnd(c2, false, c1, c1Bounds, i);
result |= intersectEnd(c2, true, c1, c1Bounds, i);
i.swap();
return result;
}
const double CLOSE_ENOUGH = 0.001;
static bool closeStart(const Cubic& cubic, int cubicIndex, Intersections& i, _Point& pt) {
if (i.fT[cubicIndex][0] != 0 || i.fT[cubicIndex][1] > CLOSE_ENOUGH) {
return false;
}
pt = xy_at_t(cubic, (i.fT[cubicIndex][0] + i.fT[cubicIndex][1]) / 2);
return true;
}
static bool closeEnd(const Cubic& cubic, int cubicIndex, Intersections& i, _Point& pt) {
int last = i.used() - 1;
if (i.fT[cubicIndex][last] != 1 || i.fT[cubicIndex][last - 1] < 1 - CLOSE_ENOUGH) {
return false;
}
pt = xy_at_t(cubic, (i.fT[cubicIndex][last] + i.fT[cubicIndex][last - 1]) / 2);
return true;
}
bool intersect3(const Cubic& c1, const Cubic& c2, Intersections& i) {
bool result = intersect3(c1, 0, 1, c2, 0, 1, 1, i);
// FIXME: pass in cached bounds from caller
_Rect c1Bounds, c2Bounds;
c1Bounds.setBounds(c1); // OPTIMIZE use setRawBounds ?
c2Bounds.setBounds(c2);
result |= intersectEnd(c1, false, c2, c2Bounds, i);
result |= intersectEnd(c1, true, c2, c2Bounds, i);
i.swap();
result |= intersectEnd(c2, false, c1, c1Bounds, i);
result |= intersectEnd(c2, true, c1, c1Bounds, i);
i.swap();
// If an end point and a second point very close to the end is returned, the second
// point may have been detected because the approximate quads
// intersected at the end and close to it. Verify that the second point is valid.
if (i.used() <= 1 || i.coincidentUsed()) {
return result;
}
_Point pt[2];
if (closeStart(c1, 0, i, pt[0]) && closeStart(c2, 1, i, pt[1])
&& pt[0].approximatelyEqual(pt[1])) {
i.removeOne(1);
}
if (closeEnd(c1, 0, i, pt[0]) && closeEnd(c2, 1, i, pt[1])
&& pt[0].approximatelyEqual(pt[1])) {
i.removeOne(i.used() - 2);
}
return result;
}
// Up promote the quad to a cubic.
// OPTIMIZATION If this is a common use case, optimize by duplicating
// the intersect 3 loop to avoid the promotion / demotion code
int intersect(const Cubic& cubic, const Quadratic& quad, Intersections& i) {
Cubic up;
toCubic(quad, up);
(void) intersect3(cubic, up, i);
return i.used();
}
/* http://www.ag.jku.at/compass/compasssample.pdf
( Self-Intersection Problems and Approximate Implicitization by Jan B. Thomassen
Centre of Mathematics for Applications, University of Oslo http://www.cma.uio.no janbth@math.uio.no
SINTEF Applied Mathematics http://www.sintef.no )
describes a method to find the self intersection of a cubic by taking the gradient of the implicit
form dotted with the normal, and solving for the roots. My math foo is too poor to implement this.*/
int intersect(const Cubic& c, Intersections& i) {
// check to see if x or y end points are the extrema. Are other quick rejects possible?
if ((between(c[0].x, c[1].x, c[3].x) && between(c[0].x, c[2].x, c[3].x))
|| (between(c[0].y, c[1].y, c[3].y) && between(c[0].y, c[2].y, c[3].y))) {
return false;
}
(void) intersect3(c, c, i);
return i.used();
}