12f25a2c22
math.h contains NAN, an expression that evaluates to a quiet float NaN While here, INFINITY is also a float, so the casts aren't needed. Change-Id: Ibdd8f5a2767651cd4382d700e9125b832473a304 Reviewed-on: https://skia-review.googlesource.com/132087 Auto-Submit: Mike Klein <mtklein@chromium.org> Commit-Queue: Brian Osman <brianosman@google.com> Reviewed-by: Brian Osman <brianosman@google.com>
211 lines
7.1 KiB
C++
211 lines
7.1 KiB
C++
/*
|
|
* Copyright 2006 The Android Open Source Project
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#ifndef SkFloatingPoint_DEFINED
|
|
#define SkFloatingPoint_DEFINED
|
|
|
|
#include "../private/SkFloatBits.h"
|
|
#include "SkTypes.h"
|
|
#include "SkSafe_math.h"
|
|
#include <float.h>
|
|
#include <math.h>
|
|
|
|
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1
|
|
#include <xmmintrin.h>
|
|
#elif defined(SK_ARM_HAS_NEON)
|
|
#include <arm_neon.h>
|
|
#endif
|
|
|
|
// For _POSIX_VERSION
|
|
#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
|
|
#include <unistd.h>
|
|
#endif
|
|
|
|
// C++98 cmath std::pow seems to be the earliest portable way to get float pow.
|
|
// However, on Linux including cmath undefines isfinite.
|
|
// http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14608
|
|
static inline float sk_float_pow(float base, float exp) {
|
|
return powf(base, exp);
|
|
}
|
|
|
|
#define sk_float_sqrt(x) sqrtf(x)
|
|
#define sk_float_sin(x) sinf(x)
|
|
#define sk_float_cos(x) cosf(x)
|
|
#define sk_float_tan(x) tanf(x)
|
|
#define sk_float_floor(x) floorf(x)
|
|
#define sk_float_ceil(x) ceilf(x)
|
|
#define sk_float_trunc(x) truncf(x)
|
|
#ifdef SK_BUILD_FOR_MAC
|
|
# define sk_float_acos(x) static_cast<float>(acos(x))
|
|
# define sk_float_asin(x) static_cast<float>(asin(x))
|
|
#else
|
|
# define sk_float_acos(x) acosf(x)
|
|
# define sk_float_asin(x) asinf(x)
|
|
#endif
|
|
#define sk_float_atan2(y,x) atan2f(y,x)
|
|
#define sk_float_abs(x) fabsf(x)
|
|
#define sk_float_copysign(x, y) copysignf(x, y)
|
|
#define sk_float_mod(x,y) fmodf(x,y)
|
|
#define sk_float_exp(x) expf(x)
|
|
#define sk_float_log(x) logf(x)
|
|
|
|
#define sk_float_round(x) sk_float_floor((x) + 0.5f)
|
|
|
|
// can't find log2f on android, but maybe that just a tool bug?
|
|
#ifdef SK_BUILD_FOR_ANDROID
|
|
static inline float sk_float_log2(float x) {
|
|
const double inv_ln_2 = 1.44269504088896;
|
|
return (float)(log(x) * inv_ln_2);
|
|
}
|
|
#else
|
|
#define sk_float_log2(x) log2f(x)
|
|
#endif
|
|
|
|
static inline bool sk_float_isfinite(float x) {
|
|
return SkFloatBits_IsFinite(SkFloat2Bits(x));
|
|
}
|
|
|
|
static inline bool sk_float_isinf(float x) {
|
|
return SkFloatBits_IsInf(SkFloat2Bits(x));
|
|
}
|
|
|
|
static inline bool sk_float_isnan(float x) {
|
|
return !(x == x);
|
|
}
|
|
|
|
#define sk_double_isnan(a) sk_float_isnan(a)
|
|
|
|
#define SK_MaxS32FitsInFloat 2147483520
|
|
#define SK_MinS32FitsInFloat -SK_MaxS32FitsInFloat
|
|
|
|
#define SK_MaxS64FitsInFloat (SK_MaxS64 >> (63-24) << (63-24)) // 0x7fffff8000000000
|
|
#define SK_MinS64FitsInFloat -SK_MaxS64FitsInFloat
|
|
|
|
/**
|
|
* Return the closest int for the given float. Returns SK_MaxS32FitsInFloat for NaN.
|
|
*/
|
|
static inline int sk_float_saturate2int(float x) {
|
|
x = SkTMin<float>(x, SK_MaxS32FitsInFloat);
|
|
x = SkTMax<float>(x, SK_MinS32FitsInFloat);
|
|
return (int)x;
|
|
}
|
|
|
|
/**
|
|
* Return the closest int for the given double. Returns SK_MaxS32 for NaN.
|
|
*/
|
|
static inline int sk_double_saturate2int(double x) {
|
|
x = SkTMin<double>(x, SK_MaxS32);
|
|
x = SkTMax<double>(x, SK_MinS32);
|
|
return (int)x;
|
|
}
|
|
|
|
/**
|
|
* Return the closest int64_t for the given float. Returns SK_MaxS64FitsInFloat for NaN.
|
|
*/
|
|
static inline int64_t sk_float_saturate2int64(float x) {
|
|
x = SkTMin<float>(x, SK_MaxS64FitsInFloat);
|
|
x = SkTMax<float>(x, SK_MinS64FitsInFloat);
|
|
return (int64_t)x;
|
|
}
|
|
|
|
#define sk_float_floor2int(x) sk_float_saturate2int(sk_float_floor(x))
|
|
#define sk_float_round2int(x) sk_float_saturate2int(sk_float_floor((x) + 0.5f))
|
|
#define sk_float_ceil2int(x) sk_float_saturate2int(sk_float_ceil(x))
|
|
|
|
#define sk_float_floor2int_no_saturate(x) (int)sk_float_floor(x)
|
|
#define sk_float_round2int_no_saturate(x) (int)sk_float_floor((x) + 0.5f)
|
|
#define sk_float_ceil2int_no_saturate(x) (int)sk_float_ceil(x)
|
|
|
|
#define sk_double_floor(x) floor(x)
|
|
#define sk_double_round(x) floor((x) + 0.5)
|
|
#define sk_double_ceil(x) ceil(x)
|
|
#define sk_double_floor2int(x) (int)floor(x)
|
|
#define sk_double_round2int(x) (int)floor((x) + 0.5)
|
|
#define sk_double_ceil2int(x) (int)ceil(x)
|
|
|
|
// Cast double to float, ignoring any warning about too-large finite values being cast to float.
|
|
// Clang thinks this is undefined, but it's actually implementation defined to return either
|
|
// the largest float or infinity (one of the two bracketing representable floats). Good enough!
|
|
#if defined(__clang__) && (__clang_major__ * 1000 + __clang_minor__) >= 3007
|
|
__attribute__((no_sanitize("float-cast-overflow")))
|
|
#endif
|
|
static inline float sk_double_to_float(double x) {
|
|
return static_cast<float>(x);
|
|
}
|
|
|
|
#define SK_FloatNaN NAN
|
|
#define SK_FloatInfinity (+INFINITY)
|
|
#define SK_FloatNegativeInfinity (-INFINITY)
|
|
|
|
static inline float sk_float_rsqrt_portable(float x) {
|
|
// Get initial estimate.
|
|
int i;
|
|
memcpy(&i, &x, 4);
|
|
i = 0x5F1FFFF9 - (i>>1);
|
|
float estimate;
|
|
memcpy(&estimate, &i, 4);
|
|
|
|
// One step of Newton's method to refine.
|
|
const float estimate_sq = estimate*estimate;
|
|
estimate *= 0.703952253f*(2.38924456f-x*estimate_sq);
|
|
return estimate;
|
|
}
|
|
|
|
// Fast, approximate inverse square root.
|
|
// Compare to name-brand "1.0f / sk_float_sqrt(x)". Should be around 10x faster on SSE, 2x on NEON.
|
|
static inline float sk_float_rsqrt(float x) {
|
|
// We want all this inlined, so we'll inline SIMD and just take the hit when we don't know we've got
|
|
// it at compile time. This is going to be too fast to productively hide behind a function pointer.
|
|
//
|
|
// We do one step of Newton's method to refine the estimates in the NEON and portable paths. No
|
|
// refinement is faster, but very innacurate. Two steps is more accurate, but slower than 1/sqrt.
|
|
//
|
|
// Optimized constants in the portable path courtesy of http://rrrola.wz.cz/inv_sqrt.html
|
|
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1
|
|
return _mm_cvtss_f32(_mm_rsqrt_ss(_mm_set_ss(x)));
|
|
#elif defined(SK_ARM_HAS_NEON)
|
|
// Get initial estimate.
|
|
const float32x2_t xx = vdup_n_f32(x); // Clever readers will note we're doing everything 2x.
|
|
float32x2_t estimate = vrsqrte_f32(xx);
|
|
|
|
// One step of Newton's method to refine.
|
|
const float32x2_t estimate_sq = vmul_f32(estimate, estimate);
|
|
estimate = vmul_f32(estimate, vrsqrts_f32(xx, estimate_sq));
|
|
return vget_lane_f32(estimate, 0); // 1 will work fine too; the answer's in both places.
|
|
#else
|
|
return sk_float_rsqrt_portable(x);
|
|
#endif
|
|
}
|
|
|
|
// This is the number of significant digits we can print in a string such that when we read that
|
|
// string back we get the floating point number we expect. The minimum value C requires is 6, but
|
|
// most compilers support 9
|
|
#ifdef FLT_DECIMAL_DIG
|
|
#define SK_FLT_DECIMAL_DIG FLT_DECIMAL_DIG
|
|
#else
|
|
#define SK_FLT_DECIMAL_DIG 9
|
|
#endif
|
|
|
|
// IEEE defines how float divide behaves for non-finite values and zero-denoms, but C does not
|
|
// so we have a helper that suppresses the possible undefined-behavior warnings.
|
|
|
|
#ifdef __clang__
|
|
__attribute__((no_sanitize("float-divide-by-zero")))
|
|
#endif
|
|
static inline float sk_ieee_float_divide(float numer, float denom) {
|
|
return numer / denom;
|
|
}
|
|
|
|
#ifdef __clang__
|
|
__attribute__((no_sanitize("float-divide-by-zero")))
|
|
#endif
|
|
static inline double sk_ieee_double_divide(double numer, double denom) {
|
|
return numer / denom;
|
|
}
|
|
|
|
#endif
|