skia2/bench/nanobench.cpp
Greg Daniel 02497d4016 Update nanobench and skpbench to use flush API for gpu syncing.
This also allows us to remove all the one off Fence code that we
implemented in all the backend TestContexts

Change-Id: I9ff7ba4690cf3f19a180f51fc510991a112bb62c
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/272456
Reviewed-by: Chris Dalton <csmartdalton@google.com>
Commit-Queue: Greg Daniel <egdaniel@google.com>
2020-02-24 17:21:35 +00:00

1447 lines
56 KiB
C++

/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include <ctype.h>
#include "bench/nanobench.h"
#include "bench/AndroidCodecBench.h"
#include "bench/Benchmark.h"
#include "bench/BitmapRegionDecoderBench.h"
#include "bench/CodecBench.h"
#include "bench/CodecBenchPriv.h"
#include "bench/GMBench.h"
#include "bench/RecordingBench.h"
#include "bench/ResultsWriter.h"
#include "bench/SKPAnimationBench.h"
#include "bench/SKPBench.h"
#include "bench/SkGlyphCacheBench.h"
#include "include/android/SkBitmapRegionDecoder.h"
#include "include/codec/SkAndroidCodec.h"
#include "include/codec/SkCodec.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkData.h"
#include "include/core/SkGraphics.h"
#include "include/core/SkPictureRecorder.h"
#include "include/core/SkString.h"
#include "include/core/SkSurface.h"
#include "include/core/SkTime.h"
#include "src/core/SkAutoMalloc.h"
#include "src/core/SkColorSpacePriv.h"
#include "src/core/SkLeanWindows.h"
#include "src/core/SkOSFile.h"
#include "src/core/SkTaskGroup.h"
#include "src/core/SkTraceEvent.h"
#include "src/utils/SkJSONWriter.h"
#include "src/utils/SkOSPath.h"
#include "tools/AutoreleasePool.h"
#include "tools/CrashHandler.h"
#include "tools/ProcStats.h"
#include "tools/Stats.h"
#include "tools/flags/CommonFlags.h"
#include "tools/flags/CommonFlagsConfig.h"
#include "tools/ios_utils.h"
#include "tools/trace/EventTracingPriv.h"
#include "tools/trace/SkDebugfTracer.h"
#ifdef SK_XML
#include "experimental/svg/model/SkSVGDOM.h"
#endif // SK_XML
#include <stdlib.h>
#include <thread>
extern bool gSkForceRasterPipelineBlitter;
extern bool gUseSkVMBlitter;
extern bool gSkVMJITViaDylib;
#ifndef SK_BUILD_FOR_WIN
#include <unistd.h>
#endif
#include "src/gpu/GrCaps.h"
#include "src/gpu/GrContextPriv.h"
#include "src/gpu/SkGr.h"
#include "src/gpu/gl/GrGLDefines.h"
#include "src/gpu/gl/GrGLGpu.h"
#include "src/gpu/gl/GrGLUtil.h"
#include "tools/gpu/GrContextFactory.h"
using sk_gpu_test::ContextInfo;
using sk_gpu_test::GrContextFactory;
using sk_gpu_test::TestContext;
GrContextOptions grContextOpts;
static const int kAutoTuneLoops = 0;
static SkString loops_help_txt() {
SkString help;
help.printf("Number of times to run each bench. Set this to %d to auto-"
"tune for each bench. Timings are only reported when auto-tuning.",
kAutoTuneLoops);
return help;
}
static SkString to_string(int n) {
SkString str;
str.appendS32(n);
return str;
}
static DEFINE_int(loops, kAutoTuneLoops, loops_help_txt().c_str());
static DEFINE_int(samples, 10, "Number of samples to measure for each bench.");
static DEFINE_int(ms, 0, "If >0, run each bench for this many ms instead of obeying --samples.");
static DEFINE_int(overheadLoops, 100000, "Loops to estimate timer overhead.");
static DEFINE_double(overheadGoal, 0.0001,
"Loop until timer overhead is at most this fraction of our measurments.");
static DEFINE_double(gpuMs, 5, "Target bench time in millseconds for GPU.");
static DEFINE_int(gpuFrameLag, 5,
"If unknown, estimated maximum number of frames GPU allows to lag.");
static DEFINE_string(outResultsFile, "", "If given, write results here as JSON.");
static DEFINE_int(maxCalibrationAttempts, 3,
"Try up to this many times to guess loops for a bench, or skip the bench.");
static DEFINE_int(maxLoops, 1000000, "Never run a bench more times than this.");
static DEFINE_string(clip, "0,0,1000,1000", "Clip for SKPs.");
static DEFINE_string(scales, "1.0", "Space-separated scales for SKPs.");
static DEFINE_string(zoom, "1.0,0",
"Comma-separated zoomMax,zoomPeriodMs factors for a periodic SKP zoom "
"function that ping-pongs between 1.0 and zoomMax.");
static DEFINE_bool(bbh, true, "Build a BBH for SKPs?");
static DEFINE_bool(mpd, true, "Use MultiPictureDraw for the SKPs?");
static DEFINE_bool(loopSKP, true, "Loop SKPs like we do for micro benches?");
static DEFINE_int(flushEvery, 10, "Flush --outResultsFile every Nth run.");
static DEFINE_bool(gpuStats, false, "Print GPU stats after each gpu benchmark?");
static DEFINE_bool(gpuStatsDump, false, "Dump GPU states after each benchmark to json");
static DEFINE_bool(keepAlive, false, "Print a message every so often so that we don't time out");
static DEFINE_bool(csv, false, "Print status in CSV format");
static DEFINE_string(sourceType, "",
"Apply usual --match rules to source type: bench, gm, skp, image, etc.");
static DEFINE_string(benchType, "",
"Apply usual --match rules to bench type: micro, recording, "
"piping, playback, skcodec, etc.");
static DEFINE_bool(forceRasterPipeline, false, "sets gSkForceRasterPipelineBlitter");
static DEFINE_bool(skvm, false, "sets gUseSkVMBlitter and gSkVMJITViaDylib");
static DEFINE_bool2(pre_log, p, false,
"Log before running each test. May be incomprehensible when threading");
static DEFINE_bool(cpu, true, "master switch for running CPU-bound work.");
static DEFINE_bool(gpu, true, "master switch for running GPU-bound work.");
static DEFINE_bool(dryRun, false,
"just print the tests that would be run, without actually running them.");
static DEFINE_string(images, "",
"List of images and/or directories to decode. A directory with no images"
" is treated as a fatal error.");
static DEFINE_bool(simpleCodec, false,
"Runs of a subset of the codec tests, always N32, Premul or Opaque");
static DEFINE_string2(match, m, nullptr,
"[~][^]substring[$] [...] of name to run.\n"
"Multiple matches may be separated by spaces.\n"
"~ causes a matching name to always be skipped\n"
"^ requires the start of the name to match\n"
"$ requires the end of the name to match\n"
"^ and $ requires an exact match\n"
"If a name does not match any list entry,\n"
"it is skipped unless some list entry starts with ~");
static DEFINE_bool2(quiet, q, false, "if true, don't print status updates.");
static DEFINE_bool2(verbose, v, false, "enable verbose output from the test driver.");
static DEFINE_string(skps, "skps", "Directory to read skps from.");
static DEFINE_string(svgs, "", "Directory to read SVGs from, or a single SVG file.");
static DEFINE_string(texttraces, "", "Directory to read TextBlobTrace files from.");
static DEFINE_int_2(threads, j, -1,
"Run threadsafe tests on a threadpool with this many extra threads, "
"defaulting to one extra thread per core.");
static DEFINE_string2(writePath, w, "", "If set, write bitmaps here as .pngs.");
static DEFINE_string(key, "",
"Space-separated key/value pairs to add to JSON identifying this builder.");
static DEFINE_string(properties, "",
"Space-separated key/value pairs to add to JSON identifying this run.");
static DEFINE_bool(purgeBetweenBenches, false,
"Call SkGraphics::PurgeAllCaches() between each benchmark?");
static double now_ms() { return SkTime::GetNSecs() * 1e-6; }
static SkString humanize(double ms) {
if (FLAGS_verbose) return SkStringPrintf("%llu", (uint64_t)(ms*1e6));
return HumanizeMs(ms);
}
#define HUMANIZE(ms) humanize(ms).c_str()
bool Target::init(SkImageInfo info, Benchmark* bench) {
if (Benchmark::kRaster_Backend == config.backend) {
this->surface = SkSurface::MakeRaster(info);
if (!this->surface) {
return false;
}
}
return true;
}
bool Target::capturePixels(SkBitmap* bmp) {
SkCanvas* canvas = this->getCanvas();
if (!canvas) {
return false;
}
bmp->allocPixels(canvas->imageInfo());
if (!canvas->readPixels(*bmp, 0, 0)) {
SkDebugf("Can't read canvas pixels.\n");
return false;
}
return true;
}
struct GPUTarget : public Target {
explicit GPUTarget(const Config& c) : Target(c) {}
ContextInfo contextInfo;
std::unique_ptr<GrContextFactory> factory;
void setup() override {
this->contextInfo.testContext()->makeCurrent();
// Make sure we're done with whatever came before.
this->contextInfo.testContext()->finish();
}
void endTiming() override {
if (this->contextInfo.testContext()) {
this->contextInfo.testContext()->flushAndWaitOnSync(contextInfo.grContext());
}
}
void fence() override { this->contextInfo.testContext()->finish(); }
bool needsFrameTiming(int* maxFrameLag) const override {
if (!this->contextInfo.testContext()->getMaxGpuFrameLag(maxFrameLag)) {
// Frame lag is unknown.
*maxFrameLag = FLAGS_gpuFrameLag;
}
return true;
}
bool init(SkImageInfo info, Benchmark* bench) override {
GrContextOptions options = grContextOpts;
bench->modifyGrContextOptions(&options);
this->factory.reset(new GrContextFactory(options));
uint32_t flags = this->config.useDFText ? SkSurfaceProps::kUseDeviceIndependentFonts_Flag :
0;
SkSurfaceProps props(flags, SkSurfaceProps::kLegacyFontHost_InitType);
this->surface = SkSurface::MakeRenderTarget(
this->factory->get(this->config.ctxType, this->config.ctxOverrides),
SkBudgeted::kNo, info, this->config.samples, &props);
this->contextInfo =
this->factory->getContextInfo(this->config.ctxType, this->config.ctxOverrides);
if (!this->surface.get()) {
return false;
}
if (!this->contextInfo.testContext()->fenceSyncSupport()) {
SkDebugf("WARNING: GL context for config \"%s\" does not support fence sync. "
"Timings might not be accurate.\n", this->config.name.c_str());
}
return true;
}
void fillOptions(NanoJSONResultsWriter& log) override {
const GrGLubyte* version;
if (this->contextInfo.backend() == GrBackendApi::kOpenGL) {
const GrGLInterface* gl =
static_cast<GrGLGpu*>(this->contextInfo.grContext()->priv().getGpu())
->glInterface();
GR_GL_CALL_RET(gl, version, GetString(GR_GL_VERSION));
log.appendString("GL_VERSION", (const char*)(version));
GR_GL_CALL_RET(gl, version, GetString(GR_GL_RENDERER));
log.appendString("GL_RENDERER", (const char*) version);
GR_GL_CALL_RET(gl, version, GetString(GR_GL_VENDOR));
log.appendString("GL_VENDOR", (const char*) version);
GR_GL_CALL_RET(gl, version, GetString(GR_GL_SHADING_LANGUAGE_VERSION));
log.appendString("GL_SHADING_LANGUAGE_VERSION", (const char*) version);
}
}
void dumpStats() override {
this->contextInfo.grContext()->priv().printCacheStats();
this->contextInfo.grContext()->priv().printGpuStats();
}
};
static double time(int loops, Benchmark* bench, Target* target) {
SkCanvas* canvas = target->getCanvas();
if (canvas) {
canvas->clear(SK_ColorWHITE);
}
bench->preDraw(canvas);
double start = now_ms();
canvas = target->beginTiming(canvas);
bench->draw(loops, canvas);
target->endTiming();
double elapsed = now_ms() - start;
bench->postDraw(canvas);
return elapsed;
}
static double estimate_timer_overhead() {
double overhead = 0;
for (int i = 0; i < FLAGS_overheadLoops; i++) {
double start = now_ms();
overhead += now_ms() - start;
}
return overhead / FLAGS_overheadLoops;
}
static int detect_forever_loops(int loops) {
// look for a magic run-forever value
if (loops < 0) {
loops = SK_MaxS32;
}
return loops;
}
static int clamp_loops(int loops) {
if (loops < 1) {
SkDebugf("ERROR: clamping loops from %d to 1. "
"There's probably something wrong with the bench.\n", loops);
return 1;
}
if (loops > FLAGS_maxLoops) {
SkDebugf("WARNING: clamping loops from %d to FLAGS_maxLoops, %d.\n", loops, FLAGS_maxLoops);
return FLAGS_maxLoops;
}
return loops;
}
static bool write_canvas_png(Target* target, const SkString& filename) {
if (filename.isEmpty()) {
return false;
}
if (target->getCanvas() &&
kUnknown_SkColorType == target->getCanvas()->imageInfo().colorType()) {
return false;
}
SkBitmap bmp;
if (!target->capturePixels(&bmp)) {
return false;
}
SkString dir = SkOSPath::Dirname(filename.c_str());
if (!sk_mkdir(dir.c_str())) {
SkDebugf("Can't make dir %s.\n", dir.c_str());
return false;
}
SkFILEWStream stream(filename.c_str());
if (!stream.isValid()) {
SkDebugf("Can't write %s.\n", filename.c_str());
return false;
}
if (!SkEncodeImage(&stream, bmp, SkEncodedImageFormat::kPNG, 100)) {
SkDebugf("Can't encode a PNG.\n");
return false;
}
return true;
}
static int kFailedLoops = -2;
static int setup_cpu_bench(const double overhead, Target* target, Benchmark* bench) {
// First figure out approximately how many loops of bench it takes to make overhead negligible.
double bench_plus_overhead = 0.0;
int round = 0;
int loops = bench->calculateLoops(FLAGS_loops);
if (kAutoTuneLoops == loops) {
while (bench_plus_overhead < overhead) {
if (round++ == FLAGS_maxCalibrationAttempts) {
SkDebugf("WARNING: Can't estimate loops for %s (%s vs. %s); skipping.\n",
bench->getUniqueName(), HUMANIZE(bench_plus_overhead), HUMANIZE(overhead));
return kFailedLoops;
}
bench_plus_overhead = time(1, bench, target);
}
}
// Later we'll just start and stop the timer once but loop N times.
// We'll pick N to make timer overhead negligible:
//
// overhead
// ------------------------- < FLAGS_overheadGoal
// overhead + N * Bench Time
//
// where bench_plus_overhead ~=~ overhead + Bench Time.
//
// Doing some math, we get:
//
// (overhead / FLAGS_overheadGoal) - overhead
// ------------------------------------------ < N
// bench_plus_overhead - overhead)
//
// Luckily, this also works well in practice. :)
if (kAutoTuneLoops == loops) {
const double numer = overhead / FLAGS_overheadGoal - overhead;
const double denom = bench_plus_overhead - overhead;
loops = (int)ceil(numer / denom);
loops = clamp_loops(loops);
} else {
loops = detect_forever_loops(loops);
}
return loops;
}
static int setup_gpu_bench(Target* target, Benchmark* bench, int maxGpuFrameLag) {
// First, figure out how many loops it'll take to get a frame up to FLAGS_gpuMs.
int loops = bench->calculateLoops(FLAGS_loops);
if (kAutoTuneLoops == loops) {
loops = 1;
double elapsed = 0;
do {
if (1<<30 == loops) {
// We're about to wrap. Something's wrong with the bench.
loops = 0;
break;
}
loops *= 2;
// If the GPU lets frames lag at all, we need to make sure we're timing
// _this_ round, not still timing last round.
for (int i = 0; i < maxGpuFrameLag; i++) {
elapsed = time(loops, bench, target);
}
} while (elapsed < FLAGS_gpuMs);
// We've overshot at least a little. Scale back linearly.
loops = (int)ceil(loops * FLAGS_gpuMs / elapsed);
loops = clamp_loops(loops);
// Make sure we're not still timing our calibration.
target->fence();
} else {
loops = detect_forever_loops(loops);
}
// Pretty much the same deal as the calibration: do some warmup to make
// sure we're timing steady-state pipelined frames.
for (int i = 0; i < maxGpuFrameLag; i++) {
time(loops, bench, target);
}
return loops;
}
#define kBogusContextType GrContextFactory::kGL_ContextType
#define kBogusContextOverrides GrContextFactory::ContextOverrides::kNone
static void create_config(const SkCommandLineConfig* config, SkTArray<Config>* configs) {
if (const auto* gpuConfig = config->asConfigGpu()) {
if (!FLAGS_gpu) {
SkDebugf("Skipping config '%s' as requested.\n", config->getTag().c_str());
return;
}
const auto ctxType = gpuConfig->getContextType();
const auto ctxOverrides = gpuConfig->getContextOverrides();
const auto sampleCount = gpuConfig->getSamples();
const auto colorType = gpuConfig->getColorType();
auto colorSpace = gpuConfig->getColorSpace();
if (gpuConfig->getSurfType() != SkCommandLineConfigGpu::SurfType::kDefault) {
SkDebugf("This tool only supports the default surface type.");
return;
}
GrContextFactory factory(grContextOpts);
if (const GrContext* ctx = factory.get(ctxType, ctxOverrides)) {
GrBackendFormat format = ctx->defaultBackendFormat(colorType, GrRenderable::kYes);
int supportedSampleCount =
ctx->priv().caps()->getRenderTargetSampleCount(sampleCount, format);
if (sampleCount != supportedSampleCount) {
SkDebugf("Configuration '%s' sample count %d is not a supported sample count.\n",
config->getTag().c_str(), sampleCount);
return;
}
} else {
SkDebugf("No context was available matching config '%s'.\n",
config->getTag().c_str());
return;
}
Config target = {
gpuConfig->getTag(),
Benchmark::kGPU_Backend,
colorType,
kPremul_SkAlphaType,
sk_ref_sp(colorSpace),
sampleCount,
ctxType,
ctxOverrides,
gpuConfig->getUseDIText()
};
configs->push_back(target);
return;
}
#define CPU_CONFIG(name, backend, color, alpha, colorSpace) \
if (config->getTag().equals(#name)) { \
if (!FLAGS_cpu) { \
SkDebugf("Skipping config '%s' as requested.\n", \
config->getTag().c_str()); \
return; \
} \
Config config = { \
SkString(#name), Benchmark::backend, color, alpha, colorSpace, \
0, kBogusContextType, kBogusContextOverrides, false \
}; \
configs->push_back(config); \
return; \
}
CPU_CONFIG(nonrendering, kNonRendering_Backend,
kUnknown_SkColorType, kUnpremul_SkAlphaType, nullptr)
CPU_CONFIG(a8, kRaster_Backend, kAlpha_8_SkColorType, kPremul_SkAlphaType, nullptr)
CPU_CONFIG(8888, kRaster_Backend, kN32_SkColorType, kPremul_SkAlphaType, nullptr)
CPU_CONFIG(565, kRaster_Backend, kRGB_565_SkColorType, kOpaque_SkAlphaType, nullptr)
// 'narrow' has a gamut narrower than sRGB, and different transfer function.
auto narrow = SkColorSpace::MakeRGB(SkNamedTransferFn::k2Dot2, gNarrow_toXYZD50),
srgb = SkColorSpace::MakeSRGB(),
srgbLinear = SkColorSpace::MakeSRGBLinear();
CPU_CONFIG( f16, kRaster_Backend, kRGBA_F16_SkColorType, kPremul_SkAlphaType, srgbLinear)
CPU_CONFIG( srgb, kRaster_Backend, kRGBA_8888_SkColorType, kPremul_SkAlphaType, srgb )
CPU_CONFIG( esrgb, kRaster_Backend, kRGBA_F16_SkColorType, kPremul_SkAlphaType, srgb )
CPU_CONFIG( narrow, kRaster_Backend, kRGBA_8888_SkColorType, kPremul_SkAlphaType, narrow )
CPU_CONFIG(enarrow, kRaster_Backend, kRGBA_F16_SkColorType, kPremul_SkAlphaType, narrow )
#undef CPU_CONFIG
SkDebugf("Unknown config '%s'.\n", config->getTag().c_str());
}
// Append all configs that are enabled and supported.
void create_configs(SkTArray<Config>* configs) {
SkCommandLineConfigArray array;
ParseConfigs(FLAGS_config, &array);
for (int i = 0; i < array.count(); ++i) {
create_config(array[i].get(), configs);
}
// If no just default configs were requested, then we're okay.
if (array.count() == 0 || FLAGS_config.count() == 0 ||
// Otherwise, make sure that all specified configs have been created.
array.count() == configs->count()) {
return;
}
exit(1);
}
// disable warning : switch statement contains default but no 'case' labels
#if defined _WIN32
#pragma warning ( push )
#pragma warning ( disable : 4065 )
#endif
// If bench is enabled for config, returns a Target* for it, otherwise nullptr.
static Target* is_enabled(Benchmark* bench, const Config& config) {
if (!bench->isSuitableFor(config.backend)) {
return nullptr;
}
SkImageInfo info = SkImageInfo::Make(bench->getSize().fX, bench->getSize().fY,
config.color, config.alpha, config.colorSpace);
Target* target = nullptr;
switch (config.backend) {
case Benchmark::kGPU_Backend:
target = new GPUTarget(config);
break;
default:
target = new Target(config);
break;
}
if (!target->init(info, bench)) {
delete target;
return nullptr;
}
return target;
}
#if defined _WIN32
#pragma warning ( pop )
#endif
static bool valid_brd_bench(sk_sp<SkData> encoded, SkColorType colorType, uint32_t sampleSize,
uint32_t minOutputSize, int* width, int* height) {
std::unique_ptr<SkBitmapRegionDecoder> brd(
SkBitmapRegionDecoder::Create(encoded, SkBitmapRegionDecoder::kAndroidCodec_Strategy));
if (nullptr == brd.get()) {
// This is indicates that subset decoding is not supported for a particular image format.
return false;
}
if (sampleSize * minOutputSize > (uint32_t) brd->width() || sampleSize * minOutputSize >
(uint32_t) brd->height()) {
// This indicates that the image is not large enough to decode a
// minOutputSize x minOutputSize subset at the given sampleSize.
return false;
}
// Set the image width and height. The calling code will use this to choose subsets to decode.
*width = brd->width();
*height = brd->height();
return true;
}
static void cleanup_run(Target* target) {
delete target;
}
static void collect_files(const CommandLineFlags::StringArray& paths,
const char* ext,
SkTArray<SkString>* list) {
for (int i = 0; i < paths.count(); ++i) {
if (SkStrEndsWith(paths[i], ext)) {
list->push_back(SkString(paths[i]));
} else {
SkOSFile::Iter it(paths[i], ext);
SkString path;
while (it.next(&path)) {
list->push_back(SkOSPath::Join(paths[i], path.c_str()));
}
}
}
}
class BenchmarkStream {
public:
BenchmarkStream() : fBenches(BenchRegistry::Head())
, fGMs(skiagm::GMRegistry::Head()) {
collect_files(FLAGS_skps, ".skp", &fSKPs);
collect_files(FLAGS_svgs, ".svg", &fSVGs);
collect_files(FLAGS_texttraces, ".trace", &fTextBlobTraces);
if (4 != sscanf(FLAGS_clip[0], "%d,%d,%d,%d",
&fClip.fLeft, &fClip.fTop, &fClip.fRight, &fClip.fBottom)) {
SkDebugf("Can't parse %s from --clip as an SkIRect.\n", FLAGS_clip[0]);
exit(1);
}
for (int i = 0; i < FLAGS_scales.count(); i++) {
if (1 != sscanf(FLAGS_scales[i], "%f", &fScales.push_back())) {
SkDebugf("Can't parse %s from --scales as an SkScalar.\n", FLAGS_scales[i]);
exit(1);
}
}
if (2 != sscanf(FLAGS_zoom[0], "%f,%lf", &fZoomMax, &fZoomPeriodMs)) {
SkDebugf("Can't parse %s from --zoom as a zoomMax,zoomPeriodMs.\n", FLAGS_zoom[0]);
exit(1);
}
if (FLAGS_mpd) {
fUseMPDs.push_back() = true;
}
fUseMPDs.push_back() = false;
// Prepare the images for decoding
if (!CollectImages(FLAGS_images, &fImages)) {
exit(1);
}
// Choose the candidate color types for image decoding
fColorTypes.push_back(kN32_SkColorType);
if (!FLAGS_simpleCodec) {
fColorTypes.push_back(kRGB_565_SkColorType);
fColorTypes.push_back(kAlpha_8_SkColorType);
fColorTypes.push_back(kGray_8_SkColorType);
}
}
static sk_sp<SkPicture> ReadPicture(const char* path) {
// Not strictly necessary, as it will be checked again later,
// but helps to avoid a lot of pointless work if we're going to skip it.
if (CommandLineFlags::ShouldSkip(FLAGS_match, SkOSPath::Basename(path).c_str())) {
return nullptr;
}
std::unique_ptr<SkStream> stream = SkStream::MakeFromFile(path);
if (!stream) {
SkDebugf("Could not read %s.\n", path);
return nullptr;
}
return SkPicture::MakeFromStream(stream.get());
}
static sk_sp<SkPicture> ReadSVGPicture(const char* path) {
sk_sp<SkData> data(SkData::MakeFromFileName(path));
if (!data) {
SkDebugf("Could not read %s.\n", path);
return nullptr;
}
#ifdef SK_XML
SkMemoryStream stream(std::move(data));
sk_sp<SkSVGDOM> svgDom = SkSVGDOM::MakeFromStream(stream);
if (!svgDom) {
SkDebugf("Could not parse %s.\n", path);
return nullptr;
}
// Use the intrinsic SVG size if available, otherwise fall back to a default value.
static const SkSize kDefaultContainerSize = SkSize::Make(128, 128);
if (svgDom->containerSize().isEmpty()) {
svgDom->setContainerSize(kDefaultContainerSize);
}
SkPictureRecorder recorder;
svgDom->render(recorder.beginRecording(svgDom->containerSize().width(),
svgDom->containerSize().height()));
return recorder.finishRecordingAsPicture();
#else
return nullptr;
#endif // SK_XML
}
Benchmark* next() {
std::unique_ptr<Benchmark> bench;
do {
bench.reset(this->rawNext());
if (!bench) {
return nullptr;
}
} while (CommandLineFlags::ShouldSkip(FLAGS_sourceType, fSourceType) ||
CommandLineFlags::ShouldSkip(FLAGS_benchType, fBenchType));
return bench.release();
}
Benchmark* rawNext() {
if (fBenches) {
Benchmark* bench = fBenches->get()(nullptr);
fBenches = fBenches->next();
fSourceType = "bench";
fBenchType = "micro";
return bench;
}
while (fGMs) {
std::unique_ptr<skiagm::GM> gm = fGMs->get()();
fGMs = fGMs->next();
if (gm->runAsBench()) {
fSourceType = "gm";
fBenchType = "micro";
return new GMBench(std::move(gm));
}
}
while (fCurrentTextBlobTrace < fTextBlobTraces.count()) {
SkString path = fTextBlobTraces[fCurrentTextBlobTrace++];
SkString basename = SkOSPath::Basename(path.c_str());
static constexpr char kEnding[] = ".trace";
if (basename.endsWith(kEnding)) {
basename.remove(basename.size() - strlen(kEnding), strlen(kEnding));
}
fSourceType = "texttrace";
fBenchType = "micro";
return CreateDiffCanvasBench(
SkStringPrintf("SkDiffBench-%s", basename.c_str()),
[path](){ return SkStream::MakeFromFile(path.c_str()); });
}
// First add all .skps as RecordingBenches.
while (fCurrentRecording < fSKPs.count()) {
const SkString& path = fSKPs[fCurrentRecording++];
sk_sp<SkPicture> pic = ReadPicture(path.c_str());
if (!pic) {
continue;
}
SkString name = SkOSPath::Basename(path.c_str());
fSourceType = "skp";
fBenchType = "recording";
fSKPBytes = static_cast<double>(pic->approximateBytesUsed());
fSKPOps = pic->approximateOpCount();
return new RecordingBench(name.c_str(), pic.get(), FLAGS_bbh);
}
// Add all .skps as DeserializePictureBenchs.
while (fCurrentDeserialPicture < fSKPs.count()) {
const SkString& path = fSKPs[fCurrentDeserialPicture++];
sk_sp<SkData> data = SkData::MakeFromFileName(path.c_str());
if (!data) {
continue;
}
SkString name = SkOSPath::Basename(path.c_str());
fSourceType = "skp";
fBenchType = "deserial";
fSKPBytes = static_cast<double>(data->size());
fSKPOps = 0;
return new DeserializePictureBench(name.c_str(), std::move(data));
}
// Then once each for each scale as SKPBenches (playback).
while (fCurrentScale < fScales.count()) {
while (fCurrentSKP < fSKPs.count()) {
const SkString& path = fSKPs[fCurrentSKP];
sk_sp<SkPicture> pic = ReadPicture(path.c_str());
if (!pic) {
fCurrentSKP++;
continue;
}
while (fCurrentUseMPD < fUseMPDs.count()) {
if (FLAGS_bbh) {
// The SKP we read off disk doesn't have a BBH. Re-record so it grows one.
SkRTreeFactory factory;
SkPictureRecorder recorder;
pic->playback(recorder.beginRecording(pic->cullRect().width(),
pic->cullRect().height(),
&factory,
0));
pic = recorder.finishRecordingAsPicture();
}
SkString name = SkOSPath::Basename(path.c_str());
fSourceType = "skp";
fBenchType = "playback";
return new SKPBench(name.c_str(), pic.get(), fClip, fScales[fCurrentScale],
fUseMPDs[fCurrentUseMPD++], FLAGS_loopSKP);
}
fCurrentUseMPD = 0;
fCurrentSKP++;
}
while (fCurrentSVG++ < fSVGs.count()) {
const char* path = fSVGs[fCurrentSVG - 1].c_str();
if (sk_sp<SkPicture> pic = ReadSVGPicture(path)) {
fSourceType = "svg";
fBenchType = "playback";
return new SKPBench(SkOSPath::Basename(path).c_str(), pic.get(), fClip,
fScales[fCurrentScale], false, FLAGS_loopSKP);
}
}
fCurrentSKP = 0;
fCurrentSVG = 0;
fCurrentScale++;
}
// Now loop over each skp again if we have an animation
if (fZoomMax != 1.0f && fZoomPeriodMs > 0) {
while (fCurrentAnimSKP < fSKPs.count()) {
const SkString& path = fSKPs[fCurrentAnimSKP];
sk_sp<SkPicture> pic = ReadPicture(path.c_str());
if (!pic) {
fCurrentAnimSKP++;
continue;
}
fCurrentAnimSKP++;
SkString name = SkOSPath::Basename(path.c_str());
sk_sp<SKPAnimationBench::Animation> animation =
SKPAnimationBench::MakeZoomAnimation(fZoomMax, fZoomPeriodMs);
return new SKPAnimationBench(name.c_str(), pic.get(), fClip, std::move(animation),
FLAGS_loopSKP);
}
}
for (; fCurrentCodec < fImages.count(); fCurrentCodec++) {
fSourceType = "image";
fBenchType = "skcodec";
const SkString& path = fImages[fCurrentCodec];
if (CommandLineFlags::ShouldSkip(FLAGS_match, path.c_str())) {
continue;
}
sk_sp<SkData> encoded(SkData::MakeFromFileName(path.c_str()));
std::unique_ptr<SkCodec> codec(SkCodec::MakeFromData(encoded));
if (!codec) {
// Nothing to time.
SkDebugf("Cannot find codec for %s\n", path.c_str());
continue;
}
while (fCurrentColorType < fColorTypes.count()) {
const SkColorType colorType = fColorTypes[fCurrentColorType];
SkAlphaType alphaType = codec->getInfo().alphaType();
if (FLAGS_simpleCodec) {
if (kUnpremul_SkAlphaType == alphaType) {
alphaType = kPremul_SkAlphaType;
}
fCurrentColorType++;
} else {
switch (alphaType) {
case kOpaque_SkAlphaType:
// We only need to test one alpha type (opaque).
fCurrentColorType++;
break;
case kUnpremul_SkAlphaType:
case kPremul_SkAlphaType:
if (0 == fCurrentAlphaType) {
// Test unpremul first.
alphaType = kUnpremul_SkAlphaType;
fCurrentAlphaType++;
} else {
// Test premul.
alphaType = kPremul_SkAlphaType;
fCurrentAlphaType = 0;
fCurrentColorType++;
}
break;
default:
SkASSERT(false);
fCurrentColorType++;
break;
}
}
// Make sure we can decode to this color type and alpha type.
SkImageInfo info =
codec->getInfo().makeColorType(colorType).makeAlphaType(alphaType);
const size_t rowBytes = info.minRowBytes();
SkAutoMalloc storage(info.computeByteSize(rowBytes));
const SkCodec::Result result = codec->getPixels(
info, storage.get(), rowBytes);
switch (result) {
case SkCodec::kSuccess:
case SkCodec::kIncompleteInput:
return new CodecBench(SkOSPath::Basename(path.c_str()),
encoded.get(), colorType, alphaType);
case SkCodec::kInvalidConversion:
// This is okay. Not all conversions are valid.
break;
default:
// This represents some sort of failure.
SkASSERT(false);
break;
}
}
fCurrentColorType = 0;
}
// Run AndroidCodecBenches
const int sampleSizes[] = { 2, 4, 8 };
for (; fCurrentAndroidCodec < fImages.count(); fCurrentAndroidCodec++) {
fSourceType = "image";
fBenchType = "skandroidcodec";
const SkString& path = fImages[fCurrentAndroidCodec];
if (CommandLineFlags::ShouldSkip(FLAGS_match, path.c_str())) {
continue;
}
sk_sp<SkData> encoded(SkData::MakeFromFileName(path.c_str()));
std::unique_ptr<SkAndroidCodec> codec(SkAndroidCodec::MakeFromData(encoded));
if (!codec) {
// Nothing to time.
SkDebugf("Cannot find codec for %s\n", path.c_str());
continue;
}
while (fCurrentSampleSize < (int) SK_ARRAY_COUNT(sampleSizes)) {
int sampleSize = sampleSizes[fCurrentSampleSize];
fCurrentSampleSize++;
if (10 * sampleSize > std::min(codec->getInfo().width(), codec->getInfo().height())) {
// Avoid benchmarking scaled decodes of already small images.
break;
}
return new AndroidCodecBench(SkOSPath::Basename(path.c_str()),
encoded.get(), sampleSize);
}
fCurrentSampleSize = 0;
}
// Run the BRDBenches
// We intend to create benchmarks that model the use cases in
// android/libraries/social/tiledimage. In this library, an image is decoded in 512x512
// tiles. The image can be translated freely, so the location of a tile may be anywhere in
// the image. For that reason, we will benchmark decodes in five representative locations
// in the image. Additionally, this use case utilizes power of two scaling, so we will
// test on power of two sample sizes. The output tile is always 512x512, so, when a
// sampleSize is used, the size of the subset that is decoded is always
// (sampleSize*512)x(sampleSize*512).
// There are a few good reasons to only test on power of two sample sizes at this time:
// All use cases we are aware of only scale by powers of two.
// PNG decodes use the indicated sampling strategy regardless of the sample size, so
// these tests are sufficient to provide good coverage of our scaling options.
const uint32_t brdSampleSizes[] = { 1, 2, 4, 8, 16 };
const uint32_t minOutputSize = 512;
for (; fCurrentBRDImage < fImages.count(); fCurrentBRDImage++) {
fSourceType = "image";
fBenchType = "BRD";
const SkString& path = fImages[fCurrentBRDImage];
if (CommandLineFlags::ShouldSkip(FLAGS_match, path.c_str())) {
continue;
}
while (fCurrentColorType < fColorTypes.count()) {
while (fCurrentSampleSize < (int) SK_ARRAY_COUNT(brdSampleSizes)) {
while (fCurrentSubsetType <= kLastSingle_SubsetType) {
sk_sp<SkData> encoded(SkData::MakeFromFileName(path.c_str()));
const SkColorType colorType = fColorTypes[fCurrentColorType];
uint32_t sampleSize = brdSampleSizes[fCurrentSampleSize];
int currentSubsetType = fCurrentSubsetType++;
int width = 0;
int height = 0;
if (!valid_brd_bench(encoded, colorType, sampleSize, minOutputSize,
&width, &height)) {
break;
}
SkString basename = SkOSPath::Basename(path.c_str());
SkIRect subset;
const uint32_t subsetSize = sampleSize * minOutputSize;
switch (currentSubsetType) {
case kTopLeft_SubsetType:
basename.append("_TopLeft");
subset = SkIRect::MakeXYWH(0, 0, subsetSize, subsetSize);
break;
case kTopRight_SubsetType:
basename.append("_TopRight");
subset = SkIRect::MakeXYWH(width - subsetSize, 0, subsetSize,
subsetSize);
break;
case kMiddle_SubsetType:
basename.append("_Middle");
subset = SkIRect::MakeXYWH((width - subsetSize) / 2,
(height - subsetSize) / 2, subsetSize, subsetSize);
break;
case kBottomLeft_SubsetType:
basename.append("_BottomLeft");
subset = SkIRect::MakeXYWH(0, height - subsetSize, subsetSize,
subsetSize);
break;
case kBottomRight_SubsetType:
basename.append("_BottomRight");
subset = SkIRect::MakeXYWH(width - subsetSize,
height - subsetSize, subsetSize, subsetSize);
break;
default:
SkASSERT(false);
}
return new BitmapRegionDecoderBench(basename.c_str(), encoded.get(),
colorType, sampleSize, subset);
}
fCurrentSubsetType = 0;
fCurrentSampleSize++;
}
fCurrentSampleSize = 0;
fCurrentColorType++;
}
fCurrentColorType = 0;
}
return nullptr;
}
void fillCurrentOptions(NanoJSONResultsWriter& log) const {
log.appendString("source_type", fSourceType);
log.appendString("bench_type", fBenchType);
if (0 == strcmp(fSourceType, "skp")) {
log.appendString("clip",
SkStringPrintf("%d %d %d %d", fClip.fLeft, fClip.fTop,
fClip.fRight, fClip.fBottom).c_str());
SkASSERT_RELEASE(fCurrentScale < fScales.count()); // debugging paranoia
log.appendString("scale", SkStringPrintf("%.2g", fScales[fCurrentScale]).c_str());
if (fCurrentUseMPD > 0) {
SkASSERT(1 == fCurrentUseMPD || 2 == fCurrentUseMPD);
log.appendString("multi_picture_draw",
fUseMPDs[fCurrentUseMPD-1] ? "true" : "false");
}
}
}
void fillCurrentMetrics(NanoJSONResultsWriter& log) const {
if (0 == strcmp(fBenchType, "recording")) {
log.appendMetric("bytes", fSKPBytes);
log.appendMetric("ops", fSKPOps);
}
}
private:
enum SubsetType {
kTopLeft_SubsetType = 0,
kTopRight_SubsetType = 1,
kMiddle_SubsetType = 2,
kBottomLeft_SubsetType = 3,
kBottomRight_SubsetType = 4,
kTranslate_SubsetType = 5,
kZoom_SubsetType = 6,
kLast_SubsetType = kZoom_SubsetType,
kLastSingle_SubsetType = kBottomRight_SubsetType,
};
const BenchRegistry* fBenches;
const skiagm::GMRegistry* fGMs;
SkIRect fClip;
SkTArray<SkScalar> fScales;
SkTArray<SkString> fSKPs;
SkTArray<SkString> fSVGs;
SkTArray<SkString> fTextBlobTraces;
SkTArray<bool> fUseMPDs;
SkTArray<SkString> fImages;
SkTArray<SkColorType, true> fColorTypes;
SkScalar fZoomMax;
double fZoomPeriodMs;
double fSKPBytes, fSKPOps;
const char* fSourceType; // What we're benching: bench, GM, SKP, ...
const char* fBenchType; // How we bench it: micro, recording, playback, ...
int fCurrentRecording = 0;
int fCurrentDeserialPicture = 0;
int fCurrentScale = 0;
int fCurrentSKP = 0;
int fCurrentSVG = 0;
int fCurrentTextBlobTrace = 0;
int fCurrentUseMPD = 0;
int fCurrentCodec = 0;
int fCurrentAndroidCodec = 0;
int fCurrentBRDImage = 0;
int fCurrentColorType = 0;
int fCurrentAlphaType = 0;
int fCurrentSubsetType = 0;
int fCurrentSampleSize = 0;
int fCurrentAnimSKP = 0;
};
// Some runs (mostly, Valgrind) are so slow that the bot framework thinks we've hung.
// This prints something every once in a while so that it knows we're still working.
static void start_keepalive() {
static std::thread* intentionallyLeaked = new std::thread([]{
for (;;) {
static const int kSec = 1200;
#if defined(SK_BUILD_FOR_WIN)
Sleep(kSec * 1000);
#else
sleep(kSec);
#endif
SkDebugf("\nBenchmarks still running...\n");
}
});
(void)intentionallyLeaked;
}
int main(int argc, char** argv) {
CommandLineFlags::Parse(argc, argv);
initializeEventTracingForTools();
#if defined(SK_BUILD_FOR_IOS)
cd_Documents();
#endif
SetupCrashHandler();
SkAutoGraphics ag;
SkTaskGroup::Enabler enabled(FLAGS_threads);
SetCtxOptionsFromCommonFlags(&grContextOpts);
if (kAutoTuneLoops != FLAGS_loops) {
FLAGS_samples = 1;
FLAGS_gpuFrameLag = 0;
}
if (!FLAGS_writePath.isEmpty()) {
SkDebugf("Writing files to %s.\n", FLAGS_writePath[0]);
if (!sk_mkdir(FLAGS_writePath[0])) {
SkDebugf("Could not create %s. Files won't be written.\n", FLAGS_writePath[0]);
FLAGS_writePath.set(0, nullptr);
}
}
std::unique_ptr<SkWStream> logStream(new SkNullWStream);
if (!FLAGS_outResultsFile.isEmpty()) {
#if defined(SK_RELEASE)
// SkJSONWriter uses a 32k in-memory cache, so it only flushes occasionally and is well
// equipped for a stream that re-opens, appends, and closes the file on every write.
logStream.reset(new NanoFILEAppendAndCloseStream(FLAGS_outResultsFile[0]));
#else
SkDebugf("I'm ignoring --outResultsFile because this is a Debug build.");
return 1;
#endif
}
NanoJSONResultsWriter log(logStream.get(), SkJSONWriter::Mode::kPretty);
log.beginObject(); // root
if (1 == FLAGS_properties.count() % 2) {
SkDebugf("ERROR: --properties must be passed with an even number of arguments.\n");
return 1;
}
for (int i = 1; i < FLAGS_properties.count(); i += 2) {
log.appendString(FLAGS_properties[i-1], FLAGS_properties[i]);
}
if (1 == FLAGS_key.count() % 2) {
SkDebugf("ERROR: --key must be passed with an even number of arguments.\n");
return 1;
}
if (FLAGS_key.count()) {
log.beginObject("key");
for (int i = 1; i < FLAGS_key.count(); i += 2) {
log.appendString(FLAGS_key[i - 1], FLAGS_key[i]);
}
log.endObject(); // key
}
const double overhead = estimate_timer_overhead();
SkDebugf("Timer overhead: %s\n", HUMANIZE(overhead));
SkTArray<double> samples;
if (kAutoTuneLoops != FLAGS_loops) {
SkDebugf("Fixed number of loops; times would only be misleading so we won't print them.\n");
} else if (FLAGS_quiet) {
SkDebugf("! -> high variance, ? -> moderate variance\n");
SkDebugf(" micros \tbench\n");
} else if (FLAGS_ms) {
SkDebugf("curr/maxrss\tloops\tmin\tmedian\tmean\tmax\tstddev\tsamples\tconfig\tbench\n");
} else {
SkDebugf("curr/maxrss\tloops\tmin\tmedian\tmean\tmax\tstddev\t%-*s\tconfig\tbench\n",
FLAGS_samples, "samples");
}
SkTArray<Config> configs;
create_configs(&configs);
if (FLAGS_keepAlive) {
start_keepalive();
}
SetAnalyticAAFromCommonFlags();
if (FLAGS_forceRasterPipeline) { gSkForceRasterPipelineBlitter = true; }
if (FLAGS_skvm) { gUseSkVMBlitter = gSkVMJITViaDylib = true; }
int runs = 0;
BenchmarkStream benchStream;
log.beginObject("results");
AutoreleasePool pool;
while (Benchmark* b = benchStream.next()) {
std::unique_ptr<Benchmark> bench(b);
if (CommandLineFlags::ShouldSkip(FLAGS_match, bench->getUniqueName())) {
continue;
}
if (!configs.empty()) {
log.beginBench(bench->getUniqueName(), bench->getSize().fX, bench->getSize().fY);
bench->delayedSetup();
}
for (int i = 0; i < configs.count(); ++i) {
Target* target = is_enabled(b, configs[i]);
if (!target) {
continue;
}
// During HWUI output this canvas may be nullptr.
SkCanvas* canvas = target->getCanvas();
const char* config = target->config.name.c_str();
if (FLAGS_pre_log || FLAGS_dryRun) {
SkDebugf("Running %s\t%s\n"
, bench->getUniqueName()
, config);
if (FLAGS_dryRun) {
continue;
}
}
if (FLAGS_purgeBetweenBenches) {
SkGraphics::PurgeAllCaches();
}
TRACE_EVENT2("skia", "Benchmark", "name", TRACE_STR_COPY(bench->getUniqueName()),
"config", TRACE_STR_COPY(config));
target->setup();
bench->perCanvasPreDraw(canvas);
int maxFrameLag;
int loops = target->needsFrameTiming(&maxFrameLag)
? setup_gpu_bench(target, bench.get(), maxFrameLag)
: setup_cpu_bench(overhead, target, bench.get());
if (kFailedLoops == loops) {
// Can't be timed. A warning note has already been printed.
cleanup_run(target);
continue;
}
if (runs == 0 && FLAGS_ms < 1000) {
// Run the first bench for 1000ms to warm up the nanobench if FLAGS_ms < 1000.
// Otherwise, the first few benches' measurements will be inaccurate.
auto stop = now_ms() + 1000;
do {
time(loops, bench.get(), target);
} while (now_ms() < stop);
}
if (FLAGS_ms) {
samples.reset();
auto stop = now_ms() + FLAGS_ms;
do {
samples.push_back(time(loops, bench.get(), target) / loops);
} while (now_ms() < stop);
} else {
samples.reset(FLAGS_samples);
for (int s = 0; s < FLAGS_samples; s++) {
samples[s] = time(loops, bench.get(), target) / loops;
}
}
// Scale each result to the benchmark's own units, time/unit.
for (double& sample : samples) {
sample *= (1.0 / bench->getUnits());
}
SkTArray<SkString> keys;
SkTArray<double> values;
bool gpuStatsDump = FLAGS_gpuStatsDump && Benchmark::kGPU_Backend == configs[i].backend;
if (gpuStatsDump) {
// TODO cache stats
bench->getGpuStats(canvas, &keys, &values);
}
bench->perCanvasPostDraw(canvas);
if (Benchmark::kNonRendering_Backend != target->config.backend &&
!FLAGS_writePath.isEmpty() && FLAGS_writePath[0]) {
SkString pngFilename = SkOSPath::Join(FLAGS_writePath[0], config);
pngFilename = SkOSPath::Join(pngFilename.c_str(), bench->getUniqueName());
pngFilename.append(".png");
write_canvas_png(target, pngFilename);
}
// Building stats.plot often shows up in profiles,
// so skip building it when we're not going to print it anyway.
const bool want_plot = !FLAGS_quiet;
Stats stats(samples, want_plot);
log.beginObject(config);
log.beginObject("options");
log.appendString("name", bench->getName());
benchStream.fillCurrentOptions(log);
target->fillOptions(log);
log.endObject(); // options
// Metrics
log.appendMetric("min_ms", stats.min);
log.beginArray("samples");
for (double sample : samples) {
log.appendDoubleDigits(sample, 16);
}
log.endArray(); // samples
benchStream.fillCurrentMetrics(log);
if (gpuStatsDump) {
// dump to json, only SKPBench currently returns valid keys / values
SkASSERT(keys.count() == values.count());
for (int i = 0; i < keys.count(); i++) {
log.appendMetric(keys[i].c_str(), values[i]);
}
}
log.endObject(); // config
if (runs++ % FLAGS_flushEvery == 0) {
log.flush();
}
if (kAutoTuneLoops != FLAGS_loops) {
if (configs.count() == 1) {
config = ""; // Only print the config if we run the same bench on more than one.
}
SkDebugf("%4d/%-4dMB\t%s\t%s\n"
, sk_tools::getCurrResidentSetSizeMB()
, sk_tools::getMaxResidentSetSizeMB()
, bench->getUniqueName()
, config);
} else if (FLAGS_quiet) {
const char* mark = " ";
const double stddev_percent =
sk_ieee_double_divide(100 * sqrt(stats.var), stats.mean);
if (stddev_percent > 5) mark = "?";
if (stddev_percent > 10) mark = "!";
SkDebugf("%10.2f %s\t%s\t%s\n",
stats.median*1e3, mark, bench->getUniqueName(), config);
} else if (FLAGS_csv) {
const double stddev_percent =
sk_ieee_double_divide(100 * sqrt(stats.var), stats.mean);
SkDebugf("%g,%g,%g,%g,%g,%s,%s\n"
, stats.min
, stats.median
, stats.mean
, stats.max
, stddev_percent
, config
, bench->getUniqueName()
);
} else {
const char* format = "%4d/%-4dMB\t%d\t%s\t%s\t%s\t%s\t%.0f%%\t%s\t%s\t%s\n";
const double stddev_percent =
sk_ieee_double_divide(100 * sqrt(stats.var), stats.mean);
SkDebugf(format
, sk_tools::getCurrResidentSetSizeMB()
, sk_tools::getMaxResidentSetSizeMB()
, loops
, HUMANIZE(stats.min)
, HUMANIZE(stats.median)
, HUMANIZE(stats.mean)
, HUMANIZE(stats.max)
, stddev_percent
, FLAGS_ms ? to_string(samples.count()).c_str() : stats.plot.c_str()
, config
, bench->getUniqueName()
);
}
if (FLAGS_gpuStats && Benchmark::kGPU_Backend == configs[i].backend) {
target->dumpStats();
}
if (FLAGS_verbose) {
SkDebugf("Samples: ");
for (int i = 0; i < samples.count(); i++) {
SkDebugf("%s ", HUMANIZE(samples[i]));
}
SkDebugf("%s\n", bench->getUniqueName());
}
cleanup_run(target);
pool.drain();
}
if (!configs.empty()) {
log.endBench();
}
}
SkGraphics::PurgeAllCaches();
log.beginBench("memory_usage", 0, 0);
log.beginObject("meta"); // config
log.appendS32("max_rss_mb", sk_tools::getMaxResidentSetSizeMB());
log.endObject(); // config
log.endBench();
log.endObject(); // results
log.endObject(); // root
log.flush();
return 0;
}