skia2/tests/ImageFilterTest.cpp

1314 lines
54 KiB
C++

/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBitmap.h"
#include "SkBitmapDevice.h"
#include "SkBlurImageFilter.h"
#include "SkCanvas.h"
#include "SkColorFilterImageFilter.h"
#include "SkColorMatrixFilter.h"
#include "SkComposeImageFilter.h"
#include "SkDisplacementMapEffect.h"
#include "SkDropShadowImageFilter.h"
#include "SkFlattenableSerialization.h"
#include "SkGradientShader.h"
#include "SkImage.h"
#include "SkImageSource.h"
#include "SkLightingImageFilter.h"
#include "SkMatrixConvolutionImageFilter.h"
#include "SkMergeImageFilter.h"
#include "SkMorphologyImageFilter.h"
#include "SkOffsetImageFilter.h"
#include "SkPerlinNoiseShader.h"
#include "SkPicture.h"
#include "SkPictureImageFilter.h"
#include "SkPictureRecorder.h"
#include "SkPoint3.h"
#include "SkReadBuffer.h"
#include "SkRect.h"
#include "SkRectShaderImageFilter.h"
#include "SkSurface.h"
#include "SkTableColorFilter.h"
#include "SkTileImageFilter.h"
#include "SkXfermodeImageFilter.h"
#include "Test.h"
#if SK_SUPPORT_GPU
#include "GrContextFactory.h"
#include "SkGpuDevice.h"
#endif
static const int kBitmapSize = 4;
namespace {
class MatrixTestImageFilter : public SkImageFilter {
public:
MatrixTestImageFilter(skiatest::Reporter* reporter, const SkMatrix& expectedMatrix)
: SkImageFilter(0, nullptr), fReporter(reporter), fExpectedMatrix(expectedMatrix) {
}
virtual bool onFilterImage(Proxy*, const SkBitmap& src, const Context& ctx,
SkBitmap* result, SkIPoint* offset) const override {
REPORTER_ASSERT(fReporter, ctx.ctm() == fExpectedMatrix);
return true;
}
SK_TO_STRING_OVERRIDE()
SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(MatrixTestImageFilter)
protected:
void flatten(SkWriteBuffer& buffer) const override {
this->INHERITED::flatten(buffer);
buffer.writeFunctionPtr(fReporter);
buffer.writeMatrix(fExpectedMatrix);
}
private:
skiatest::Reporter* fReporter;
SkMatrix fExpectedMatrix;
typedef SkImageFilter INHERITED;
};
}
SkFlattenable* MatrixTestImageFilter::CreateProc(SkReadBuffer& buffer) {
SK_IMAGEFILTER_UNFLATTEN_COMMON(common, 1);
skiatest::Reporter* reporter = (skiatest::Reporter*)buffer.readFunctionPtr();
SkMatrix matrix;
buffer.readMatrix(&matrix);
return new MatrixTestImageFilter(reporter, matrix);
}
#ifndef SK_IGNORE_TO_STRING
void MatrixTestImageFilter::toString(SkString* str) const {
str->appendf("MatrixTestImageFilter: (");
str->append(")");
}
#endif
static SkImage* make_small_image() {
SkAutoTUnref<SkSurface> surface(SkSurface::NewRasterN32Premul(kBitmapSize, kBitmapSize));
SkCanvas* canvas = surface->getCanvas();
canvas->clear(0x00000000);
SkPaint darkPaint;
darkPaint.setColor(0xFF804020);
SkPaint lightPaint;
lightPaint.setColor(0xFF244484);
const int i = kBitmapSize / 4;
for (int y = 0; y < kBitmapSize; y += i) {
for (int x = 0; x < kBitmapSize; x += i) {
canvas->save();
canvas->translate(SkIntToScalar(x), SkIntToScalar(y));
canvas->drawRect(SkRect::MakeXYWH(0, 0,
SkIntToScalar(i),
SkIntToScalar(i)), darkPaint);
canvas->drawRect(SkRect::MakeXYWH(SkIntToScalar(i),
0,
SkIntToScalar(i),
SkIntToScalar(i)), lightPaint);
canvas->drawRect(SkRect::MakeXYWH(0,
SkIntToScalar(i),
SkIntToScalar(i),
SkIntToScalar(i)), lightPaint);
canvas->drawRect(SkRect::MakeXYWH(SkIntToScalar(i),
SkIntToScalar(i),
SkIntToScalar(i),
SkIntToScalar(i)), darkPaint);
canvas->restore();
}
}
return surface->newImageSnapshot();
}
static SkImageFilter* make_scale(float amount, SkImageFilter* input = nullptr) {
SkScalar s = amount;
SkScalar matrix[20] = { s, 0, 0, 0, 0,
0, s, 0, 0, 0,
0, 0, s, 0, 0,
0, 0, 0, s, 0 };
SkAutoTUnref<SkColorFilter> filter(SkColorMatrixFilter::Create(matrix));
return SkColorFilterImageFilter::Create(filter, input);
}
static SkImageFilter* make_grayscale(SkImageFilter* input, const SkImageFilter::CropRect* cropRect) {
SkScalar matrix[20];
memset(matrix, 0, 20 * sizeof(SkScalar));
matrix[0] = matrix[5] = matrix[10] = 0.2126f;
matrix[1] = matrix[6] = matrix[11] = 0.7152f;
matrix[2] = matrix[7] = matrix[12] = 0.0722f;
matrix[18] = 1.0f;
SkAutoTUnref<SkColorFilter> filter(SkColorMatrixFilter::Create(matrix));
return SkColorFilterImageFilter::Create(filter, input, cropRect);
}
static SkImageFilter* make_blue(SkImageFilter* input, const SkImageFilter::CropRect* cropRect) {
SkAutoTUnref<SkColorFilter> filter(SkColorFilter::CreateModeFilter(SK_ColorBLUE,
SkXfermode::kSrcIn_Mode));
return SkColorFilterImageFilter::Create(filter, input, cropRect);
}
DEF_TEST(ImageFilter, reporter) {
{
// Check that two non-clipping color-matrice-filters concatenate into a single filter.
SkAutoTUnref<SkImageFilter> halfBrightness(make_scale(0.5f));
SkAutoTUnref<SkImageFilter> quarterBrightness(make_scale(0.5f, halfBrightness));
REPORTER_ASSERT(reporter, nullptr == quarterBrightness->getInput(0));
SkColorFilter* cf;
REPORTER_ASSERT(reporter, quarterBrightness->asColorFilter(&cf));
REPORTER_ASSERT(reporter, cf->asColorMatrix(nullptr));
cf->unref();
}
{
// Check that a clipping color-matrice-filter followed by a color-matrice-filters
// concatenates into a single filter, but not a matrixfilter (due to clamping).
SkAutoTUnref<SkImageFilter> doubleBrightness(make_scale(2.0f));
SkAutoTUnref<SkImageFilter> halfBrightness(make_scale(0.5f, doubleBrightness));
REPORTER_ASSERT(reporter, nullptr == halfBrightness->getInput(0));
SkColorFilter* cf;
REPORTER_ASSERT(reporter, halfBrightness->asColorFilter(&cf));
REPORTER_ASSERT(reporter, !cf->asColorMatrix(nullptr));
cf->unref();
}
{
// Check that a color filter image filter without a crop rect can be
// expressed as a color filter.
SkAutoTUnref<SkImageFilter> gray(make_grayscale(nullptr, nullptr));
REPORTER_ASSERT(reporter, true == gray->asColorFilter(nullptr));
}
{
// Check that a colorfilterimage filter without a crop rect but with an input
// that is another colorfilterimage can be expressed as a colorfilter (composed).
SkAutoTUnref<SkImageFilter> mode(make_blue(nullptr, nullptr));
SkAutoTUnref<SkImageFilter> gray(make_grayscale(mode, nullptr));
REPORTER_ASSERT(reporter, true == gray->asColorFilter(nullptr));
}
{
// Test that if we exceed the limit of what ComposeColorFilter can combine, we still
// can build the DAG and won't assert if we call asColorFilter.
SkAutoTUnref<SkImageFilter> filter(make_blue(nullptr, nullptr));
const int kWayTooManyForComposeColorFilter = 100;
for (int i = 0; i < kWayTooManyForComposeColorFilter; ++i) {
filter.reset(make_blue(filter, nullptr));
// the first few of these will succeed, but after we hit the internal limit,
// it will then return false.
(void)filter->asColorFilter(nullptr);
}
}
{
// Check that a color filter image filter with a crop rect cannot
// be expressed as a color filter.
SkImageFilter::CropRect cropRect(SkRect::MakeXYWH(0, 0, 100, 100));
SkAutoTUnref<SkImageFilter> grayWithCrop(make_grayscale(nullptr, &cropRect));
REPORTER_ASSERT(reporter, false == grayWithCrop->asColorFilter(nullptr));
}
{
// Check that two non-commutative matrices are concatenated in
// the correct order.
SkScalar blueToRedMatrix[20] = { 0 };
blueToRedMatrix[2] = blueToRedMatrix[18] = SK_Scalar1;
SkScalar redToGreenMatrix[20] = { 0 };
redToGreenMatrix[5] = redToGreenMatrix[18] = SK_Scalar1;
SkAutoTUnref<SkColorFilter> blueToRed(SkColorMatrixFilter::Create(blueToRedMatrix));
SkAutoTUnref<SkImageFilter> filter1(SkColorFilterImageFilter::Create(blueToRed.get()));
SkAutoTUnref<SkColorFilter> redToGreen(SkColorMatrixFilter::Create(redToGreenMatrix));
SkAutoTUnref<SkImageFilter> filter2(SkColorFilterImageFilter::Create(redToGreen.get(), filter1.get()));
SkBitmap result;
result.allocN32Pixels(kBitmapSize, kBitmapSize);
SkPaint paint;
paint.setColor(SK_ColorBLUE);
paint.setImageFilter(filter2.get());
SkCanvas canvas(result);
canvas.clear(0x0);
SkRect rect = SkRect::Make(SkIRect::MakeWH(kBitmapSize, kBitmapSize));
canvas.drawRect(rect, paint);
uint32_t pixel = *result.getAddr32(0, 0);
// The result here should be green, since we have effectively shifted blue to green.
REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN);
}
{
// Tests pass by not asserting
SkAutoTUnref<SkImage> image(make_small_image());
SkBitmap result;
result.allocN32Pixels(kBitmapSize, kBitmapSize);
{
// This tests for :
// 1 ) location at (0,0,1)
SkPoint3 location = SkPoint3::Make(0, 0, SK_Scalar1);
// 2 ) location and target at same value
SkPoint3 target = SkPoint3::Make(location.fX, location.fY, location.fZ);
// 3 ) large negative specular exponent value
SkScalar specularExponent = -1000;
SkAutoTUnref<SkImageFilter> bmSrc(SkImageSource::Create(image));
SkPaint paint;
paint.setImageFilter(SkLightingImageFilter::CreateSpotLitSpecular(
location, target, specularExponent, 180,
0xFFFFFFFF, SK_Scalar1, SK_Scalar1, SK_Scalar1,
bmSrc))->unref();
SkCanvas canvas(result);
SkRect r = SkRect::MakeWH(SkIntToScalar(kBitmapSize),
SkIntToScalar(kBitmapSize));
canvas.drawRect(r, paint);
}
}
}
static void test_crop_rects(SkImageFilter::Proxy* proxy, skiatest::Reporter* reporter) {
// Check that all filters offset to their absolute crop rect,
// unaffected by the input crop rect.
// Tests pass by not asserting.
SkBitmap bitmap;
bitmap.allocN32Pixels(100, 100);
bitmap.eraseARGB(0, 0, 0, 0);
SkImageFilter::CropRect inputCropRect(SkRect::MakeXYWH(8, 13, 80, 80));
SkImageFilter::CropRect cropRect(SkRect::MakeXYWH(20, 30, 60, 60));
SkAutoTUnref<SkImageFilter> input(make_grayscale(nullptr, &inputCropRect));
SkAutoTUnref<SkColorFilter> cf(SkColorFilter::CreateModeFilter(SK_ColorRED, SkXfermode::kSrcIn_Mode));
SkPoint3 location = SkPoint3::Make(0, 0, SK_Scalar1);
SkScalar kernel[9] = {
SkIntToScalar( 1), SkIntToScalar( 1), SkIntToScalar( 1),
SkIntToScalar( 1), SkIntToScalar(-7), SkIntToScalar( 1),
SkIntToScalar( 1), SkIntToScalar( 1), SkIntToScalar( 1),
};
SkISize kernelSize = SkISize::Make(3, 3);
SkScalar gain = SK_Scalar1, bias = 0;
SkImageFilter* filters[] = {
SkColorFilterImageFilter::Create(cf.get(), input.get(), &cropRect),
SkDisplacementMapEffect::Create(SkDisplacementMapEffect::kR_ChannelSelectorType,
SkDisplacementMapEffect::kB_ChannelSelectorType,
40.0f, input.get(), input.get(), &cropRect),
SkBlurImageFilter::Create(SK_Scalar1, SK_Scalar1, input.get(), &cropRect),
SkDropShadowImageFilter::Create(SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1,
SK_ColorGREEN, SkDropShadowImageFilter::kDrawShadowAndForeground_ShadowMode,
input.get(), &cropRect),
SkLightingImageFilter::CreatePointLitDiffuse(location, SK_ColorGREEN, 0, 0, input.get(), &cropRect),
SkLightingImageFilter::CreatePointLitSpecular(location, SK_ColorGREEN, 0, 0, 0, input.get(), &cropRect),
SkMatrixConvolutionImageFilter::Create(kernelSize, kernel, gain, bias, SkIPoint::Make(1, 1), SkMatrixConvolutionImageFilter::kRepeat_TileMode, false, input.get(), &cropRect),
SkMergeImageFilter::Create(input.get(), input.get(), SkXfermode::kSrcOver_Mode, &cropRect),
SkOffsetImageFilter::Create(SK_Scalar1, SK_Scalar1, input.get(), &cropRect),
SkOffsetImageFilter::Create(SK_Scalar1, SK_Scalar1, input.get(), &cropRect),
SkDilateImageFilter::Create(3, 2, input.get(), &cropRect),
SkErodeImageFilter::Create(2, 3, input.get(), &cropRect),
SkTileImageFilter::Create(inputCropRect.rect(), cropRect.rect(), input.get()),
SkXfermodeImageFilter::Create(SkXfermode::Create(SkXfermode::kSrcOver_Mode), input.get(), input.get(), &cropRect),
};
for (size_t i = 0; i < SK_ARRAY_COUNT(filters); ++i) {
SkImageFilter* filter = filters[i];
SkBitmap result;
SkIPoint offset;
SkString str;
str.printf("filter %d", static_cast<int>(i));
SkImageFilter::Context ctx(SkMatrix::I(), SkIRect::MakeLargest(), nullptr);
REPORTER_ASSERT_MESSAGE(reporter, filter->filterImage(proxy, bitmap, ctx,
&result, &offset), str.c_str());
REPORTER_ASSERT_MESSAGE(reporter, offset.fX == 20 && offset.fY == 30, str.c_str());
}
for (size_t i = 0; i < SK_ARRAY_COUNT(filters); ++i) {
SkSafeUnref(filters[i]);
}
}
static SkBitmap make_gradient_circle(int width, int height) {
SkBitmap bitmap;
SkScalar x = SkIntToScalar(width / 2);
SkScalar y = SkIntToScalar(height / 2);
SkScalar radius = SkMinScalar(x, y) * 0.8f;
bitmap.allocN32Pixels(width, height);
SkCanvas canvas(bitmap);
canvas.clear(0x00000000);
SkColor colors[2];
colors[0] = SK_ColorWHITE;
colors[1] = SK_ColorBLACK;
SkAutoTUnref<SkShader> shader(
SkGradientShader::CreateRadial(SkPoint::Make(x, y), radius, colors, nullptr, 2,
SkShader::kClamp_TileMode)
);
SkPaint paint;
paint.setShader(shader);
canvas.drawCircle(x, y, radius, paint);
return bitmap;
}
static void test_negative_blur_sigma(SkImageFilter::Proxy* proxy, skiatest::Reporter* reporter) {
// Check that SkBlurImageFilter will accept a negative sigma, either in
// the given arguments or after CTM application.
const int width = 32, height = 32;
const SkScalar five = SkIntToScalar(5);
SkAutoTUnref<SkImageFilter> positiveFilter(SkBlurImageFilter::Create(five, five));
SkAutoTUnref<SkImageFilter> negativeFilter(SkBlurImageFilter::Create(-five, five));
SkBitmap gradient = make_gradient_circle(width, height);
SkBitmap positiveResult1, negativeResult1;
SkBitmap positiveResult2, negativeResult2;
SkIPoint offset;
SkImageFilter::Context ctx(SkMatrix::I(), SkIRect::MakeLargest(), nullptr);
positiveFilter->filterImage(proxy, gradient, ctx, &positiveResult1, &offset);
negativeFilter->filterImage(proxy, gradient, ctx, &negativeResult1, &offset);
SkMatrix negativeScale;
negativeScale.setScale(-SK_Scalar1, SK_Scalar1);
SkImageFilter::Context negativeCTX(negativeScale, SkIRect::MakeLargest(), nullptr);
positiveFilter->filterImage(proxy, gradient, negativeCTX, &negativeResult2, &offset);
negativeFilter->filterImage(proxy, gradient, negativeCTX, &positiveResult2, &offset);
SkAutoLockPixels lockP1(positiveResult1);
SkAutoLockPixels lockP2(positiveResult2);
SkAutoLockPixels lockN1(negativeResult1);
SkAutoLockPixels lockN2(negativeResult2);
for (int y = 0; y < height; y++) {
int diffs = memcmp(positiveResult1.getAddr32(0, y), negativeResult1.getAddr32(0, y), positiveResult1.rowBytes());
REPORTER_ASSERT(reporter, !diffs);
if (diffs) {
break;
}
diffs = memcmp(positiveResult1.getAddr32(0, y), negativeResult2.getAddr32(0, y), positiveResult1.rowBytes());
REPORTER_ASSERT(reporter, !diffs);
if (diffs) {
break;
}
diffs = memcmp(positiveResult1.getAddr32(0, y), positiveResult2.getAddr32(0, y), positiveResult1.rowBytes());
REPORTER_ASSERT(reporter, !diffs);
if (diffs) {
break;
}
}
}
DEF_TEST(TestNegativeBlurSigma, reporter) {
const SkImageInfo info = SkImageInfo::MakeN32Premul(100, 100);
const SkSurfaceProps props(SkSurfaceProps::kLegacyFontHost_InitType);
SkAutoTUnref<SkBaseDevice> device(SkBitmapDevice::Create(info, props));
SkImageFilter::Proxy proxy(device);
test_negative_blur_sigma(&proxy, reporter);
}
DEF_TEST(ImageFilterDrawTiled, reporter) {
// Check that all filters when drawn tiled (with subsequent clip rects) exactly
// match the same filters drawn with a single full-canvas bitmap draw.
// Tests pass by not asserting.
SkAutoTUnref<SkColorFilter> cf(SkColorFilter::CreateModeFilter(SK_ColorRED, SkXfermode::kSrcIn_Mode));
SkPoint3 location = SkPoint3::Make(0, 0, SK_Scalar1);
SkScalar kernel[9] = {
SkIntToScalar( 1), SkIntToScalar( 1), SkIntToScalar( 1),
SkIntToScalar( 1), SkIntToScalar(-7), SkIntToScalar( 1),
SkIntToScalar( 1), SkIntToScalar( 1), SkIntToScalar( 1),
};
const SkISize kernelSize = SkISize::Make(3, 3);
const SkScalar gain = SK_Scalar1, bias = 0;
const SkScalar five = SkIntToScalar(5);
SkAutoTUnref<SkImage> gradientImage(SkImage::NewFromBitmap(make_gradient_circle(64, 64)));
SkAutoTUnref<SkImageFilter> gradientSource(SkImageSource::Create(gradientImage));
SkAutoTUnref<SkImageFilter> blur(SkBlurImageFilter::Create(five, five));
SkMatrix matrix;
matrix.setTranslate(SK_Scalar1, SK_Scalar1);
matrix.postRotate(SkIntToScalar(45), SK_Scalar1, SK_Scalar1);
SkRTreeFactory factory;
SkPictureRecorder recorder;
SkCanvas* recordingCanvas = recorder.beginRecording(64, 64, &factory, 0);
SkPaint greenPaint;
greenPaint.setColor(SK_ColorGREEN);
recordingCanvas->drawRect(SkRect::Make(SkIRect::MakeXYWH(10, 10, 30, 20)), greenPaint);
SkAutoTUnref<SkPicture> picture(recorder.endRecording());
SkAutoTUnref<SkImageFilter> pictureFilter(SkPictureImageFilter::Create(picture.get()));
SkAutoTUnref<SkShader> shader(SkPerlinNoiseShader::CreateTurbulence(SK_Scalar1, SK_Scalar1, 1, 0));
SkAutoTUnref<SkImageFilter> rectShaderFilter(SkRectShaderImageFilter::Create(shader.get()));
SkAutoTUnref<SkShader> greenColorShader(SkShader::CreateColorShader(SK_ColorGREEN));
SkImageFilter::CropRect leftSideCropRect(SkRect::MakeXYWH(0, 0, 32, 64));
SkAutoTUnref<SkImageFilter> rectShaderFilterLeft(SkRectShaderImageFilter::Create(greenColorShader.get(), &leftSideCropRect));
SkImageFilter::CropRect rightSideCropRect(SkRect::MakeXYWH(32, 0, 32, 64));
SkAutoTUnref<SkImageFilter> rectShaderFilterRight(SkRectShaderImageFilter::Create(greenColorShader.get(), &rightSideCropRect));
struct {
const char* fName;
SkImageFilter* fFilter;
} filters[] = {
{ "color filter", SkColorFilterImageFilter::Create(cf.get()) },
{ "displacement map", SkDisplacementMapEffect::Create(
SkDisplacementMapEffect::kR_ChannelSelectorType,
SkDisplacementMapEffect::kB_ChannelSelectorType,
20.0f, gradientSource.get()) },
{ "blur", SkBlurImageFilter::Create(SK_Scalar1, SK_Scalar1) },
{ "drop shadow", SkDropShadowImageFilter::Create(
SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_ColorGREEN,
SkDropShadowImageFilter::kDrawShadowAndForeground_ShadowMode) },
{ "diffuse lighting", SkLightingImageFilter::CreatePointLitDiffuse(
location, SK_ColorGREEN, 0, 0) },
{ "specular lighting",
SkLightingImageFilter::CreatePointLitSpecular(location, SK_ColorGREEN, 0, 0, 0) },
{ "matrix convolution",
SkMatrixConvolutionImageFilter::Create(
kernelSize, kernel, gain, bias, SkIPoint::Make(1, 1),
SkMatrixConvolutionImageFilter::kRepeat_TileMode, false) },
{ "merge", SkMergeImageFilter::Create(nullptr, nullptr, SkXfermode::kSrcOver_Mode) },
{ "merge with disjoint inputs", SkMergeImageFilter::Create(
rectShaderFilterLeft, rectShaderFilterRight, SkXfermode::kSrcOver_Mode) },
{ "offset", SkOffsetImageFilter::Create(SK_Scalar1, SK_Scalar1) },
{ "dilate", SkDilateImageFilter::Create(3, 2) },
{ "erode", SkErodeImageFilter::Create(2, 3) },
{ "tile", SkTileImageFilter::Create(SkRect::MakeXYWH(0, 0, 50, 50),
SkRect::MakeXYWH(0, 0, 100, 100), nullptr) },
{ "matrix", SkImageFilter::CreateMatrixFilter(matrix, kLow_SkFilterQuality) },
{ "blur and offset", SkOffsetImageFilter::Create(five, five, blur.get()) },
{ "picture and blur", SkBlurImageFilter::Create(five, five, pictureFilter.get()) },
{ "rect shader and blur", SkBlurImageFilter::Create(five, five, rectShaderFilter.get()) },
};
SkBitmap untiledResult, tiledResult;
const int width = 64, height = 64;
untiledResult.allocN32Pixels(width, height);
tiledResult.allocN32Pixels(width, height);
SkCanvas tiledCanvas(tiledResult);
SkCanvas untiledCanvas(untiledResult);
int tileSize = 8;
for (int scale = 1; scale <= 2; ++scale) {
for (size_t i = 0; i < SK_ARRAY_COUNT(filters); ++i) {
tiledCanvas.clear(0);
untiledCanvas.clear(0);
SkPaint paint;
paint.setImageFilter(filters[i].fFilter);
paint.setTextSize(SkIntToScalar(height));
paint.setColor(SK_ColorWHITE);
SkString str;
const char* text = "ABC";
SkScalar ypos = SkIntToScalar(height);
untiledCanvas.save();
untiledCanvas.scale(SkIntToScalar(scale), SkIntToScalar(scale));
untiledCanvas.drawText(text, strlen(text), 0, ypos, paint);
untiledCanvas.restore();
for (int y = 0; y < height; y += tileSize) {
for (int x = 0; x < width; x += tileSize) {
tiledCanvas.save();
tiledCanvas.clipRect(SkRect::Make(SkIRect::MakeXYWH(x, y, tileSize, tileSize)));
tiledCanvas.scale(SkIntToScalar(scale), SkIntToScalar(scale));
tiledCanvas.drawText(text, strlen(text), 0, ypos, paint);
tiledCanvas.restore();
}
}
untiledCanvas.flush();
tiledCanvas.flush();
for (int y = 0; y < height; y++) {
int diffs = memcmp(untiledResult.getAddr32(0, y), tiledResult.getAddr32(0, y), untiledResult.rowBytes());
REPORTER_ASSERT_MESSAGE(reporter, !diffs, filters[i].fName);
if (diffs) {
break;
}
}
}
}
for (size_t i = 0; i < SK_ARRAY_COUNT(filters); ++i) {
SkSafeUnref(filters[i].fFilter);
}
}
static void draw_saveLayer_picture(int width, int height, int tileSize,
SkBBHFactory* factory, SkBitmap* result) {
SkMatrix matrix;
matrix.setTranslate(SkIntToScalar(50), 0);
SkAutoTUnref<SkColorFilter> cf(SkColorFilter::CreateModeFilter(SK_ColorWHITE, SkXfermode::kSrc_Mode));
SkAutoTUnref<SkImageFilter> cfif(SkColorFilterImageFilter::Create(cf.get()));
SkAutoTUnref<SkImageFilter> imageFilter(SkImageFilter::CreateMatrixFilter(matrix, kNone_SkFilterQuality, cfif.get()));
SkPaint paint;
paint.setImageFilter(imageFilter.get());
SkPictureRecorder recorder;
SkRect bounds = SkRect::Make(SkIRect::MakeXYWH(0, 0, 50, 50));
SkCanvas* recordingCanvas = recorder.beginRecording(SkIntToScalar(width),
SkIntToScalar(height),
factory, 0);
recordingCanvas->translate(-55, 0);
recordingCanvas->saveLayer(&bounds, &paint);
recordingCanvas->restore();
SkAutoTUnref<SkPicture> picture1(recorder.endRecording());
result->allocN32Pixels(width, height);
SkCanvas canvas(*result);
canvas.clear(0);
canvas.clipRect(SkRect::Make(SkIRect::MakeWH(tileSize, tileSize)));
canvas.drawPicture(picture1.get());
}
DEF_TEST(ImageFilterDrawMatrixBBH, reporter) {
// Check that matrix filter when drawn tiled with BBH exactly
// matches the same thing drawn without BBH.
// Tests pass by not asserting.
const int width = 200, height = 200;
const int tileSize = 100;
SkBitmap result1, result2;
SkRTreeFactory factory;
draw_saveLayer_picture(width, height, tileSize, &factory, &result1);
draw_saveLayer_picture(width, height, tileSize, nullptr, &result2);
for (int y = 0; y < height; y++) {
int diffs = memcmp(result1.getAddr32(0, y), result2.getAddr32(0, y), result1.rowBytes());
REPORTER_ASSERT(reporter, !diffs);
if (diffs) {
break;
}
}
}
static SkImageFilter* makeBlur(SkImageFilter* input = nullptr) {
return SkBlurImageFilter::Create(SK_Scalar1, SK_Scalar1, input);
}
static SkImageFilter* makeDropShadow(SkImageFilter* input = nullptr) {
return SkDropShadowImageFilter::Create(
SkIntToScalar(100), SkIntToScalar(100),
SkIntToScalar(10), SkIntToScalar(10),
SK_ColorBLUE, SkDropShadowImageFilter::kDrawShadowAndForeground_ShadowMode,
input, nullptr);
}
DEF_TEST(ImageFilterBlurThenShadowBounds, reporter) {
SkAutoTUnref<SkImageFilter> filter1(makeBlur());
SkAutoTUnref<SkImageFilter> filter2(makeDropShadow(filter1.get()));
SkIRect bounds = SkIRect::MakeXYWH(0, 0, 100, 100);
SkIRect expectedBounds = SkIRect::MakeXYWH(-133, -133, 236, 236);
filter2->filterBounds(bounds, SkMatrix::I(), &bounds);
REPORTER_ASSERT(reporter, bounds == expectedBounds);
}
DEF_TEST(ImageFilterShadowThenBlurBounds, reporter) {
SkAutoTUnref<SkImageFilter> filter1(makeDropShadow());
SkAutoTUnref<SkImageFilter> filter2(makeBlur(filter1.get()));
SkIRect bounds = SkIRect::MakeXYWH(0, 0, 100, 100);
SkIRect expectedBounds = SkIRect::MakeXYWH(-133, -133, 236, 236);
filter2->filterBounds(bounds, SkMatrix::I(), &bounds);
REPORTER_ASSERT(reporter, bounds == expectedBounds);
}
DEF_TEST(ImageFilterDilateThenBlurBounds, reporter) {
SkAutoTUnref<SkImageFilter> filter1(SkDilateImageFilter::Create(2, 2));
SkAutoTUnref<SkImageFilter> filter2(makeDropShadow(filter1.get()));
SkIRect bounds = SkIRect::MakeXYWH(0, 0, 100, 100);
SkIRect expectedBounds = SkIRect::MakeXYWH(-132, -132, 234, 234);
filter2->filterBounds(bounds, SkMatrix::I(), &bounds);
REPORTER_ASSERT(reporter, bounds == expectedBounds);
}
DEF_TEST(ImageFilterComposedBlurFastBounds, reporter) {
SkAutoTUnref<SkImageFilter> filter1(makeBlur());
SkAutoTUnref<SkImageFilter> filter2(makeBlur());
SkAutoTUnref<SkImageFilter> composedFilter(SkComposeImageFilter::Create(filter1.get(), filter2.get()));
SkRect boundsSrc = SkRect::MakeWH(SkIntToScalar(100), SkIntToScalar(100));
SkRect expectedBounds = SkRect::MakeXYWH(
SkIntToScalar(-6), SkIntToScalar(-6), SkIntToScalar(112), SkIntToScalar(112));
SkRect boundsDst = SkRect::MakeEmpty();
composedFilter->computeFastBounds(boundsSrc, &boundsDst);
REPORTER_ASSERT(reporter, boundsDst == expectedBounds);
}
static void draw_blurred_rect(SkCanvas* canvas) {
SkAutoTUnref<SkImageFilter> filter(SkBlurImageFilter::Create(SkIntToScalar(8), 0));
SkPaint filterPaint;
filterPaint.setColor(SK_ColorWHITE);
filterPaint.setImageFilter(filter);
canvas->saveLayer(nullptr, &filterPaint);
SkPaint whitePaint;
whitePaint.setColor(SK_ColorWHITE);
canvas->drawRect(SkRect::Make(SkIRect::MakeWH(4, 4)), whitePaint);
canvas->restore();
}
static void draw_picture_clipped(SkCanvas* canvas, const SkRect& clipRect, const SkPicture* picture) {
canvas->save();
canvas->clipRect(clipRect);
canvas->drawPicture(picture);
canvas->restore();
}
DEF_TEST(ImageFilterDrawTiledBlurRTree, reporter) {
// Check that the blur filter when recorded with RTree acceleration,
// and drawn tiled (with subsequent clip rects) exactly
// matches the same filter drawn with without RTree acceleration.
// This tests that the "bleed" from the blur into the otherwise-blank
// tiles is correctly rendered.
// Tests pass by not asserting.
int width = 16, height = 8;
SkBitmap result1, result2;
result1.allocN32Pixels(width, height);
result2.allocN32Pixels(width, height);
SkCanvas canvas1(result1);
SkCanvas canvas2(result2);
int tileSize = 8;
canvas1.clear(0);
canvas2.clear(0);
SkRTreeFactory factory;
SkPictureRecorder recorder1, recorder2;
// The only difference between these two pictures is that one has RTree aceleration.
SkCanvas* recordingCanvas1 = recorder1.beginRecording(SkIntToScalar(width),
SkIntToScalar(height),
nullptr, 0);
SkCanvas* recordingCanvas2 = recorder2.beginRecording(SkIntToScalar(width),
SkIntToScalar(height),
&factory, 0);
draw_blurred_rect(recordingCanvas1);
draw_blurred_rect(recordingCanvas2);
SkAutoTUnref<SkPicture> picture1(recorder1.endRecording());
SkAutoTUnref<SkPicture> picture2(recorder2.endRecording());
for (int y = 0; y < height; y += tileSize) {
for (int x = 0; x < width; x += tileSize) {
SkRect tileRect = SkRect::Make(SkIRect::MakeXYWH(x, y, tileSize, tileSize));
draw_picture_clipped(&canvas1, tileRect, picture1);
draw_picture_clipped(&canvas2, tileRect, picture2);
}
}
for (int y = 0; y < height; y++) {
int diffs = memcmp(result1.getAddr32(0, y), result2.getAddr32(0, y), result1.rowBytes());
REPORTER_ASSERT(reporter, !diffs);
if (diffs) {
break;
}
}
}
DEF_TEST(ImageFilterMatrixConvolution, reporter) {
// Check that a 1x3 filter does not cause a spurious assert.
SkScalar kernel[3] = {
SkIntToScalar( 1), SkIntToScalar( 1), SkIntToScalar( 1),
};
SkISize kernelSize = SkISize::Make(1, 3);
SkScalar gain = SK_Scalar1, bias = 0;
SkIPoint kernelOffset = SkIPoint::Make(0, 0);
SkAutoTUnref<SkImageFilter> filter(
SkMatrixConvolutionImageFilter::Create(
kernelSize, kernel, gain, bias, kernelOffset,
SkMatrixConvolutionImageFilter::kRepeat_TileMode, false));
SkBitmap result;
int width = 16, height = 16;
result.allocN32Pixels(width, height);
SkCanvas canvas(result);
canvas.clear(0);
SkPaint paint;
paint.setImageFilter(filter);
SkRect rect = SkRect::Make(SkIRect::MakeWH(width, height));
canvas.drawRect(rect, paint);
}
DEF_TEST(ImageFilterMatrixConvolutionBorder, reporter) {
// Check that a filter with borders outside the target bounds
// does not crash.
SkScalar kernel[3] = {
0, 0, 0,
};
SkISize kernelSize = SkISize::Make(3, 1);
SkScalar gain = SK_Scalar1, bias = 0;
SkIPoint kernelOffset = SkIPoint::Make(2, 0);
SkAutoTUnref<SkImageFilter> filter(
SkMatrixConvolutionImageFilter::Create(
kernelSize, kernel, gain, bias, kernelOffset,
SkMatrixConvolutionImageFilter::kClamp_TileMode, true));
SkBitmap result;
int width = 10, height = 10;
result.allocN32Pixels(width, height);
SkCanvas canvas(result);
canvas.clear(0);
SkPaint filterPaint;
filterPaint.setImageFilter(filter);
SkRect bounds = SkRect::MakeWH(1, 10);
SkRect rect = SkRect::Make(SkIRect::MakeWH(width, height));
SkPaint rectPaint;
canvas.saveLayer(&bounds, &filterPaint);
canvas.drawRect(rect, rectPaint);
canvas.restore();
}
DEF_TEST(ImageFilterCropRect, reporter) {
const SkImageInfo info = SkImageInfo::MakeN32Premul(100, 100);
const SkSurfaceProps props(SkSurfaceProps::kLegacyFontHost_InitType);
SkAutoTUnref<SkBaseDevice> device(SkBitmapDevice::Create(info, props));
SkImageFilter::Proxy proxy(device);
test_crop_rects(&proxy, reporter);
}
DEF_TEST(ImageFilterMatrix, reporter) {
SkBitmap temp;
temp.allocN32Pixels(100, 100);
SkCanvas canvas(temp);
canvas.scale(SkIntToScalar(2), SkIntToScalar(2));
SkMatrix expectedMatrix = canvas.getTotalMatrix();
SkRTreeFactory factory;
SkPictureRecorder recorder;
SkCanvas* recordingCanvas = recorder.beginRecording(100, 100, &factory, 0);
SkPaint paint;
SkAutoTUnref<MatrixTestImageFilter> imageFilter(
new MatrixTestImageFilter(reporter, expectedMatrix));
paint.setImageFilter(imageFilter.get());
recordingCanvas->saveLayer(nullptr, &paint);
SkPaint solidPaint;
solidPaint.setColor(0xFFFFFFFF);
recordingCanvas->save();
recordingCanvas->scale(SkIntToScalar(10), SkIntToScalar(10));
recordingCanvas->drawRect(SkRect::Make(SkIRect::MakeWH(100, 100)), solidPaint);
recordingCanvas->restore(); // scale
recordingCanvas->restore(); // saveLayer
SkAutoTUnref<SkPicture> picture(recorder.endRecording());
canvas.drawPicture(picture);
}
DEF_TEST(ImageFilterCrossProcessPictureImageFilter, reporter) {
SkRTreeFactory factory;
SkPictureRecorder recorder;
SkCanvas* recordingCanvas = recorder.beginRecording(1, 1, &factory, 0);
// Create an SkPicture which simply draws a green 1x1 rectangle.
SkPaint greenPaint;
greenPaint.setColor(SK_ColorGREEN);
recordingCanvas->drawRect(SkRect::Make(SkIRect::MakeWH(1, 1)), greenPaint);
SkAutoTUnref<SkPicture> picture(recorder.endRecording());
// Wrap that SkPicture in an SkPictureImageFilter.
SkAutoTUnref<SkImageFilter> imageFilter(
SkPictureImageFilter::Create(picture.get()));
// Check that SkPictureImageFilter successfully serializes its contained
// SkPicture when not in cross-process mode.
SkPaint paint;
paint.setImageFilter(imageFilter.get());
SkPictureRecorder outerRecorder;
SkCanvas* outerCanvas = outerRecorder.beginRecording(1, 1, &factory, 0);
SkPaint redPaintWithFilter;
redPaintWithFilter.setColor(SK_ColorRED);
redPaintWithFilter.setImageFilter(imageFilter.get());
outerCanvas->drawRect(SkRect::Make(SkIRect::MakeWH(1, 1)), redPaintWithFilter);
SkAutoTUnref<SkPicture> outerPicture(outerRecorder.endRecording());
SkBitmap bitmap;
bitmap.allocN32Pixels(1, 1);
SkCanvas canvas(bitmap);
// The result here should be green, since the filter replaces the primitive's red interior.
canvas.clear(0x0);
canvas.drawPicture(outerPicture);
uint32_t pixel = *bitmap.getAddr32(0, 0);
REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN);
// Check that, for now, SkPictureImageFilter does not serialize or
// deserialize its contained picture when the filter is serialized
// cross-process. Do this by "laundering" it through SkValidatingReadBuffer.
SkAutoTUnref<SkData> data(SkValidatingSerializeFlattenable(imageFilter.get()));
SkAutoTUnref<SkFlattenable> flattenable(SkValidatingDeserializeFlattenable(
data->data(), data->size(), SkImageFilter::GetFlattenableType()));
SkImageFilter* unflattenedFilter = static_cast<SkImageFilter*>(flattenable.get());
redPaintWithFilter.setImageFilter(unflattenedFilter);
SkPictureRecorder crossProcessRecorder;
SkCanvas* crossProcessCanvas = crossProcessRecorder.beginRecording(1, 1, &factory, 0);
crossProcessCanvas->drawRect(SkRect::Make(SkIRect::MakeWH(1, 1)), redPaintWithFilter);
SkAutoTUnref<SkPicture> crossProcessPicture(crossProcessRecorder.endRecording());
canvas.clear(0x0);
canvas.drawPicture(crossProcessPicture);
pixel = *bitmap.getAddr32(0, 0);
// If the security precautions are enabled, the result here should not be green, since the
// filter draws nothing.
REPORTER_ASSERT(reporter, SkPicture::PictureIOSecurityPrecautionsEnabled()
? pixel != SK_ColorGREEN : pixel == SK_ColorGREEN);
}
DEF_TEST(ImageFilterClippedPictureImageFilter, reporter) {
SkRTreeFactory factory;
SkPictureRecorder recorder;
SkCanvas* recordingCanvas = recorder.beginRecording(1, 1, &factory, 0);
// Create an SkPicture which simply draws a green 1x1 rectangle.
SkPaint greenPaint;
greenPaint.setColor(SK_ColorGREEN);
recordingCanvas->drawRect(SkRect::Make(SkIRect::MakeWH(1, 1)), greenPaint);
SkAutoTUnref<SkPicture> picture(recorder.endRecording());
SkAutoTUnref<SkImageFilter> imageFilter(SkPictureImageFilter::Create(picture.get()));
SkBitmap result;
SkIPoint offset;
SkImageFilter::Context ctx(SkMatrix::I(), SkIRect::MakeXYWH(1, 1, 1, 1), nullptr);
SkBitmap bitmap;
bitmap.allocN32Pixels(2, 2);
const SkSurfaceProps props(SkSurfaceProps::kLegacyFontHost_InitType);
SkBitmapDevice device(bitmap, props);
SkImageFilter::Proxy proxy(&device);
REPORTER_ASSERT(reporter, !imageFilter->filterImage(&proxy, bitmap, ctx, &result, &offset));
}
DEF_TEST(ImageFilterEmptySaveLayer, reporter) {
// Even when there's an empty saveLayer()/restore(), ensure that an image
// filter or color filter which affects transparent black still draws.
SkBitmap bitmap;
bitmap.allocN32Pixels(10, 10);
SkCanvas canvas(bitmap);
SkRTreeFactory factory;
SkPictureRecorder recorder;
SkAutoTUnref<SkColorFilter> green(
SkColorFilter::CreateModeFilter(SK_ColorGREEN, SkXfermode::kSrc_Mode));
SkAutoTUnref<SkColorFilterImageFilter> imageFilter(
SkColorFilterImageFilter::Create(green.get()));
SkPaint imageFilterPaint;
imageFilterPaint.setImageFilter(imageFilter.get());
SkPaint colorFilterPaint;
colorFilterPaint.setColorFilter(green.get());
SkRect bounds = SkRect::MakeWH(10, 10);
SkCanvas* recordingCanvas = recorder.beginRecording(10, 10, &factory, 0);
recordingCanvas->saveLayer(&bounds, &imageFilterPaint);
recordingCanvas->restore();
SkAutoTUnref<SkPicture> picture(recorder.endRecording());
canvas.clear(0);
canvas.drawPicture(picture);
uint32_t pixel = *bitmap.getAddr32(0, 0);
REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN);
recordingCanvas = recorder.beginRecording(10, 10, &factory, 0);
recordingCanvas->saveLayer(nullptr, &imageFilterPaint);
recordingCanvas->restore();
SkAutoTUnref<SkPicture> picture2(recorder.endRecording());
canvas.clear(0);
canvas.drawPicture(picture2);
pixel = *bitmap.getAddr32(0, 0);
REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN);
recordingCanvas = recorder.beginRecording(10, 10, &factory, 0);
recordingCanvas->saveLayer(&bounds, &colorFilterPaint);
recordingCanvas->restore();
SkAutoTUnref<SkPicture> picture3(recorder.endRecording());
canvas.clear(0);
canvas.drawPicture(picture3);
pixel = *bitmap.getAddr32(0, 0);
REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN);
}
static void test_huge_blur(SkCanvas* canvas, skiatest::Reporter* reporter) {
SkBitmap bitmap;
bitmap.allocN32Pixels(100, 100);
bitmap.eraseARGB(0, 0, 0, 0);
// Check that a blur with an insane radius does not crash or assert.
SkAutoTUnref<SkImageFilter> blur(SkBlurImageFilter::Create(SkIntToScalar(1<<30), SkIntToScalar(1<<30)));
SkPaint paint;
paint.setImageFilter(blur);
canvas->drawSprite(bitmap, 0, 0, &paint);
}
DEF_TEST(HugeBlurImageFilter, reporter) {
SkBitmap temp;
temp.allocN32Pixels(100, 100);
SkCanvas canvas(temp);
test_huge_blur(&canvas, reporter);
}
DEF_TEST(MatrixConvolutionSanityTest, reporter) {
SkScalar kernel[1] = { 0 };
SkScalar gain = SK_Scalar1, bias = 0;
SkIPoint kernelOffset = SkIPoint::Make(1, 1);
// Check that an enormous (non-allocatable) kernel gives a nullptr filter.
SkAutoTUnref<SkImageFilter> conv(SkMatrixConvolutionImageFilter::Create(
SkISize::Make(1<<30, 1<<30),
kernel,
gain,
bias,
kernelOffset,
SkMatrixConvolutionImageFilter::kRepeat_TileMode,
false));
REPORTER_ASSERT(reporter, nullptr == conv.get());
// Check that a nullptr kernel gives a nullptr filter.
conv.reset(SkMatrixConvolutionImageFilter::Create(
SkISize::Make(1, 1),
nullptr,
gain,
bias,
kernelOffset,
SkMatrixConvolutionImageFilter::kRepeat_TileMode,
false));
REPORTER_ASSERT(reporter, nullptr == conv.get());
// Check that a kernel width < 1 gives a nullptr filter.
conv.reset(SkMatrixConvolutionImageFilter::Create(
SkISize::Make(0, 1),
kernel,
gain,
bias,
kernelOffset,
SkMatrixConvolutionImageFilter::kRepeat_TileMode,
false));
REPORTER_ASSERT(reporter, nullptr == conv.get());
// Check that kernel height < 1 gives a nullptr filter.
conv.reset(SkMatrixConvolutionImageFilter::Create(
SkISize::Make(1, -1),
kernel,
gain,
bias,
kernelOffset,
SkMatrixConvolutionImageFilter::kRepeat_TileMode,
false));
REPORTER_ASSERT(reporter, nullptr == conv.get());
}
static void test_xfermode_cropped_input(SkCanvas* canvas, skiatest::Reporter* reporter) {
canvas->clear(0);
SkBitmap bitmap;
bitmap.allocN32Pixels(1, 1);
bitmap.eraseARGB(255, 255, 255, 255);
SkAutoTUnref<SkColorFilter> green(
SkColorFilter::CreateModeFilter(SK_ColorGREEN, SkXfermode::kSrcIn_Mode));
SkAutoTUnref<SkColorFilterImageFilter> greenFilter(
SkColorFilterImageFilter::Create(green.get()));
SkImageFilter::CropRect cropRect(SkRect::MakeEmpty());
SkAutoTUnref<SkColorFilterImageFilter> croppedOut(
SkColorFilterImageFilter::Create(green.get(), nullptr, &cropRect));
// Check that an xfermode image filter whose input has been cropped out still draws the other
// input. Also check that drawing with both inputs cropped out doesn't cause a GPU warning.
SkXfermode* mode = SkXfermode::Create(SkXfermode::kSrcOver_Mode);
SkAutoTUnref<SkImageFilter> xfermodeNoFg(
SkXfermodeImageFilter::Create(mode, greenFilter, croppedOut));
SkAutoTUnref<SkImageFilter> xfermodeNoBg(
SkXfermodeImageFilter::Create(mode, croppedOut, greenFilter));
SkAutoTUnref<SkImageFilter> xfermodeNoFgNoBg(
SkXfermodeImageFilter::Create(mode, croppedOut, croppedOut));
SkPaint paint;
paint.setImageFilter(xfermodeNoFg);
canvas->drawSprite(bitmap, 0, 0, &paint);
uint32_t pixel;
SkImageInfo info = SkImageInfo::Make(1, 1, kBGRA_8888_SkColorType, kUnpremul_SkAlphaType);
canvas->readPixels(info, &pixel, 4, 0, 0);
REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN);
paint.setImageFilter(xfermodeNoBg);
canvas->drawSprite(bitmap, 0, 0, &paint);
canvas->readPixels(info, &pixel, 4, 0, 0);
REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN);
paint.setImageFilter(xfermodeNoFgNoBg);
canvas->drawSprite(bitmap, 0, 0, &paint);
canvas->readPixels(info, &pixel, 4, 0, 0);
REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN);
}
DEF_TEST(ImageFilterNestedSaveLayer, reporter) {
SkBitmap temp;
temp.allocN32Pixels(50, 50);
SkCanvas canvas(temp);
canvas.clear(0x0);
SkBitmap bitmap;
bitmap.allocN32Pixels(10, 10);
bitmap.eraseColor(SK_ColorGREEN);
SkMatrix matrix;
matrix.setScale(SkIntToScalar(2), SkIntToScalar(2));
matrix.postTranslate(SkIntToScalar(-20), SkIntToScalar(-20));
SkAutoTUnref<SkImageFilter> matrixFilter(
SkImageFilter::CreateMatrixFilter(matrix, kLow_SkFilterQuality));
// Test that saveLayer() with a filter nested inside another saveLayer() applies the
// correct offset to the filter matrix.
SkRect bounds1 = SkRect::MakeXYWH(10, 10, 30, 30);
canvas.saveLayer(&bounds1, nullptr);
SkPaint filterPaint;
filterPaint.setImageFilter(matrixFilter);
SkRect bounds2 = SkRect::MakeXYWH(20, 20, 10, 10);
canvas.saveLayer(&bounds2, &filterPaint);
SkPaint greenPaint;
greenPaint.setColor(SK_ColorGREEN);
canvas.drawRect(bounds2, greenPaint);
canvas.restore();
canvas.restore();
SkPaint strokePaint;
strokePaint.setStyle(SkPaint::kStroke_Style);
strokePaint.setColor(SK_ColorRED);
SkImageInfo info = SkImageInfo::Make(1, 1, kBGRA_8888_SkColorType, kUnpremul_SkAlphaType);
uint32_t pixel;
canvas.readPixels(info, &pixel, 4, 25, 25);
REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN);
// Test that drawSprite() with a filter nested inside a saveLayer() applies the
// correct offset to the filter matrix.
canvas.clear(0x0);
canvas.readPixels(info, &pixel, 4, 25, 25);
canvas.saveLayer(&bounds1, nullptr);
canvas.drawSprite(bitmap, 20, 20, &filterPaint);
canvas.restore();
canvas.readPixels(info, &pixel, 4, 25, 25);
REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN);
}
DEF_TEST(XfermodeImageFilterCroppedInput, reporter) {
SkBitmap temp;
temp.allocN32Pixels(100, 100);
SkCanvas canvas(temp);
test_xfermode_cropped_input(&canvas, reporter);
}
DEF_TEST(ComposedImageFilterOffset, reporter) {
SkBitmap bitmap;
bitmap.allocN32Pixels(100, 100);
bitmap.eraseARGB(0, 0, 0, 0);
const SkSurfaceProps props(SkSurfaceProps::kLegacyFontHost_InitType);
SkBitmapDevice device(bitmap, props);
SkImageFilter::Proxy proxy(&device);
SkImageFilter::CropRect cropRect(SkRect::MakeXYWH(1, 0, 20, 20));
SkAutoTUnref<SkImageFilter> offsetFilter(SkOffsetImageFilter::Create(0, 0, nullptr, &cropRect));
SkAutoTUnref<SkImageFilter> blurFilter(makeBlur());
SkAutoTUnref<SkImageFilter> composedFilter(SkComposeImageFilter::Create(blurFilter, offsetFilter.get()));
SkBitmap result;
SkIPoint offset;
SkImageFilter::Context ctx(SkMatrix::I(), SkIRect::MakeLargest(), nullptr);
REPORTER_ASSERT(reporter, composedFilter->filterImage(&proxy, bitmap, ctx, &result, &offset));
REPORTER_ASSERT(reporter, offset.fX == 1 && offset.fY == 0);
}
DEF_TEST(PartialCropRect, reporter) {
SkBitmap bitmap;
bitmap.allocN32Pixels(100, 100);
bitmap.eraseARGB(0, 0, 0, 0);
const SkSurfaceProps props(SkSurfaceProps::kLegacyFontHost_InitType);
SkBitmapDevice device(bitmap, props);
SkImageFilter::Proxy proxy(&device);
SkImageFilter::CropRect cropRect(SkRect::MakeXYWH(100, 0, 20, 30),
SkImageFilter::CropRect::kHasWidth_CropEdge | SkImageFilter::CropRect::kHasHeight_CropEdge);
SkAutoTUnref<SkImageFilter> filter(make_grayscale(nullptr, &cropRect));
SkBitmap result;
SkIPoint offset;
SkImageFilter::Context ctx(SkMatrix::I(), SkIRect::MakeLargest(), nullptr);
REPORTER_ASSERT(reporter, filter->filterImage(&proxy, bitmap, ctx, &result, &offset));
REPORTER_ASSERT(reporter, offset.fX == 0);
REPORTER_ASSERT(reporter, offset.fY == 0);
REPORTER_ASSERT(reporter, result.width() == 20);
REPORTER_ASSERT(reporter, result.height() == 30);
}
DEF_TEST(ImageFilterCanComputeFastBounds, reporter) {
SkPoint3 location = SkPoint3::Make(0, 0, SK_Scalar1);
SkAutoTUnref<SkImageFilter> lighting(SkLightingImageFilter::CreatePointLitDiffuse(
location, SK_ColorGREEN, 0, 0));
REPORTER_ASSERT(reporter, !lighting->canComputeFastBounds());
SkAutoTUnref<SkImageFilter> gray(make_grayscale(nullptr, nullptr));
REPORTER_ASSERT(reporter, gray->canComputeFastBounds());
{
SkColorFilter* grayCF;
REPORTER_ASSERT(reporter, gray->asAColorFilter(&grayCF));
REPORTER_ASSERT(reporter, !grayCF->affectsTransparentBlack());
grayCF->unref();
}
REPORTER_ASSERT(reporter, gray->canComputeFastBounds());
SkAutoTUnref<SkImageFilter> grayBlur(SkBlurImageFilter::Create(SK_Scalar1, SK_Scalar1, gray.get()));
REPORTER_ASSERT(reporter, grayBlur->canComputeFastBounds());
SkScalar greenMatrix[20] = { 0, 0, 0, 0, 0,
0, 0, 0, 0, 1,
0, 0, 0, 0, 0,
0, 0, 0, 0, 1 };
SkAutoTUnref<SkColorFilter> greenCF(SkColorMatrixFilter::Create(greenMatrix));
SkAutoTUnref<SkImageFilter> green(SkColorFilterImageFilter::Create(greenCF));
REPORTER_ASSERT(reporter, greenCF->affectsTransparentBlack());
REPORTER_ASSERT(reporter, !green->canComputeFastBounds());
SkAutoTUnref<SkImageFilter> greenBlur(SkBlurImageFilter::Create(SK_Scalar1, SK_Scalar1, green.get()));
REPORTER_ASSERT(reporter, !greenBlur->canComputeFastBounds());
uint8_t allOne[256], identity[256];
for (int i = 0; i < 256; ++i) {
identity[i] = i;
allOne[i] = 255;
}
SkAutoTUnref<SkColorFilter> identityCF(
SkTableColorFilter::CreateARGB(identity, identity, identity, allOne));
SkAutoTUnref<SkImageFilter> identityFilter(SkColorFilterImageFilter::Create(identityCF.get()));
REPORTER_ASSERT(reporter, !identityCF->affectsTransparentBlack());
REPORTER_ASSERT(reporter, identityFilter->canComputeFastBounds());
SkAutoTUnref<SkColorFilter> forceOpaqueCF(
SkTableColorFilter::CreateARGB(allOne, identity, identity, identity));
SkAutoTUnref<SkImageFilter> forceOpaque(SkColorFilterImageFilter::Create(forceOpaqueCF.get()));
REPORTER_ASSERT(reporter, forceOpaqueCF->affectsTransparentBlack());
REPORTER_ASSERT(reporter, !forceOpaque->canComputeFastBounds());
}
// Verify that SkImageSource survives serialization
DEF_TEST(ImageFilterImageSourceSerialization, reporter) {
SkAutoTUnref<SkSurface> surface(SkSurface::NewRasterN32Premul(10, 10));
surface->getCanvas()->clear(SK_ColorGREEN);
SkAutoTUnref<SkImage> image(surface->newImageSnapshot());
SkAutoTUnref<SkImageFilter> filter(SkImageSource::Create(image));
SkAutoTUnref<SkData> data(SkValidatingSerializeFlattenable(filter));
SkAutoTUnref<SkFlattenable> flattenable(SkValidatingDeserializeFlattenable(
data->data(), data->size(), SkImageFilter::GetFlattenableType()));
SkImageFilter* unflattenedFilter = static_cast<SkImageFilter*>(flattenable.get());
REPORTER_ASSERT(reporter, unflattenedFilter);
SkBitmap bm;
bm.allocN32Pixels(10, 10);
bm.eraseColor(SK_ColorBLUE);
SkPaint paint;
paint.setColor(SK_ColorRED);
paint.setImageFilter(unflattenedFilter);
SkCanvas canvas(bm);
canvas.drawRect(SkRect::MakeWH(10, 10), paint);
REPORTER_ASSERT(reporter, *bm.getAddr32(0, 0) == SkPreMultiplyColor(SK_ColorGREEN));
}
#if SK_SUPPORT_GPU
DEF_GPUTEST(ImageFilterCropRectGPU, reporter, factory) {
GrContext* context = factory->get(static_cast<GrContextFactory::GLContextType>(0));
if (nullptr == context) {
return;
}
const SkSurfaceProps props(SkSurfaceProps::kLegacyFontHost_InitType);
SkAutoTUnref<SkGpuDevice> device(SkGpuDevice::Create(context,
SkSurface::kNo_Budgeted,
SkImageInfo::MakeN32Premul(100, 100),
0,
&props,
SkGpuDevice::kUninit_InitContents));
SkImageFilter::Proxy proxy(device);
test_crop_rects(&proxy, reporter);
}
DEF_GPUTEST(HugeBlurImageFilterGPU, reporter, factory) {
GrContext* context = factory->get(static_cast<GrContextFactory::GLContextType>(0));
if (nullptr == context) {
return;
}
const SkSurfaceProps props(SkSurfaceProps::kLegacyFontHost_InitType);
SkAutoTUnref<SkGpuDevice> device(SkGpuDevice::Create(context,
SkSurface::kNo_Budgeted,
SkImageInfo::MakeN32Premul(100, 100),
0,
&props,
SkGpuDevice::kUninit_InitContents));
SkCanvas canvas(device);
test_huge_blur(&canvas, reporter);
}
DEF_GPUTEST(XfermodeImageFilterCroppedInputGPU, reporter, factory) {
GrContext* context = factory->get(static_cast<GrContextFactory::GLContextType>(0));
if (nullptr == context) {
return;
}
const SkSurfaceProps props(SkSurfaceProps::kLegacyFontHost_InitType);
SkAutoTUnref<SkGpuDevice> device(SkGpuDevice::Create(context,
SkSurface::kNo_Budgeted,
SkImageInfo::MakeN32Premul(1, 1),
0,
&props,
SkGpuDevice::kUninit_InitContents));
SkCanvas canvas(device);
test_xfermode_cropped_input(&canvas, reporter);
}
DEF_GPUTEST(TestNegativeBlurSigmaGPU, reporter, factory) {
GrContext* context = factory->get(static_cast<GrContextFactory::GLContextType>(0));
if (nullptr == context) {
return;
}
const SkSurfaceProps props(SkSurfaceProps::kLegacyFontHost_InitType);
SkAutoTUnref<SkGpuDevice> device(SkGpuDevice::Create(context,
SkSurface::kNo_Budgeted,
SkImageInfo::MakeN32Premul(1, 1),
0,
&props,
SkGpuDevice::kUninit_InitContents));
SkImageFilter::Proxy proxy(device);
test_negative_blur_sigma(&proxy, reporter);
}
#endif