e4097e3a0b
This fixes the last bug discovered by iterating through the 800K skp corpus representing the top 1M websites. For every clip on the stack, the paths are replaced with the pathop intersection. The resulting draw is compared with the original draw for pixel errors. At least two prominent bugs remain. In one, the winding value is confused by a cubic with an inflection. In the other, a quad/cubic pair, nearly coincident, fails to find an intersection. These minor changes include ignoring very tiny self-intersections of cubics, and processing degenerate edges that don't connect to anything else. R=reed@android.com TBR=reed Author: caryclark@google.com Review URL: https://codereview.chromium.org/340103002
198 lines
5.7 KiB
C++
198 lines
5.7 KiB
C++
/*
|
|
* Copyright 2012 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
#include "PathOpsTestCommon.h"
|
|
#include "SkPathOpsBounds.h"
|
|
#include "SkPathOpsCubic.h"
|
|
#include "SkPathOpsLine.h"
|
|
#include "SkPathOpsQuad.h"
|
|
#include "SkPathOpsTriangle.h"
|
|
|
|
void CubicToQuads(const SkDCubic& cubic, double precision, SkTArray<SkDQuad, true>& quads) {
|
|
SkTArray<double, true> ts;
|
|
cubic.toQuadraticTs(precision, &ts);
|
|
if (ts.count() <= 0) {
|
|
SkDQuad quad = cubic.toQuad();
|
|
quads.push_back(quad);
|
|
return;
|
|
}
|
|
double tStart = 0;
|
|
for (int i1 = 0; i1 <= ts.count(); ++i1) {
|
|
const double tEnd = i1 < ts.count() ? ts[i1] : 1;
|
|
SkDCubic part = cubic.subDivide(tStart, tEnd);
|
|
SkDQuad quad = part.toQuad();
|
|
quads.push_back(quad);
|
|
tStart = tEnd;
|
|
}
|
|
}
|
|
|
|
void CubicPathToQuads(const SkPath& cubicPath, SkPath* quadPath) {
|
|
quadPath->reset();
|
|
SkDCubic cubic;
|
|
SkTArray<SkDQuad, true> quads;
|
|
SkPath::RawIter iter(cubicPath);
|
|
uint8_t verb;
|
|
SkPoint pts[4];
|
|
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
|
|
switch (verb) {
|
|
case SkPath::kMove_Verb:
|
|
quadPath->moveTo(pts[0].fX, pts[0].fY);
|
|
continue;
|
|
case SkPath::kLine_Verb:
|
|
quadPath->lineTo(pts[1].fX, pts[1].fY);
|
|
break;
|
|
case SkPath::kQuad_Verb:
|
|
quadPath->quadTo(pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY);
|
|
break;
|
|
case SkPath::kCubic_Verb:
|
|
quads.reset();
|
|
cubic.set(pts);
|
|
CubicToQuads(cubic, cubic.calcPrecision(), quads);
|
|
for (int index = 0; index < quads.count(); ++index) {
|
|
SkPoint qPts[2] = {
|
|
quads[index][1].asSkPoint(),
|
|
quads[index][2].asSkPoint()
|
|
};
|
|
quadPath->quadTo(qPts[0].fX, qPts[0].fY, qPts[1].fX, qPts[1].fY);
|
|
}
|
|
break;
|
|
case SkPath::kClose_Verb:
|
|
quadPath->close();
|
|
break;
|
|
default:
|
|
SkDEBUGFAIL("bad verb");
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void CubicPathToSimple(const SkPath& cubicPath, SkPath* simplePath) {
|
|
simplePath->reset();
|
|
SkDCubic cubic;
|
|
SkPath::RawIter iter(cubicPath);
|
|
uint8_t verb;
|
|
SkPoint pts[4];
|
|
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
|
|
switch (verb) {
|
|
case SkPath::kMove_Verb:
|
|
simplePath->moveTo(pts[0].fX, pts[0].fY);
|
|
continue;
|
|
case SkPath::kLine_Verb:
|
|
simplePath->lineTo(pts[1].fX, pts[1].fY);
|
|
break;
|
|
case SkPath::kQuad_Verb:
|
|
simplePath->quadTo(pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY);
|
|
break;
|
|
case SkPath::kCubic_Verb: {
|
|
cubic.set(pts);
|
|
double tInflects[2];
|
|
int inflections = cubic.findInflections(tInflects);
|
|
if (inflections > 1 && tInflects[0] > tInflects[1]) {
|
|
SkTSwap(tInflects[0], tInflects[1]);
|
|
}
|
|
double lo = 0;
|
|
for (int index = 0; index <= inflections; ++index) {
|
|
double hi = index < inflections ? tInflects[index] : 1;
|
|
SkDCubic part = cubic.subDivide(lo, hi);
|
|
SkPoint cPts[3];
|
|
cPts[0] = part[1].asSkPoint();
|
|
cPts[1] = part[2].asSkPoint();
|
|
cPts[2] = part[3].asSkPoint();
|
|
simplePath->cubicTo(cPts[0].fX, cPts[0].fY, cPts[1].fX, cPts[1].fY,
|
|
cPts[2].fX, cPts[2].fY);
|
|
lo = hi;
|
|
}
|
|
break;
|
|
}
|
|
case SkPath::kClose_Verb:
|
|
simplePath->close();
|
|
break;
|
|
default:
|
|
SkDEBUGFAIL("bad verb");
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool SkDoubleIsNaN(double x) {
|
|
return x != x;
|
|
}
|
|
|
|
bool ValidBounds(const SkPathOpsBounds& bounds) {
|
|
if (SkScalarIsNaN(bounds.fLeft)) {
|
|
return false;
|
|
}
|
|
if (SkScalarIsNaN(bounds.fTop)) {
|
|
return false;
|
|
}
|
|
if (SkScalarIsNaN(bounds.fRight)) {
|
|
return false;
|
|
}
|
|
return !SkScalarIsNaN(bounds.fBottom);
|
|
}
|
|
|
|
bool ValidCubic(const SkDCubic& cubic) {
|
|
for (int index = 0; index < 4; ++index) {
|
|
if (!ValidPoint(cubic[index])) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool ValidLine(const SkDLine& line) {
|
|
for (int index = 0; index < 2; ++index) {
|
|
if (!ValidPoint(line[index])) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool ValidPoint(const SkDPoint& pt) {
|
|
if (SkDoubleIsNaN(pt.fX)) {
|
|
return false;
|
|
}
|
|
return !SkDoubleIsNaN(pt.fY);
|
|
}
|
|
|
|
bool ValidPoints(const SkPoint* pts, int count) {
|
|
for (int index = 0; index < count; ++index) {
|
|
if (SkScalarIsNaN(pts[index].fX)) {
|
|
return false;
|
|
}
|
|
if (SkScalarIsNaN(pts[index].fY)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool ValidQuad(const SkDQuad& quad) {
|
|
for (int index = 0; index < 3; ++index) {
|
|
if (!ValidPoint(quad[index])) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool ValidTriangle(const SkDTriangle& triangle) {
|
|
for (int index = 0; index < 3; ++index) {
|
|
if (!ValidPoint(triangle.fPts[index])) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool ValidVector(const SkDVector& v) {
|
|
if (SkDoubleIsNaN(v.fX)) {
|
|
return false;
|
|
}
|
|
return !SkDoubleIsNaN(v.fY);
|
|
}
|