skia2/tests/SkColor4fTest.cpp

254 lines
8.4 KiB
C++

/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkColor.h"
#include "SkColorMatrixFilter.h"
#include "SkGradientShader.h"
#include "SkImage.h"
#include "SkPM4f.h"
#include "SkShader.h"
#include "Test.h"
#include "SkRandom.h"
const float kTolerance = 1.0f / (1 << 20);
static bool nearly_equal(float a, float b, float tol = kTolerance) {
SkASSERT(tol >= 0);
return fabsf(a - b) <= tol;
}
static bool nearly_equal(const SkPM4f a, const SkPM4f& b, float tol = kTolerance) {
for (int i = 0; i < 4; ++i) {
if (!nearly_equal(a.fVec[i], b.fVec[i], tol)) {
return false;
}
}
return true;
}
DEF_TEST(SkColor4f_FromColor, reporter) {
const struct {
SkColor fC;
SkColor4f fC4;
} recs[] = {
{ SK_ColorBLACK, { 1, 0, 0, 0 } },
{ SK_ColorWHITE, { 1, 1, 1, 1 } },
{ SK_ColorRED, { 1, 1, 0, 0 } },
{ SK_ColorGREEN, { 1, 0, 1, 0 } },
{ SK_ColorBLUE, { 1, 0, 0, 1 } },
{ 0, { 0, 0, 0, 0 } },
{ 0x55AAFF00, { 1/3.0f, 2/3.0f, 1, 0 } },
};
for (const auto& r : recs) {
SkColor4f c4 = SkColor4f::FromColor(r.fC);
REPORTER_ASSERT(reporter, c4 == r.fC4);
}
}
DEF_TEST(Color4f_premul, reporter) {
SkRandom rand;
for (int i = 0; i < 1000000; ++i) {
// First just test opaque colors, so that the premul should be exact
SkColor4f c4 {
1, rand.nextUScalar1(), rand.nextUScalar1(), rand.nextUScalar1()
};
SkPM4f pm4 = c4.premul();
REPORTER_ASSERT(reporter, pm4.a() == c4.fA);
REPORTER_ASSERT(reporter, pm4.r() == c4.fA * c4.fR);
REPORTER_ASSERT(reporter, pm4.g() == c4.fA * c4.fG);
REPORTER_ASSERT(reporter, pm4.b() == c4.fA * c4.fB);
// We compare with a tolerance, in case our premul multiply is implemented at slightly
// different precision than the test code.
c4.fA = rand.nextUScalar1();
pm4 = c4.premul();
REPORTER_ASSERT(reporter, pm4.fVec[SK_A_INDEX] == c4.fA);
REPORTER_ASSERT(reporter, nearly_equal(pm4.r(), c4.fA * c4.fR));
REPORTER_ASSERT(reporter, nearly_equal(pm4.g(), c4.fA * c4.fG));
REPORTER_ASSERT(reporter, nearly_equal(pm4.b(), c4.fA * c4.fB));
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////
static SkColorFilter* make_mode_cf() {
return SkColorFilter::CreateModeFilter(0xFFBB8855, SkXfermode::kPlus_Mode);
}
static SkColorFilter* make_mx_cf() {
const float mx[] = {
0.5f, 0, 0, 0, 0.1f,
0, 0.5f, 0, 0, 0.2f,
0, 0, 1, 0, -0.1f,
0, 0, 0, 1, 0,
};
return SkColorMatrixFilter::Create(mx);
}
static SkColorFilter* make_compose_cf() {
SkAutoTUnref<SkColorFilter> cf0(make_mode_cf());
SkAutoTUnref<SkColorFilter> cf1(make_mx_cf());
return SkColorFilter::CreateComposeFilter(cf0, cf1);
}
static SkShader* make_color_sh() { return SkShader::CreateColorShader(0xFFBB8855); }
static SkShader* make_image_sh() {
const SkImageInfo info = SkImageInfo::MakeN32Premul(2, 2);
const SkPMColor pixels[] {
SkPackARGB32(0xFF, 0xBB, 0x88, 0x55),
SkPackARGB32(0xFF, 0xBB, 0x88, 0x55),
SkPackARGB32(0xFF, 0xBB, 0x88, 0x55),
SkPackARGB32(0xFF, 0xBB, 0x88, 0x55),
};
SkAutoTUnref<SkImage> image(SkImage::NewRasterCopy(info, pixels, sizeof(SkPMColor) * 2));
return image->newShader(SkShader::kClamp_TileMode, SkShader::kClamp_TileMode);
}
static SkShader* make_grad_sh() {
#if 0
const SkPoint pts[] {{ 0, 0 }, { 100, 100 }};
const SkColor colors[] { SK_ColorRED, SK_ColorBLUE };
return SkGradientShader::CreateLinear(pts, colors, nullptr, 2, SkShader::kClamp_TileMode);
#else
// TODO: need to convert new gradient code to enforce PM4f --> RGBA order
return make_color_sh();
#endif
}
static SkShader* make_cf_sh() {
SkAutoTUnref<SkColorFilter> filter(make_mx_cf());
SkAutoTUnref<SkShader> shader(make_color_sh());
return shader->newWithColorFilter(filter);
}
static bool compare_spans(const SkPM4f span4f[], const SkPMColor span4b[], int count,
float tolerance = 1.0f/255) {
for (int i = 0; i < count; ++i) {
SkPM4f c0 = SkPM4f::FromPMColor(span4b[i]);
SkPM4f c1 = span4f[i];
if (!nearly_equal(c0, c1, tolerance)) {
return false;
}
}
return true;
}
DEF_TEST(Color4f_shader, reporter) {
struct {
SkShader* (*fFact)();
bool fSupports4f;
float fTolerance;
} recs[] = {
{ make_color_sh, true, 1.0f/255 },
// PMColor 4f gradients are interpolated in 255-multiplied values, so we need a
// slightly relaxed tolerance to accommodate the cumulative precision deviation.
{ make_grad_sh, true, 1.001f/255 },
{ make_image_sh, false, 1.0f/255 },
{ make_cf_sh, true, 1.0f/255 },
};
SkPaint paint;
for (const auto& rec : recs) {
uint32_t storage[300];
paint.setShader(rec.fFact())->unref();
// Encourage 4f context selection. At some point we may need
// to instantiate two separate contexts for optimal 4b/4f selection.
const SkShader::ContextRec contextRec(paint, SkMatrix::I(), nullptr,
SkShader::ContextRec::kPM4f_DstType);
SkASSERT(paint.getShader()->contextSize(contextRec) <= sizeof(storage));
SkShader::Context* ctx = paint.getShader()->createContext(contextRec, storage);
if (rec.fSupports4f) {
const int N = 100;
SkPM4f buffer4f[N];
ctx->shadeSpan4f(0, 0, buffer4f, N);
SkPMColor buffer4b[N];
ctx->shadeSpan(0, 0, buffer4b, N);
REPORTER_ASSERT(reporter, compare_spans(buffer4f, buffer4b, N, rec.fTolerance));
}
ctx->~Context();
}
}
DEF_TEST(Color4f_colorfilter, reporter) {
struct {
SkColorFilter* (*fFact)();
bool fSupports4f;
const char* fName;
} recs[] = {
{ make_mode_cf, true, "mode" },
{ make_mx_cf, true, "matrix" },
{ make_compose_cf, true, "compose" },
};
// prepare the src
const int N = 100;
SkPMColor src4b[N];
SkPM4f src4f[N];
SkRandom rand;
for (int i = 0; i < N; ++i) {
src4b[i] = SkPreMultiplyColor(rand.nextU());
src4f[i] = SkPM4f::FromPMColor(src4b[i]);
}
// confirm that our srcs are (nearly) equal
REPORTER_ASSERT(reporter, compare_spans(src4f, src4b, N));
for (const auto& rec : recs) {
SkAutoTUnref<SkColorFilter> filter(rec.fFact());
SkPMColor dst4b[N];
filter->filterSpan(src4b, N, dst4b);
SkPM4f dst4f[N];
filter->filterSpan4f(src4f, N, dst4f);
REPORTER_ASSERT(reporter, compare_spans(dst4f, dst4b, N));
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
typedef SkPM4f (*SkXfermodeProc4f)(const SkPM4f& src, const SkPM4f& dst);
static bool compare_procs(SkXfermodeProc proc32, SkXfermodeProc4f proc4f) {
const float kTolerance = 1.0f / 255;
const SkColor colors[] = {
0, 0xFF000000, 0xFFFFFFFF, 0x80FF0000
};
for (auto s32 : colors) {
SkPMColor s_pm32 = SkPreMultiplyColor(s32);
SkPM4f s_pm4f = SkColor4f::FromColor(s32).premul();
for (auto d32 : colors) {
SkPMColor d_pm32 = SkPreMultiplyColor(d32);
SkPM4f d_pm4f = SkColor4f::FromColor(d32).premul();
SkPMColor r32 = proc32(s_pm32, d_pm32);
SkPM4f r4f = proc4f(s_pm4f, d_pm4f);
SkPM4f r32_4f = SkPM4f::FromPMColor(r32);
if (!nearly_equal(r4f, r32_4f, kTolerance)) {
return false;
}
}
}
return true;
}
// Check that our Proc and Proc4f return (nearly) the same results
//
DEF_TEST(Color4f_xfermode_proc4f, reporter) {
// TODO: extend xfermodes so that all cases can be tested.
//
for (int mode = SkXfermode::kClear_Mode; mode <= SkXfermode::kScreen_Mode; ++mode) {
SkXfermodeProc proc32 = SkXfermode::GetProc((SkXfermode::Mode)mode);
SkXfermodeProc4f proc4f = SkXfermode::GetProc4f((SkXfermode::Mode)mode);
REPORTER_ASSERT(reporter, compare_procs(proc32, proc4f));
}
}