5cdeb390d0
There are probably ways to make this more efficient by only optimizing what's necessary (e.g. try JIT first, then interpreter only if it fails) and some other performance improvements to make, but for now I want to focus mostly on keeping things simple and correct. The line between Builder::done() and Program::Program() is particularly fuzzy and becoming fuzzier here, and I think that'll be something that'll change eventually. This makes SkVMTest debug dumps more portable, though perhaps less useful. Might kill that feature soon now that SkVM is tested more thoroughly in unit tests and GMs and bots and such. Change-Id: Id9ce8daaf8570e5bea8b10f1a80b97f5b33d45dc Reviewed-on: https://skia-review.googlesource.com/c/skia/+/269941 Reviewed-by: Herb Derby <herb@google.com> Commit-Queue: Mike Klein <mtklein@google.com>
1559 lines
47 KiB
C++
1559 lines
47 KiB
C++
/*
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "include/core/SkColorPriv.h"
|
|
#include "include/private/SkColorData.h"
|
|
#include "src/core/SkMSAN.h"
|
|
#include "src/core/SkVM.h"
|
|
#include "tests/Test.h"
|
|
#include "tools/Resources.h"
|
|
#include "tools/SkVMBuilders.h"
|
|
|
|
using Fmt = SrcoverBuilder_F32::Fmt;
|
|
const char* fmt_name(Fmt fmt) {
|
|
switch (fmt) {
|
|
case Fmt::A8: return "A8";
|
|
case Fmt::G8: return "G8";
|
|
case Fmt::RGBA_8888: return "RGBA_8888";
|
|
}
|
|
return "";
|
|
}
|
|
|
|
static void dump(skvm::Builder& builder, SkWStream* o) {
|
|
skvm::Program program = builder.done();
|
|
builder.dump(o);
|
|
o->writeText("\n");
|
|
program.dump(o);
|
|
o->writeText("\n");
|
|
}
|
|
|
|
// TODO: I'd like this to go away and have every test in here run both JIT and interpreter.
|
|
template <typename Fn>
|
|
static void test_interpreter_only(skiatest::Reporter* r, skvm::Program&& program, Fn&& test) {
|
|
REPORTER_ASSERT(r, !program.hasJIT());
|
|
test((const skvm::Program&) program);
|
|
}
|
|
|
|
template <typename Fn>
|
|
static void test_jit_and_interpreter(skiatest::Reporter* r, skvm::Program&& program, Fn&& test) {
|
|
static const bool can_jit = []{
|
|
// This is about the simplest program we can write, setting an int buffer to a constant.
|
|
// If this can't JIT, the platform does not support JITing.
|
|
skvm::Builder b;
|
|
b.store32(b.varying<int>(), b.splat(42));
|
|
skvm::Program p = b.done();
|
|
return p.hasJIT();
|
|
}();
|
|
|
|
if (can_jit) {
|
|
REPORTER_ASSERT(r, program.hasJIT());
|
|
test((const skvm::Program&) program);
|
|
program.dropJIT();
|
|
}
|
|
test_interpreter_only(r, std::move(program), std::move(test));
|
|
}
|
|
|
|
|
|
DEF_TEST(SkVM, r) {
|
|
SkDynamicMemoryWStream buf;
|
|
|
|
// Write all combinations of SrcoverBuilder_F32
|
|
for (int s = 0; s < 3; s++)
|
|
for (int d = 0; d < 3; d++) {
|
|
auto srcFmt = (Fmt)s,
|
|
dstFmt = (Fmt)d;
|
|
SrcoverBuilder_F32 builder{srcFmt, dstFmt};
|
|
|
|
buf.writeText(fmt_name(srcFmt));
|
|
buf.writeText(" over ");
|
|
buf.writeText(fmt_name(dstFmt));
|
|
buf.writeText("\n");
|
|
dump(builder, &buf);
|
|
}
|
|
|
|
// Write the I32 Srcovers also.
|
|
{
|
|
SrcoverBuilder_I32_Naive builder;
|
|
buf.writeText("I32 (Naive) 8888 over 8888\n");
|
|
dump(builder, &buf);
|
|
}
|
|
{
|
|
SrcoverBuilder_I32 builder;
|
|
buf.writeText("I32 8888 over 8888\n");
|
|
dump(builder, &buf);
|
|
}
|
|
{
|
|
SrcoverBuilder_I32_SWAR builder;
|
|
buf.writeText("I32 (SWAR) 8888 over 8888\n");
|
|
dump(builder, &buf);
|
|
}
|
|
|
|
{
|
|
skvm::Builder b;
|
|
skvm::Arg arg = b.varying<int>();
|
|
|
|
// x and y can both be hoisted,
|
|
// and x can die at y, while y must live for the loop.
|
|
skvm::I32 x = b.splat(1),
|
|
y = b.add(x, b.splat(2));
|
|
b.store32(arg, b.mul(b.load32(arg), y));
|
|
|
|
skvm::Program program = b.done();
|
|
REPORTER_ASSERT(r, program.nregs() == 2);
|
|
|
|
std::vector<skvm::OptimizedInstruction> insts = b.optimize();
|
|
REPORTER_ASSERT(r, insts.size() == 6);
|
|
REPORTER_ASSERT(r, insts[0].can_hoist && insts[0].death == 2 && !insts[0].used_in_loop);
|
|
REPORTER_ASSERT(r, insts[1].can_hoist && insts[1].death == 2 && !insts[1].used_in_loop);
|
|
REPORTER_ASSERT(r, insts[2].can_hoist && insts[2].death == 4 && insts[2].used_in_loop);
|
|
REPORTER_ASSERT(r, !insts[3].can_hoist);
|
|
REPORTER_ASSERT(r, !insts[4].can_hoist);
|
|
REPORTER_ASSERT(r, !insts[5].can_hoist);
|
|
|
|
dump(b, &buf);
|
|
|
|
test_jit_and_interpreter(r, std::move(program), [&](const skvm::Program& program) {
|
|
int arg[] = {0,1,2,3,4,5,6,7,8,9};
|
|
|
|
program.eval(SK_ARRAY_COUNT(arg), arg);
|
|
|
|
for (int i = 0; i < (int)SK_ARRAY_COUNT(arg); i++) {
|
|
REPORTER_ASSERT(r, arg[i] == i*3);
|
|
}
|
|
});
|
|
}
|
|
|
|
{
|
|
// Demonstrate the value of program reordering.
|
|
skvm::Builder b;
|
|
skvm::Arg sp = b.varying<int>(),
|
|
dp = b.varying<int>();
|
|
|
|
skvm::I32 byte = b.splat(0xff);
|
|
|
|
skvm::I32 src = b.load32(sp),
|
|
sr = b.extract(src, 0, byte),
|
|
sg = b.extract(src, 8, byte),
|
|
sb = b.extract(src, 16, byte),
|
|
sa = b.extract(src, 24, byte);
|
|
|
|
skvm::I32 dst = b.load32(dp),
|
|
dr = b.extract(dst, 0, byte),
|
|
dg = b.extract(dst, 8, byte),
|
|
db = b.extract(dst, 16, byte),
|
|
da = b.extract(dst, 24, byte);
|
|
|
|
skvm::I32 R = b.add(sr, dr),
|
|
G = b.add(sg, dg),
|
|
B = b.add(sb, db),
|
|
A = b.add(sa, da);
|
|
|
|
skvm::I32 rg = b.pack(R, G, 8),
|
|
ba = b.pack(B, A, 8),
|
|
rgba = b.pack(rg, ba, 16);
|
|
|
|
b.store32(dp, rgba);
|
|
|
|
dump(b, &buf);
|
|
}
|
|
|
|
sk_sp<SkData> blob = buf.detachAsData();
|
|
{
|
|
|
|
sk_sp<SkData> expected = GetResourceAsData("SkVMTest.expected");
|
|
REPORTER_ASSERT(r, expected, "Couldn't load SkVMTest.expected.");
|
|
if (expected) {
|
|
if (blob->size() != expected->size()
|
|
|| 0 != memcmp(blob->data(), expected->data(), blob->size())) {
|
|
|
|
ERRORF(r, "SkVMTest expected\n%.*s\nbut got\n%.*s\n",
|
|
expected->size(), expected->data(),
|
|
blob->size(), blob->data());
|
|
}
|
|
|
|
SkFILEWStream out(GetResourcePath("SkVMTest.expected").c_str());
|
|
if (out.isValid()) {
|
|
out.write(blob->data(), blob->size());
|
|
}
|
|
}
|
|
}
|
|
|
|
auto test_8888 = [&](skvm::Program&& program) {
|
|
uint32_t src[9];
|
|
uint32_t dst[SK_ARRAY_COUNT(src)];
|
|
|
|
test_jit_and_interpreter(r, std::move(program), [&](const skvm::Program& program) {
|
|
for (int i = 0; i < (int)SK_ARRAY_COUNT(src); i++) {
|
|
src[i] = 0xbb007733;
|
|
dst[i] = 0xffaaccee;
|
|
}
|
|
|
|
SkPMColor expected = SkPMSrcOver(src[0], dst[0]); // 0xff2dad73
|
|
|
|
program.eval((int)SK_ARRAY_COUNT(src), src, dst);
|
|
|
|
// dst is probably 0xff2dad72.
|
|
for (auto got : dst) {
|
|
auto want = expected;
|
|
for (int i = 0; i < 4; i++) {
|
|
uint8_t d = got & 0xff,
|
|
w = want & 0xff;
|
|
if (abs(d-w) >= 2) {
|
|
SkDebugf("d %02x, w %02x\n", d,w);
|
|
}
|
|
REPORTER_ASSERT(r, abs(d-w) < 2);
|
|
got >>= 8;
|
|
want >>= 8;
|
|
}
|
|
}
|
|
});
|
|
};
|
|
|
|
test_8888(SrcoverBuilder_F32{Fmt::RGBA_8888, Fmt::RGBA_8888}.done("srcover_f32"));
|
|
test_8888(SrcoverBuilder_I32_Naive{}.done("srcover_i32_naive"));
|
|
test_8888(SrcoverBuilder_I32{}.done("srcover_i32"));
|
|
test_8888(SrcoverBuilder_I32_SWAR{}.done("srcover_i32_SWAR"));
|
|
|
|
test_jit_and_interpreter(r, SrcoverBuilder_F32{Fmt::RGBA_8888, Fmt::G8}.done(),
|
|
[&](const skvm::Program& program) {
|
|
uint32_t src[9];
|
|
uint8_t dst[SK_ARRAY_COUNT(src)];
|
|
|
|
for (int i = 0; i < (int)SK_ARRAY_COUNT(src); i++) {
|
|
src[i] = 0xbb007733;
|
|
dst[i] = 0x42;
|
|
}
|
|
|
|
SkPMColor over = SkPMSrcOver(SkPackARGB32(0xbb, 0x33, 0x77, 0x00),
|
|
0xff424242);
|
|
|
|
uint8_t want = SkComputeLuminance(SkGetPackedR32(over),
|
|
SkGetPackedG32(over),
|
|
SkGetPackedB32(over));
|
|
program.eval((int)SK_ARRAY_COUNT(src), src, dst);
|
|
|
|
for (auto got : dst) {
|
|
REPORTER_ASSERT(r, abs(got-want) < 3);
|
|
}
|
|
});
|
|
|
|
test_jit_and_interpreter(r, SrcoverBuilder_F32{Fmt::A8, Fmt::A8}.done(),
|
|
[&](const skvm::Program& program) {
|
|
uint8_t src[256],
|
|
dst[256];
|
|
for (int i = 0; i < 256; i++) {
|
|
src[i] = 255 - i;
|
|
dst[i] = i;
|
|
}
|
|
|
|
program.eval(256, src, dst);
|
|
|
|
for (int i = 0; i < 256; i++) {
|
|
uint8_t want = SkGetPackedA32(SkPMSrcOver(SkPackARGB32(src[i], 0,0,0),
|
|
SkPackARGB32( i, 0,0,0)));
|
|
REPORTER_ASSERT(r, abs(dst[i]-want) < 2);
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_Pointless, r) {
|
|
// Let's build a program with no memory arguments.
|
|
// It should all be pegged as dead code, but we should be able to "run" it.
|
|
skvm::Builder b;
|
|
{
|
|
b.add(b.splat(5.0f),
|
|
b.splat(4.0f));
|
|
}
|
|
|
|
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
|
|
for (int N = 0; N < 64; N++) {
|
|
program.eval(N);
|
|
}
|
|
});
|
|
|
|
for (const skvm::OptimizedInstruction& inst : b.optimize()) {
|
|
REPORTER_ASSERT(r, inst.death == 0 && inst.can_hoist == true);
|
|
}
|
|
}
|
|
|
|
DEF_TEST(SkVM_LoopCounts, r) {
|
|
// Make sure we cover all the exact N we want.
|
|
|
|
// buf[i] += 1
|
|
skvm::Builder b;
|
|
skvm::Arg arg = b.varying<int>();
|
|
b.store32(arg,
|
|
b.add(b.splat(1),
|
|
b.load32(arg)));
|
|
|
|
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
|
|
int buf[64];
|
|
for (int N = 0; N <= (int)SK_ARRAY_COUNT(buf); N++) {
|
|
for (int i = 0; i < (int)SK_ARRAY_COUNT(buf); i++) {
|
|
buf[i] = i;
|
|
}
|
|
program.eval(N, buf);
|
|
|
|
for (int i = 0; i < N; i++) {
|
|
REPORTER_ASSERT(r, buf[i] == i+1);
|
|
}
|
|
for (int i = N; i < (int)SK_ARRAY_COUNT(buf); i++) {
|
|
REPORTER_ASSERT(r, buf[i] == i);
|
|
}
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_gather32, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Arg uniforms = b.uniform(),
|
|
buf = b.varying<int>();
|
|
skvm::I32 x = b.load32(buf);
|
|
b.store32(buf, b.gather32(uniforms,0, b.bit_and(x, b.splat(7))));
|
|
}
|
|
|
|
#if defined(SK_CPU_X86)
|
|
test_jit_and_interpreter
|
|
#else
|
|
test_interpreter_only
|
|
#endif
|
|
(r, b.done(), [&](const skvm::Program& program) {
|
|
const int img[] = {12,34,56,78, 90,98,76,54};
|
|
|
|
int buf[20];
|
|
for (int i = 0; i < 20; i++) {
|
|
buf[i] = i;
|
|
}
|
|
|
|
struct Uniforms {
|
|
const int* img;
|
|
} uniforms{img};
|
|
|
|
program.eval(20, &uniforms, buf);
|
|
int i = 0;
|
|
REPORTER_ASSERT(r, buf[i] == 12); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 34); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 56); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 78); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 90); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 98); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 76); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 54); i++;
|
|
|
|
REPORTER_ASSERT(r, buf[i] == 12); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 34); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 56); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 78); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 90); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 98); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 76); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 54); i++;
|
|
|
|
REPORTER_ASSERT(r, buf[i] == 12); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 34); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 56); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 78); i++;
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_gathers, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Arg uniforms = b.uniform(),
|
|
buf32 = b.varying<int>(),
|
|
buf16 = b.varying<uint16_t>(),
|
|
buf8 = b.varying<uint8_t>();
|
|
|
|
skvm::I32 x = b.load32(buf32);
|
|
|
|
b.store32(buf32, b.gather32(uniforms,0, b.bit_and(x, b.splat( 7))));
|
|
b.store16(buf16, b.gather16(uniforms,0, b.bit_and(x, b.splat(15))));
|
|
b.store8 (buf8 , b.gather8 (uniforms,0, b.bit_and(x, b.splat(31))));
|
|
}
|
|
|
|
test_interpreter_only(r, b.done(), [&](const skvm::Program& program) {
|
|
const int img[] = {12,34,56,78, 90,98,76,54};
|
|
|
|
constexpr int N = 20;
|
|
int buf32[N];
|
|
uint16_t buf16[N];
|
|
uint8_t buf8 [N];
|
|
|
|
for (int i = 0; i < 20; i++) {
|
|
buf32[i] = i;
|
|
}
|
|
|
|
struct Uniforms {
|
|
const int* img;
|
|
} uniforms{img};
|
|
|
|
program.eval(N, &uniforms, buf32, buf16, buf8);
|
|
int i = 0;
|
|
REPORTER_ASSERT(r, buf32[i] == 12 && buf16[i] == 12 && buf8[i] == 12); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 34 && buf16[i] == 0 && buf8[i] == 0); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 56 && buf16[i] == 34 && buf8[i] == 0); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 78 && buf16[i] == 0 && buf8[i] == 0); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 90 && buf16[i] == 56 && buf8[i] == 34); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 98 && buf16[i] == 0 && buf8[i] == 0); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 76 && buf16[i] == 78 && buf8[i] == 0); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 54 && buf16[i] == 0 && buf8[i] == 0); i++;
|
|
|
|
REPORTER_ASSERT(r, buf32[i] == 12 && buf16[i] == 90 && buf8[i] == 56); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 34 && buf16[i] == 0 && buf8[i] == 0); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 56 && buf16[i] == 98 && buf8[i] == 0); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 78 && buf16[i] == 0 && buf8[i] == 0); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 90 && buf16[i] == 76 && buf8[i] == 78); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 98 && buf16[i] == 0 && buf8[i] == 0); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 76 && buf16[i] == 54 && buf8[i] == 0); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 54 && buf16[i] == 0 && buf8[i] == 0); i++;
|
|
|
|
REPORTER_ASSERT(r, buf32[i] == 12 && buf16[i] == 12 && buf8[i] == 90); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 34 && buf16[i] == 0 && buf8[i] == 0); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 56 && buf16[i] == 34 && buf8[i] == 0); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 78 && buf16[i] == 0 && buf8[i] == 0); i++;
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_bitops, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Arg ptr = b.varying<int>();
|
|
|
|
skvm::I32 x = b.load32(ptr);
|
|
|
|
x = b.bit_and (x, b.splat(0xf1)); // 0x40
|
|
x = b.bit_or (x, b.splat(0x80)); // 0xc0
|
|
x = b.bit_xor (x, b.splat(0xfe)); // 0x3e
|
|
x = b.bit_clear(x, b.splat(0x30)); // 0x0e
|
|
|
|
x = b.shl(x, 28); // 0xe000'0000
|
|
x = b.sra(x, 28); // 0xffff'fffe
|
|
x = b.shr(x, 1); // 0x7fff'ffff
|
|
|
|
b.store32(ptr, x);
|
|
}
|
|
|
|
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
|
|
int x = 0x42;
|
|
program.eval(1, &x);
|
|
REPORTER_ASSERT(r, x == 0x7fff'ffff);
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_f32, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Arg arg = b.varying<float>();
|
|
|
|
skvm::F32 x = b.bit_cast(b.load32(arg)),
|
|
y = b.add(x,x), // y = 2x
|
|
z = b.sub(y,x), // z = 2x-x = x
|
|
w = b.div(z,x); // w = x/x = 1
|
|
b.store32(arg, b.bit_cast(w));
|
|
}
|
|
|
|
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
|
|
float buf[] = { 1,2,3,4,5,6,7,8,9 };
|
|
program.eval(SK_ARRAY_COUNT(buf), buf);
|
|
for (float v : buf) {
|
|
REPORTER_ASSERT(r, v == 1.0f);
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_cmp_i32, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::I32 x = b.load32(b.varying<int>());
|
|
|
|
auto to_bit = [&](int shift, skvm::I32 mask) {
|
|
return b.shl(b.bit_and(mask, b.splat(0x1)), shift);
|
|
};
|
|
|
|
skvm::I32 m = b.splat(0);
|
|
m = b.bit_or(m, to_bit(0, b. eq(x, b.splat(0))));
|
|
m = b.bit_or(m, to_bit(1, b.neq(x, b.splat(1))));
|
|
m = b.bit_or(m, to_bit(2, b. lt(x, b.splat(2))));
|
|
m = b.bit_or(m, to_bit(3, b.lte(x, b.splat(3))));
|
|
m = b.bit_or(m, to_bit(4, b. gt(x, b.splat(4))));
|
|
m = b.bit_or(m, to_bit(5, b.gte(x, b.splat(5))));
|
|
|
|
b.store32(b.varying<int>(), m);
|
|
}
|
|
|
|
test_interpreter_only(r, b.done(), [&](const skvm::Program& program) {
|
|
int in[] = { 0,1,2,3,4,5,6,7,8,9 };
|
|
int out[SK_ARRAY_COUNT(in)];
|
|
|
|
program.eval(SK_ARRAY_COUNT(in), in, out);
|
|
|
|
REPORTER_ASSERT(r, out[0] == 0b001111);
|
|
REPORTER_ASSERT(r, out[1] == 0b001100);
|
|
REPORTER_ASSERT(r, out[2] == 0b001010);
|
|
REPORTER_ASSERT(r, out[3] == 0b001010);
|
|
REPORTER_ASSERT(r, out[4] == 0b000010);
|
|
for (int i = 5; i < (int)SK_ARRAY_COUNT(out); i++) {
|
|
REPORTER_ASSERT(r, out[i] == 0b110010);
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_cmp_f32, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::F32 x = b.bit_cast(b.load32(b.varying<float>()));
|
|
|
|
auto to_bit = [&](int shift, skvm::I32 mask) {
|
|
return b.shl(b.bit_and(mask, b.splat(0x1)), shift);
|
|
};
|
|
|
|
skvm::I32 m = b.splat(0);
|
|
m = b.bit_or(m, to_bit(0, b. eq(x, b.splat(0.0f))));
|
|
m = b.bit_or(m, to_bit(1, b.neq(x, b.splat(1.0f))));
|
|
m = b.bit_or(m, to_bit(2, b. lt(x, b.splat(2.0f))));
|
|
m = b.bit_or(m, to_bit(3, b.lte(x, b.splat(3.0f))));
|
|
m = b.bit_or(m, to_bit(4, b. gt(x, b.splat(4.0f))));
|
|
m = b.bit_or(m, to_bit(5, b.gte(x, b.splat(5.0f))));
|
|
|
|
b.store32(b.varying<int>(), m);
|
|
}
|
|
|
|
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
|
|
float in[] = { 0,1,2,3,4,5,6,7,8,9 };
|
|
int out[SK_ARRAY_COUNT(in)];
|
|
|
|
program.eval(SK_ARRAY_COUNT(in), in, out);
|
|
|
|
REPORTER_ASSERT(r, out[0] == 0b001111);
|
|
REPORTER_ASSERT(r, out[1] == 0b001100);
|
|
REPORTER_ASSERT(r, out[2] == 0b001010);
|
|
REPORTER_ASSERT(r, out[3] == 0b001010);
|
|
REPORTER_ASSERT(r, out[4] == 0b000010);
|
|
for (int i = 5; i < (int)SK_ARRAY_COUNT(out); i++) {
|
|
REPORTER_ASSERT(r, out[i] == 0b110010);
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_i16x2, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Arg buf = b.varying<int>();
|
|
|
|
skvm::I32 x = b.load32(buf),
|
|
y = b.add_16x2(x,x), // y = 2x
|
|
z = b.mul_16x2(x,y), // z = 2x^2
|
|
w = b.sub_16x2(z,x), // w = x(2x-1)
|
|
v = b.shl_16x2(w,7), // These shifts will be a no-op
|
|
u = b.sra_16x2(v,7); // for all but x=12 and x=13.
|
|
b.store32(buf, u);
|
|
}
|
|
|
|
test_interpreter_only(r, b.done(), [&](const skvm::Program& program) {
|
|
uint16_t buf[] = { 0,1,2,3,4,5,6,7,8,9,10,11,12,13 };
|
|
|
|
program.eval(SK_ARRAY_COUNT(buf)/2, buf);
|
|
for (int i = 0; i < 12; i++) {
|
|
REPORTER_ASSERT(r, buf[i] == i*(2*i-1));
|
|
}
|
|
REPORTER_ASSERT(r, buf[12] == 0xff14); // 12*23 = 0x114
|
|
REPORTER_ASSERT(r, buf[13] == 0xff45); // 13*25 = 0x145
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_cmp_i16, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Arg buf = b.varying<int>();
|
|
skvm::I32 x = b.load32(buf);
|
|
|
|
auto to_bit = [&](int shift, skvm::I32 mask) {
|
|
return b.shl_16x2(b.bit_and(mask, b.splat(0x0001'0001)), shift);
|
|
};
|
|
|
|
skvm::I32 m = b.splat(0);
|
|
m = b.bit_or(m, to_bit(0, b. eq_16x2(x, b.splat(0x0000'0000))));
|
|
m = b.bit_or(m, to_bit(1, b.neq_16x2(x, b.splat(0x0001'0001))));
|
|
m = b.bit_or(m, to_bit(2, b. lt_16x2(x, b.splat(0x0002'0002))));
|
|
m = b.bit_or(m, to_bit(3, b.lte_16x2(x, b.splat(0x0003'0003))));
|
|
m = b.bit_or(m, to_bit(4, b. gt_16x2(x, b.splat(0x0004'0004))));
|
|
m = b.bit_or(m, to_bit(5, b.gte_16x2(x, b.splat(0x0005'0005))));
|
|
|
|
b.store32(buf, m);
|
|
}
|
|
|
|
test_interpreter_only(r, b.done(), [&](const skvm::Program& program) {
|
|
int16_t buf[] = { 0,1, 2,3, 4,5, 6,7, 8,9 };
|
|
|
|
program.eval(SK_ARRAY_COUNT(buf)/2, buf);
|
|
|
|
REPORTER_ASSERT(r, buf[0] == 0b001111);
|
|
REPORTER_ASSERT(r, buf[1] == 0b001100);
|
|
REPORTER_ASSERT(r, buf[2] == 0b001010);
|
|
REPORTER_ASSERT(r, buf[3] == 0b001010);
|
|
REPORTER_ASSERT(r, buf[4] == 0b000010);
|
|
for (int i = 5; i < (int)SK_ARRAY_COUNT(buf); i++) {
|
|
REPORTER_ASSERT(r, buf[i] == 0b110010);
|
|
}
|
|
});
|
|
}
|
|
|
|
|
|
DEF_TEST(SkVM_mad, r) {
|
|
// This program is designed to exercise the tricky corners of instruction
|
|
// and register selection for Op::mad_f32.
|
|
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Arg arg = b.varying<int>();
|
|
|
|
skvm::F32 x = b.to_f32(b.load32(arg)),
|
|
y = b.mad(x,x,x), // x is needed in the future, so r[x] != r[y].
|
|
z = b.mad(y,y,x), // y is needed in the future, but r[z] = r[x] is ok.
|
|
w = b.mad(z,z,y), // w can alias z but not y.
|
|
v = b.mad(w,y,w); // Got to stop somewhere.
|
|
b.store32(arg, b.trunc(v));
|
|
}
|
|
|
|
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
|
|
int x = 2;
|
|
program.eval(1, &x);
|
|
// x = 2
|
|
// y = 2*2 + 2 = 6
|
|
// z = 6*6 + 2 = 38
|
|
// w = 38*38 + 6 = 1450
|
|
// v = 1450*6 + 1450 = 10150
|
|
REPORTER_ASSERT(r, x == 10150);
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_madder, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Arg arg = b.varying<float>();
|
|
|
|
skvm::F32 x = b.bit_cast(b.load32(arg)),
|
|
y = b.mad(x,x,x), // x is needed in the future, so r[x] != r[y].
|
|
z = b.mad(y,x,y), // r[x] can be reused after this instruction, but not r[y].
|
|
w = b.mad(y,y,z);
|
|
b.store32(arg, b.bit_cast(w));
|
|
}
|
|
|
|
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
|
|
float x = 2.0f;
|
|
// y = 2*2 + 2 = 6
|
|
// z = 6*2 + 6 = 18
|
|
// w = 6*6 + 18 = 54
|
|
program.eval(1, &x);
|
|
REPORTER_ASSERT(r, x == 54.0f);
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_floor, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Arg arg = b.varying<float>();
|
|
b.store32(arg, b.bit_cast(b.floor(b.bit_cast(b.load32(arg)))));
|
|
}
|
|
|
|
#if defined(SK_CPU_X86)
|
|
test_jit_and_interpreter
|
|
#else
|
|
test_interpreter_only
|
|
#endif
|
|
(r, b.done(), [&](const skvm::Program& program) {
|
|
float buf[] = { -2.0f, -1.5f, -1.0f, 0.0f, 1.0f, 1.5f, 2.0f };
|
|
float want[] = { -2.0f, -2.0f, -1.0f, 0.0f, 1.0f, 1.0f, 2.0f };
|
|
program.eval(SK_ARRAY_COUNT(buf), buf);
|
|
for (int i = 0; i < (int)SK_ARRAY_COUNT(buf); i++) {
|
|
REPORTER_ASSERT(r, buf[i] == want[i]);
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_hoist, r) {
|
|
// This program uses enough constants that it will fail to JIT if we hoist them.
|
|
// The JIT will try again without hoisting, and that'll just need 2 registers.
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Arg arg = b.varying<int>();
|
|
skvm::I32 x = b.load32(arg);
|
|
for (int i = 0; i < 32; i++) {
|
|
x = b.add(x, b.splat(i));
|
|
}
|
|
b.store32(arg, x);
|
|
}
|
|
|
|
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
|
|
int x = 4;
|
|
program.eval(1, &x);
|
|
// x += 0 + 1 + 2 + 3 + ... + 30 + 31
|
|
// x += 496
|
|
REPORTER_ASSERT(r, x == 500);
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_select, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Arg buf = b.varying<int>();
|
|
|
|
skvm::I32 x = b.load32(buf);
|
|
|
|
x = b.select( b.gt(x, b.splat(4)), x, b.splat(42) );
|
|
|
|
b.store32(buf, x);
|
|
}
|
|
|
|
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
|
|
int buf[] = { 0,1,2,3,4,5,6,7,8 };
|
|
program.eval(SK_ARRAY_COUNT(buf), buf);
|
|
for (int i = 0; i < (int)SK_ARRAY_COUNT(buf); i++) {
|
|
REPORTER_ASSERT(r, buf[i] == (i > 4 ? i : 42));
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_NewOps, r) {
|
|
// Exercise a somewhat arbitrary set of new ops.
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Arg buf = b.varying<int16_t>(),
|
|
uniforms = b.uniform();
|
|
|
|
skvm::I32 x = b.load16(buf);
|
|
|
|
const size_t kPtr = sizeof(const int*);
|
|
|
|
x = b.add(x, b.uniform32(uniforms, kPtr+0));
|
|
x = b.mul(x, b.uniform8 (uniforms, kPtr+4));
|
|
x = b.sub(x, b.uniform16(uniforms, kPtr+6));
|
|
|
|
skvm::I32 limit = b.uniform32(uniforms, kPtr+8);
|
|
x = b.select(b.lt(x, b.splat(0)), b.splat(0), x);
|
|
x = b.select(b.gt(x, limit ), limit , x);
|
|
|
|
x = b.gather8(uniforms,0, x);
|
|
|
|
b.store16(buf, x);
|
|
}
|
|
|
|
if ((false)) {
|
|
SkDynamicMemoryWStream buf;
|
|
dump(b, &buf);
|
|
sk_sp<SkData> blob = buf.detachAsData();
|
|
SkDebugf("%.*s\n", blob->size(), blob->data());
|
|
}
|
|
|
|
test_interpreter_only(r, b.done(), [&](const skvm::Program& program) {
|
|
const int N = 31;
|
|
int16_t buf[N];
|
|
for (int i = 0; i < N; i++) {
|
|
buf[i] = i;
|
|
}
|
|
|
|
const int M = 16;
|
|
uint8_t img[M];
|
|
for (int i = 0; i < M; i++) {
|
|
img[i] = i*i;
|
|
}
|
|
|
|
struct {
|
|
const uint8_t* img;
|
|
int add = 5;
|
|
uint8_t mul = 3;
|
|
uint16_t sub = 18;
|
|
int limit = M-1;
|
|
} uniforms{img};
|
|
|
|
program.eval(N, buf, &uniforms);
|
|
|
|
for (int i = 0; i < N; i++) {
|
|
// Our first math calculates x = (i+5)*3 - 18 a.k.a 3*(i-1).
|
|
int x = 3*(i-1);
|
|
|
|
// Then that's pinned to the limits of img.
|
|
if (i < 2) { x = 0; } // Notice i == 1 hits x == 0 exactly...
|
|
if (i > 5) { x = 15; } // ...and i == 6 hits x == 15 exactly
|
|
REPORTER_ASSERT(r, buf[i] == img[x]);
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_MSAN, r) {
|
|
// This little memset32() program should be able to JIT, but if we run that
|
|
// JIT code in an MSAN build, it won't see the writes initialize buf. So
|
|
// this tests that we're using the interpreter instead.
|
|
skvm::Builder b;
|
|
b.store32(b.varying<int>(), b.splat(42));
|
|
|
|
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
|
|
constexpr int K = 17;
|
|
int buf[K]; // Intentionally uninitialized.
|
|
program.eval(K, buf);
|
|
sk_msan_assert_initialized(buf, buf+K);
|
|
for (int x : buf) {
|
|
REPORTER_ASSERT(r, x == 42);
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_assert, r) {
|
|
skvm::Builder b;
|
|
b.assert_true(b.lt(b.load32(b.varying<int>()),
|
|
b.splat(42)));
|
|
|
|
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
|
|
int buf[] = { 0,1,2,3,4,5,6,7,8,9 };
|
|
program.eval(SK_ARRAY_COUNT(buf), buf);
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_premul, reporter) {
|
|
// Test that premul is short-circuited when alpha is known opaque.
|
|
{
|
|
skvm::Builder p;
|
|
auto rptr = p.varying<int>(),
|
|
aptr = p.varying<int>();
|
|
|
|
skvm::F32 r = p.bit_cast(p.load32(rptr)),
|
|
g = p.splat(0.0f),
|
|
b = p.splat(0.0f),
|
|
a = p.bit_cast(p.load32(aptr));
|
|
|
|
p.premul(&r, &g, &b, a);
|
|
p.store32(rptr, p.bit_cast(r));
|
|
|
|
// load red, load alpha, red *= alpha, store red
|
|
REPORTER_ASSERT(reporter, p.done().instructions().size() == 4);
|
|
}
|
|
|
|
{
|
|
skvm::Builder p;
|
|
auto rptr = p.varying<int>();
|
|
|
|
skvm::F32 r = p.bit_cast(p.load32(rptr)),
|
|
g = p.splat(0.0f),
|
|
b = p.splat(0.0f),
|
|
a = p.splat(1.0f);
|
|
|
|
p.premul(&r, &g, &b, a);
|
|
p.store32(rptr, p.bit_cast(r));
|
|
|
|
// load red, store red
|
|
REPORTER_ASSERT(reporter, p.done().instructions().size() == 2);
|
|
}
|
|
|
|
// Same deal for unpremul.
|
|
{
|
|
skvm::Builder p;
|
|
auto rptr = p.varying<int>(),
|
|
aptr = p.varying<int>();
|
|
|
|
skvm::F32 r = p.bit_cast(p.load32(rptr)),
|
|
g = p.splat(0.0f),
|
|
b = p.splat(0.0f),
|
|
a = p.bit_cast(p.load32(aptr));
|
|
|
|
p.unpremul(&r, &g, &b, a);
|
|
p.store32(rptr, p.bit_cast(r));
|
|
|
|
// load red, load alpha, a bunch of unpremul instructions, store red
|
|
REPORTER_ASSERT(reporter, p.done().instructions().size() >= 4);
|
|
}
|
|
|
|
{
|
|
skvm::Builder p;
|
|
auto rptr = p.varying<int>();
|
|
|
|
skvm::F32 r = p.bit_cast(p.load32(rptr)),
|
|
g = p.splat(0.0f),
|
|
b = p.splat(0.0f),
|
|
a = p.splat(1.0f);
|
|
|
|
p.unpremul(&r, &g, &b, a);
|
|
p.store32(rptr, p.bit_cast(r));
|
|
|
|
// load red, store red
|
|
REPORTER_ASSERT(reporter, p.done().instructions().size() == 2);
|
|
}
|
|
}
|
|
|
|
template <typename Fn>
|
|
static void test_asm(skiatest::Reporter* r, Fn&& fn, std::initializer_list<uint8_t> expected) {
|
|
uint8_t buf[4096];
|
|
skvm::Assembler a{buf};
|
|
fn(a);
|
|
|
|
REPORTER_ASSERT(r, a.size() == expected.size());
|
|
|
|
auto got = (const uint8_t*)buf,
|
|
want = expected.begin();
|
|
for (int i = 0; i < (int)std::min(a.size(), expected.size()); i++) {
|
|
REPORTER_ASSERT(r, got[i] == want[i],
|
|
"byte %d was %02x, want %02x", i, got[i], want[i]);
|
|
}
|
|
}
|
|
|
|
DEF_TEST(SkVM_Assembler, r) {
|
|
// Easiest way to generate test cases is
|
|
//
|
|
// echo '...some asm...' | llvm-mc -show-encoding -x86-asm-syntax=intel
|
|
//
|
|
// The -x86-asm-syntax=intel bit is optional, controlling the
|
|
// input syntax only; the output will always be AT&T op x,y,dst style.
|
|
// Our APIs read more like Intel op dst,x,y as op(dst,x,y), so I find
|
|
// that a bit easier to use here, despite maybe favoring AT&T overall.
|
|
|
|
using A = skvm::Assembler;
|
|
// Our exit strategy from AVX code.
|
|
test_asm(r, [&](A& a) {
|
|
a.int3();
|
|
a.vzeroupper();
|
|
a.ret();
|
|
},{
|
|
0xcc,
|
|
0xc5, 0xf8, 0x77,
|
|
0xc3,
|
|
});
|
|
|
|
// Align should pad with zero
|
|
test_asm(r, [&](A& a) {
|
|
a.ret();
|
|
a.align(4);
|
|
},{
|
|
0xc3,
|
|
0x00, 0x00, 0x00,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.add(A::rax, 8); // Always good to test rax.
|
|
a.sub(A::rax, 32);
|
|
|
|
a.add(A::rdi, 12); // Last 0x48 REX
|
|
a.sub(A::rdi, 8);
|
|
|
|
a.add(A::r8 , 7); // First 0x49 REX
|
|
a.sub(A::r8 , 4);
|
|
|
|
a.add(A::rsi, 128); // Requires 4 byte immediate.
|
|
a.sub(A::r8 , 1000000);
|
|
},{
|
|
0x48, 0x83, 0b11'000'000, 0x08,
|
|
0x48, 0x83, 0b11'101'000, 0x20,
|
|
|
|
0x48, 0x83, 0b11'000'111, 0x0c,
|
|
0x48, 0x83, 0b11'101'111, 0x08,
|
|
|
|
0x49, 0x83, 0b11'000'000, 0x07,
|
|
0x49, 0x83, 0b11'101'000, 0x04,
|
|
|
|
0x48, 0x81, 0b11'000'110, 0x80, 0x00, 0x00, 0x00,
|
|
0x49, 0x81, 0b11'101'000, 0x40, 0x42, 0x0f, 0x00,
|
|
});
|
|
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vpaddd (A::ymm0, A::ymm1, A::ymm2); // Low registers and 0x0f map -> 2-byte VEX.
|
|
a.vpaddd (A::ymm8, A::ymm1, A::ymm2); // A high dst register is ok -> 2-byte VEX.
|
|
a.vpaddd (A::ymm0, A::ymm8, A::ymm2); // A high first argument register -> 2-byte VEX.
|
|
a.vpaddd (A::ymm0, A::ymm1, A::ymm8); // A high second argument -> 3-byte VEX.
|
|
a.vpmulld(A::ymm0, A::ymm1, A::ymm2); // Using non-0x0f map instruction -> 3-byte VEX.
|
|
a.vpsubd (A::ymm0, A::ymm1, A::ymm2); // Test vpsubd to ensure argument order is right.
|
|
},{
|
|
/* VEX */ /*op*/ /*modRM*/
|
|
0xc5, 0xf5, 0xfe, 0xc2,
|
|
0xc5, 0x75, 0xfe, 0xc2,
|
|
0xc5, 0xbd, 0xfe, 0xc2,
|
|
0xc4, 0xc1, 0x75, 0xfe, 0xc0,
|
|
0xc4, 0xe2, 0x75, 0x40, 0xc2,
|
|
0xc5, 0xf5, 0xfa, 0xc2,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vpcmpeqd (A::ymm0, A::ymm1, A::ymm2);
|
|
a.vpcmpgtd (A::ymm0, A::ymm1, A::ymm2);
|
|
a.vcmpeqps (A::ymm0, A::ymm1, A::ymm2);
|
|
a.vcmpltps (A::ymm0, A::ymm1, A::ymm2);
|
|
a.vcmpleps (A::ymm0, A::ymm1, A::ymm2);
|
|
a.vcmpneqps(A::ymm0, A::ymm1, A::ymm2);
|
|
},{
|
|
0xc5,0xf5,0x76,0xc2,
|
|
0xc5,0xf5,0x66,0xc2,
|
|
0xc5,0xf4,0xc2,0xc2,0x00,
|
|
0xc5,0xf4,0xc2,0xc2,0x01,
|
|
0xc5,0xf4,0xc2,0xc2,0x02,
|
|
0xc5,0xf4,0xc2,0xc2,0x04,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vminps(A::ymm0, A::ymm1, A::ymm2);
|
|
a.vmaxps(A::ymm0, A::ymm1, A::ymm2);
|
|
},{
|
|
0xc5,0xf4,0x5d,0xc2,
|
|
0xc5,0xf4,0x5f,0xc2,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vpblendvb(A::ymm0, A::ymm1, A::ymm2, A::ymm3);
|
|
},{
|
|
0xc4,0xe3,0x75, 0x4c, 0xc2, 0x30,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vpsrld(A::ymm15, A::ymm2, 8);
|
|
a.vpsrld(A::ymm0 , A::ymm8, 5);
|
|
},{
|
|
0xc5, 0x85, 0x72,0xd2, 0x08,
|
|
0xc4,0xc1,0x7d, 0x72,0xd0, 0x05,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vpermq(A::ymm1, A::ymm2, 5);
|
|
},{
|
|
0xc4,0xe3,0xfd, 0x00,0xca, 0x05,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vroundps(A::ymm1, A::ymm2, A::NEAREST);
|
|
a.vroundps(A::ymm1, A::ymm2, A::FLOOR);
|
|
a.vroundps(A::ymm1, A::ymm2, A::CEIL);
|
|
a.vroundps(A::ymm1, A::ymm2, A::TRUNC);
|
|
},{
|
|
0xc4,0xe3,0x7d,0x08,0xca,0x00,
|
|
0xc4,0xe3,0x7d,0x08,0xca,0x01,
|
|
0xc4,0xe3,0x7d,0x08,0xca,0x02,
|
|
0xc4,0xe3,0x7d,0x08,0xca,0x03,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
A::Label l = a.here();
|
|
a.byte(1);
|
|
a.byte(2);
|
|
a.byte(3);
|
|
a.byte(4);
|
|
|
|
a.vbroadcastss(A::ymm0 , &l);
|
|
a.vbroadcastss(A::ymm1 , &l);
|
|
a.vbroadcastss(A::ymm8 , &l);
|
|
a.vbroadcastss(A::ymm15, &l);
|
|
|
|
a.vpshufb(A::ymm4, A::ymm3, &l);
|
|
a.vpaddd (A::ymm4, A::ymm3, &l);
|
|
a.vpsubd (A::ymm4, A::ymm3, &l);
|
|
|
|
a.vptest(A::ymm4, &l);
|
|
|
|
a.vmulps (A::ymm4, A::ymm3, &l);
|
|
},{
|
|
0x01, 0x02, 0x03, 0x4,
|
|
|
|
/* VEX */ /*op*/ /* ModRM */ /* offset */
|
|
0xc4, 0xe2, 0x7d, 0x18, 0b00'000'101, 0xf3,0xff,0xff,0xff, // 0xfffffff3 == -13
|
|
0xc4, 0xe2, 0x7d, 0x18, 0b00'001'101, 0xea,0xff,0xff,0xff, // 0xffffffea == -22
|
|
0xc4, 0x62, 0x7d, 0x18, 0b00'000'101, 0xe1,0xff,0xff,0xff, // 0xffffffe1 == -31
|
|
0xc4, 0x62, 0x7d, 0x18, 0b00'111'101, 0xd8,0xff,0xff,0xff, // 0xffffffd8 == -40
|
|
|
|
0xc4, 0xe2, 0x65, 0x00, 0b00'100'101, 0xcf,0xff,0xff,0xff, // 0xffffffcf == -49
|
|
|
|
0xc5, 0xe5, 0xfe, 0b00'100'101, 0xc7,0xff,0xff,0xff, // 0xffffffc7 == -57
|
|
0xc5, 0xe5, 0xfa, 0b00'100'101, 0xbf,0xff,0xff,0xff, // 0xffffffbf == -65
|
|
|
|
0xc4, 0xe2, 0x7d, 0x17, 0b00'100'101, 0xb6,0xff,0xff,0xff, // 0xffffffb6 == -74
|
|
|
|
0xc5, 0xe4, 0x59, 0b00'100'101, 0xae,0xff,0xff,0xff, // 0xffffffaf == -82
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vbroadcastss(A::ymm0, A::rdi, 0);
|
|
a.vbroadcastss(A::ymm13, A::r14, 7);
|
|
a.vbroadcastss(A::ymm8, A::rdx, -12);
|
|
a.vbroadcastss(A::ymm8, A::rdx, 400);
|
|
|
|
a.vbroadcastss(A::ymm8, A::xmm0);
|
|
a.vbroadcastss(A::ymm0, A::xmm13);
|
|
},{
|
|
/* VEX */ /*op*/ /*ModRM*/ /*offset*/
|
|
0xc4,0xe2,0x7d, 0x18, 0b00'000'111,
|
|
0xc4,0x42,0x7d, 0x18, 0b01'101'110, 0x07,
|
|
0xc4,0x62,0x7d, 0x18, 0b01'000'010, 0xf4,
|
|
0xc4,0x62,0x7d, 0x18, 0b10'000'010, 0x90,0x01,0x00,0x00,
|
|
|
|
0xc4,0x62,0x7d, 0x18, 0b11'000'000,
|
|
0xc4,0xc2,0x7d, 0x18, 0b11'000'101,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
A::Label l = a.here();
|
|
a.jne(&l);
|
|
a.jne(&l);
|
|
a.je (&l);
|
|
a.jmp(&l);
|
|
a.jl (&l);
|
|
a.jc (&l);
|
|
|
|
a.cmp(A::rdx, 0);
|
|
a.cmp(A::rax, 12);
|
|
a.cmp(A::r14, 2000000000);
|
|
},{
|
|
0x0f,0x85, 0xfa,0xff,0xff,0xff, // near jne -6 bytes
|
|
0x0f,0x85, 0xf4,0xff,0xff,0xff, // near jne -12 bytes
|
|
0x0f,0x84, 0xee,0xff,0xff,0xff, // near je -18 bytes
|
|
0xe9, 0xe9,0xff,0xff,0xff, // near jmp -23 bytes
|
|
0x0f,0x8c, 0xe3,0xff,0xff,0xff, // near jl -29 bytes
|
|
0x0f,0x82, 0xdd,0xff,0xff,0xff, // near jc -35 bytes
|
|
|
|
0x48,0x83,0xfa,0x00,
|
|
0x48,0x83,0xf8,0x0c,
|
|
0x49,0x81,0xfe,0x00,0x94,0x35,0x77,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vmovups(A::ymm5, A::rsi);
|
|
a.vmovups(A::rsi, A::ymm5);
|
|
|
|
a.vmovups(A::rsi, A::xmm5);
|
|
|
|
a.vpmovzxwd(A::ymm4, A::rsi);
|
|
a.vpmovzxbd(A::ymm4, A::rsi);
|
|
|
|
a.vmovq(A::rdx, A::xmm15);
|
|
},{
|
|
/* VEX */ /*Op*/ /* ModRM */
|
|
0xc5, 0xfc, 0x10, 0b00'101'110,
|
|
0xc5, 0xfc, 0x11, 0b00'101'110,
|
|
|
|
0xc5, 0xf8, 0x11, 0b00'101'110,
|
|
|
|
0xc4,0xe2,0x7d, 0x33, 0b00'100'110,
|
|
0xc4,0xe2,0x7d, 0x31, 0b00'100'110,
|
|
|
|
0xc5, 0x79, 0xd6, 0b00'111'010,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.movzbl(A::rax, A::rsi, 0); // Low registers for src and dst.
|
|
a.movzbl(A::rax, A::r8, 0); // High src register.
|
|
a.movzbl(A::r8 , A::rsi, 0); // High dst register.
|
|
a.movzbl(A::r8, A::rsi, 12);
|
|
a.movzbl(A::r8, A::rsi, 400);
|
|
|
|
a.vmovd(A::rax, A::xmm0);
|
|
a.vmovd(A::rax, A::xmm8);
|
|
a.vmovd(A::r8, A::xmm0);
|
|
|
|
a.vmovd(A::xmm0, A::rax);
|
|
a.vmovd(A::xmm8, A::rax);
|
|
a.vmovd(A::xmm0, A::r8);
|
|
|
|
a.vmovd(A::xmm0 , A::FOUR, A::rcx, A::rax);
|
|
a.vmovd(A::xmm15, A::TWO, A::r8, A::rax);
|
|
a.vmovd(A::xmm0 , A::ONE, A::rcx, A::r8);
|
|
|
|
a.vmovd_direct(A::rax, A::xmm0);
|
|
a.vmovd_direct(A::rax, A::xmm8);
|
|
a.vmovd_direct(A::r8, A::xmm0);
|
|
|
|
a.vmovd_direct(A::xmm0, A::rax);
|
|
a.vmovd_direct(A::xmm8, A::rax);
|
|
a.vmovd_direct(A::xmm0, A::r8);
|
|
|
|
a.movb(A::rdx, A::rax);
|
|
a.movb(A::rdx, A::r8);
|
|
a.movb(A::r8 , A::rax);
|
|
},{
|
|
0x0f,0xb6,0x06,
|
|
0x41,0x0f,0xb6,0x00,
|
|
0x44,0x0f,0xb6,0x06,
|
|
0x44,0x0f,0xb6,0x46, 12,
|
|
0x44,0x0f,0xb6,0x86, 0x90,0x01,0x00,0x00,
|
|
|
|
0xc5,0xf9,0x7e,0x00,
|
|
0xc5,0x79,0x7e,0x00,
|
|
0xc4,0xc1,0x79,0x7e,0x00,
|
|
|
|
0xc5,0xf9,0x6e,0x00,
|
|
0xc5,0x79,0x6e,0x00,
|
|
0xc4,0xc1,0x79,0x6e,0x00,
|
|
|
|
0xc5,0xf9,0x6e,0x04,0x88,
|
|
0xc4,0x21,0x79,0x6e,0x3c,0x40,
|
|
0xc4,0xc1,0x79,0x6e,0x04,0x08,
|
|
|
|
0xc5,0xf9,0x7e,0xc0,
|
|
0xc5,0x79,0x7e,0xc0,
|
|
0xc4,0xc1,0x79,0x7e,0xc0,
|
|
|
|
0xc5,0xf9,0x6e,0xc0,
|
|
0xc5,0x79,0x6e,0xc0,
|
|
0xc4,0xc1,0x79,0x6e,0xc0,
|
|
|
|
0x88, 0x02,
|
|
0x44, 0x88, 0x02,
|
|
0x41, 0x88, 0x00,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vpinsrw(A::xmm1, A::xmm8, A::rsi, 4);
|
|
a.vpinsrw(A::xmm8, A::xmm1, A::r8, 12);
|
|
|
|
a.vpinsrb(A::xmm1, A::xmm8, A::rsi, 4);
|
|
a.vpinsrb(A::xmm8, A::xmm1, A::r8, 12);
|
|
|
|
a.vpextrw(A::rsi, A::xmm8, 7);
|
|
a.vpextrw(A::r8, A::xmm1, 15);
|
|
|
|
a.vpextrb(A::rsi, A::xmm8, 7);
|
|
a.vpextrb(A::r8, A::xmm1, 15);
|
|
},{
|
|
0xc5,0xb9, 0xc4, 0x0e, 4,
|
|
0xc4,0x41,0x71, 0xc4, 0x00, 12,
|
|
|
|
0xc4,0xe3,0x39, 0x20, 0x0e, 4,
|
|
0xc4,0x43,0x71, 0x20, 0x00, 12,
|
|
|
|
0xc4,0x63,0x79, 0x15, 0x06, 7,
|
|
0xc4,0xc3,0x79, 0x15, 0x08, 15,
|
|
|
|
0xc4,0x63,0x79, 0x14, 0x06, 7,
|
|
0xc4,0xc3,0x79, 0x14, 0x08, 15,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vpandn(A::ymm3, A::ymm12, A::ymm2);
|
|
},{
|
|
0xc5, 0x9d, 0xdf, 0xda,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vmovdqa (A::ymm3, A::ymm2);
|
|
a.vcvttps2dq(A::ymm3, A::ymm2);
|
|
a.vcvtdq2ps (A::ymm3, A::ymm2);
|
|
a.vcvtps2dq (A::ymm3, A::ymm2);
|
|
a.vsqrtps (A::ymm3, A::ymm2);
|
|
},{
|
|
0xc5,0xfd,0x6f,0xda,
|
|
0xc5,0xfe,0x5b,0xda,
|
|
0xc5,0xfc,0x5b,0xda,
|
|
0xc5,0xfd,0x5b,0xda,
|
|
0xc5,0xfc,0x51,0xda,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vgatherdps(A::ymm1 , A::FOUR , A::ymm0 , A::rdi, A::ymm2 );
|
|
a.vgatherdps(A::ymm0 , A::ONE , A::ymm2 , A::rax, A::ymm1 );
|
|
a.vgatherdps(A::ymm10, A::ONE , A::ymm2 , A::rax, A::ymm1 );
|
|
a.vgatherdps(A::ymm0 , A::ONE , A::ymm12, A::rax, A::ymm1 );
|
|
a.vgatherdps(A::ymm0 , A::ONE , A::ymm2 , A::r9 , A::ymm1 );
|
|
a.vgatherdps(A::ymm0 , A::ONE , A::ymm2 , A::rax, A::ymm12);
|
|
a.vgatherdps(A::ymm0 , A::EIGHT, A::ymm2 , A::rax, A::ymm12);
|
|
},{
|
|
0xc4,0xe2,0x6d,0x92,0x0c,0x87,
|
|
0xc4,0xe2,0x75,0x92,0x04,0x10,
|
|
0xc4,0x62,0x75,0x92,0x14,0x10,
|
|
0xc4,0xa2,0x75,0x92,0x04,0x20,
|
|
0xc4,0xc2,0x75,0x92,0x04,0x11,
|
|
0xc4,0xe2,0x1d,0x92,0x04,0x10,
|
|
0xc4,0xe2,0x1d,0x92,0x04,0xd0,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.movq(A::rax, A::rdi, 0);
|
|
a.movq(A::rax, A::rdi, 1);
|
|
a.movq(A::rax, A::rdi, 512);
|
|
a.movq(A::r15, A::r13, 42);
|
|
a.movq(A::rax, A::r13, 42);
|
|
a.movq(A::r15, A::rax, 42);
|
|
},{
|
|
0x48, 0x8b, 0x07,
|
|
0x48, 0x8b, 0x47, 0x01,
|
|
0x48, 0x8b, 0x87, 0x00,0x02,0x00,0x00,
|
|
0x4d, 0x8b, 0x7d, 0x2a,
|
|
0x49, 0x8b, 0x45, 0x2a,
|
|
0x4c, 0x8b, 0x78, 0x2a,
|
|
});
|
|
|
|
// echo "fmul v4.4s, v3.4s, v1.4s" | llvm-mc -show-encoding -arch arm64
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.and16b(A::v4, A::v3, A::v1);
|
|
a.orr16b(A::v4, A::v3, A::v1);
|
|
a.eor16b(A::v4, A::v3, A::v1);
|
|
a.bic16b(A::v4, A::v3, A::v1);
|
|
a.bsl16b(A::v4, A::v3, A::v1);
|
|
a.not16b(A::v4, A::v3);
|
|
|
|
a.add4s(A::v4, A::v3, A::v1);
|
|
a.sub4s(A::v4, A::v3, A::v1);
|
|
a.mul4s(A::v4, A::v3, A::v1);
|
|
|
|
a.cmeq4s(A::v4, A::v3, A::v1);
|
|
a.cmgt4s(A::v4, A::v3, A::v1);
|
|
|
|
a.sub8h(A::v4, A::v3, A::v1);
|
|
a.mul8h(A::v4, A::v3, A::v1);
|
|
|
|
a.fadd4s(A::v4, A::v3, A::v1);
|
|
a.fsub4s(A::v4, A::v3, A::v1);
|
|
a.fmul4s(A::v4, A::v3, A::v1);
|
|
a.fdiv4s(A::v4, A::v3, A::v1);
|
|
a.fmin4s(A::v4, A::v3, A::v1);
|
|
a.fmax4s(A::v4, A::v3, A::v1);
|
|
|
|
a.fmla4s(A::v4, A::v3, A::v1);
|
|
|
|
a.fcmeq4s(A::v4, A::v3, A::v1);
|
|
a.fcmgt4s(A::v4, A::v3, A::v1);
|
|
a.fcmge4s(A::v4, A::v3, A::v1);
|
|
},{
|
|
0x64,0x1c,0x21,0x4e,
|
|
0x64,0x1c,0xa1,0x4e,
|
|
0x64,0x1c,0x21,0x6e,
|
|
0x64,0x1c,0x61,0x4e,
|
|
0x64,0x1c,0x61,0x6e,
|
|
0x64,0x58,0x20,0x6e,
|
|
|
|
0x64,0x84,0xa1,0x4e,
|
|
0x64,0x84,0xa1,0x6e,
|
|
0x64,0x9c,0xa1,0x4e,
|
|
|
|
0x64,0x8c,0xa1,0x6e,
|
|
0x64,0x34,0xa1,0x4e,
|
|
|
|
0x64,0x84,0x61,0x6e,
|
|
0x64,0x9c,0x61,0x4e,
|
|
|
|
0x64,0xd4,0x21,0x4e,
|
|
0x64,0xd4,0xa1,0x4e,
|
|
0x64,0xdc,0x21,0x6e,
|
|
0x64,0xfc,0x21,0x6e,
|
|
0x64,0xf4,0xa1,0x4e,
|
|
0x64,0xf4,0x21,0x4e,
|
|
|
|
0x64,0xcc,0x21,0x4e,
|
|
|
|
0x64,0xe4,0x21,0x4e,
|
|
0x64,0xe4,0xa1,0x6e,
|
|
0x64,0xe4,0x21,0x6e,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.shl4s(A::v4, A::v3, 0);
|
|
a.shl4s(A::v4, A::v3, 1);
|
|
a.shl4s(A::v4, A::v3, 8);
|
|
a.shl4s(A::v4, A::v3, 16);
|
|
a.shl4s(A::v4, A::v3, 31);
|
|
|
|
a.sshr4s(A::v4, A::v3, 1);
|
|
a.sshr4s(A::v4, A::v3, 8);
|
|
a.sshr4s(A::v4, A::v3, 31);
|
|
|
|
a.ushr4s(A::v4, A::v3, 1);
|
|
a.ushr4s(A::v4, A::v3, 8);
|
|
a.ushr4s(A::v4, A::v3, 31);
|
|
|
|
a.ushr8h(A::v4, A::v3, 1);
|
|
a.ushr8h(A::v4, A::v3, 8);
|
|
a.ushr8h(A::v4, A::v3, 15);
|
|
},{
|
|
0x64,0x54,0x20,0x4f,
|
|
0x64,0x54,0x21,0x4f,
|
|
0x64,0x54,0x28,0x4f,
|
|
0x64,0x54,0x30,0x4f,
|
|
0x64,0x54,0x3f,0x4f,
|
|
|
|
0x64,0x04,0x3f,0x4f,
|
|
0x64,0x04,0x38,0x4f,
|
|
0x64,0x04,0x21,0x4f,
|
|
|
|
0x64,0x04,0x3f,0x6f,
|
|
0x64,0x04,0x38,0x6f,
|
|
0x64,0x04,0x21,0x6f,
|
|
|
|
0x64,0x04,0x1f,0x6f,
|
|
0x64,0x04,0x18,0x6f,
|
|
0x64,0x04,0x11,0x6f,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.sli4s(A::v4, A::v3, 0);
|
|
a.sli4s(A::v4, A::v3, 1);
|
|
a.sli4s(A::v4, A::v3, 8);
|
|
a.sli4s(A::v4, A::v3, 16);
|
|
a.sli4s(A::v4, A::v3, 31);
|
|
},{
|
|
0x64,0x54,0x20,0x6f,
|
|
0x64,0x54,0x21,0x6f,
|
|
0x64,0x54,0x28,0x6f,
|
|
0x64,0x54,0x30,0x6f,
|
|
0x64,0x54,0x3f,0x6f,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.scvtf4s (A::v4, A::v3);
|
|
a.fcvtzs4s(A::v4, A::v3);
|
|
a.fcvtns4s(A::v4, A::v3);
|
|
},{
|
|
0x64,0xd8,0x21,0x4e,
|
|
0x64,0xb8,0xa1,0x4e,
|
|
0x64,0xa8,0x21,0x4e,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.brk(0);
|
|
a.brk(65535);
|
|
|
|
a.ret(A::x30); // Conventional ret using link register.
|
|
a.ret(A::x13); // Can really return using any register if we like.
|
|
|
|
a.add(A::x2, A::x2, 4);
|
|
a.add(A::x3, A::x2, 32);
|
|
|
|
a.sub(A::x2, A::x2, 4);
|
|
a.sub(A::x3, A::x2, 32);
|
|
|
|
a.subs(A::x2, A::x2, 4);
|
|
a.subs(A::x3, A::x2, 32);
|
|
|
|
a.subs(A::xzr, A::x2, 4); // These are actually the same instruction!
|
|
a.cmp(A::x2, 4);
|
|
|
|
A::Label l = a.here();
|
|
a.bne(&l);
|
|
a.bne(&l);
|
|
a.blt(&l);
|
|
a.b(&l);
|
|
a.cbnz(A::x2, &l);
|
|
a.cbz(A::x2, &l);
|
|
},{
|
|
0x00,0x00,0x20,0xd4,
|
|
0xe0,0xff,0x3f,0xd4,
|
|
|
|
0xc0,0x03,0x5f,0xd6,
|
|
0xa0,0x01,0x5f,0xd6,
|
|
|
|
0x42,0x10,0x00,0x91,
|
|
0x43,0x80,0x00,0x91,
|
|
|
|
0x42,0x10,0x00,0xd1,
|
|
0x43,0x80,0x00,0xd1,
|
|
|
|
0x42,0x10,0x00,0xf1,
|
|
0x43,0x80,0x00,0xf1,
|
|
|
|
0x5f,0x10,0x00,0xf1,
|
|
0x5f,0x10,0x00,0xf1,
|
|
|
|
0x01,0x00,0x00,0x54, // b.ne #0
|
|
0xe1,0xff,0xff,0x54, // b.ne #-4
|
|
0xcb,0xff,0xff,0x54, // b.lt #-8
|
|
0xae,0xff,0xff,0x54, // b.al #-12
|
|
0x82,0xff,0xff,0xb5, // cbnz x2, #-16
|
|
0x62,0xff,0xff,0xb4, // cbz x2, #-20
|
|
});
|
|
|
|
// Can we cbz() to a not-yet-defined label?
|
|
test_asm(r, [&](A& a) {
|
|
A::Label l;
|
|
a.cbz(A::x2, &l);
|
|
a.add(A::x3, A::x2, 32);
|
|
a.label(&l);
|
|
a.ret(A::x30);
|
|
},{
|
|
0x42,0x00,0x00,0xb4, // cbz x2, #8
|
|
0x43,0x80,0x00,0x91, // add x3, x2, #32
|
|
0xc0,0x03,0x5f,0xd6, // ret
|
|
});
|
|
|
|
// If we start a label as a backward label,
|
|
// can we redefine it to be a future label?
|
|
// (Not sure this is useful... just want to test it works.)
|
|
test_asm(r, [&](A& a) {
|
|
A::Label l1 = a.here();
|
|
a.add(A::x3, A::x2, 32);
|
|
a.cbz(A::x2, &l1); // This will jump backward... nothing sneaky.
|
|
|
|
A::Label l2 = a.here(); // Start off the same...
|
|
a.add(A::x3, A::x2, 32);
|
|
a.cbz(A::x2, &l2); // Looks like this will go backward...
|
|
a.add(A::x2, A::x2, 4);
|
|
a.add(A::x3, A::x2, 32);
|
|
a.label(&l2); // But no... actually forward! What a switcheroo!
|
|
},{
|
|
0x43,0x80,0x00,0x91, // add x3, x2, #32
|
|
0xe2,0xff,0xff,0xb4, // cbz x2, #-4
|
|
|
|
0x43,0x80,0x00,0x91, // add x3, x2, #32
|
|
0x62,0x00,0x00,0xb4, // cbz x2, #12
|
|
0x42,0x10,0x00,0x91, // add x2, x2, #4
|
|
0x43,0x80,0x00,0x91, // add x3, x2, #32
|
|
});
|
|
|
|
// Loading from a label on ARM.
|
|
test_asm(r, [&](A& a) {
|
|
A::Label fore,aft;
|
|
a.label(&fore);
|
|
a.word(0x01234567);
|
|
a.ldrq(A::v1, &fore);
|
|
a.ldrq(A::v2, &aft);
|
|
a.label(&aft);
|
|
a.word(0x76543210);
|
|
},{
|
|
0x67,0x45,0x23,0x01,
|
|
0xe1,0xff,0xff,0x9c, // ldr q1, #-4
|
|
0x22,0x00,0x00,0x9c, // ldr q2, #4
|
|
0x10,0x32,0x54,0x76,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.ldrq(A::v0, A::x8);
|
|
a.strq(A::v0, A::x8);
|
|
},{
|
|
0x00,0x01,0xc0,0x3d,
|
|
0x00,0x01,0x80,0x3d,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.xtns2h(A::v0, A::v0);
|
|
a.xtnh2b(A::v0, A::v0);
|
|
a.strs (A::v0, A::x0);
|
|
|
|
a.ldrs (A::v0, A::x0);
|
|
a.uxtlb2h(A::v0, A::v0);
|
|
a.uxtlh2s(A::v0, A::v0);
|
|
|
|
a.uminv4s(A::v3, A::v4);
|
|
a.fmovs (A::x3, A::v4); // fmov w3,s4
|
|
},{
|
|
0x00,0x28,0x61,0x0e,
|
|
0x00,0x28,0x21,0x0e,
|
|
0x00,0x00,0x00,0xbd,
|
|
|
|
0x00,0x00,0x40,0xbd,
|
|
0x00,0xa4,0x08,0x2f,
|
|
0x00,0xa4,0x10,0x2f,
|
|
|
|
0x83,0xa8,0xb1,0x6e,
|
|
0x83,0x00,0x26,0x1e,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.ldrb(A::v0, A::x8);
|
|
a.strb(A::v0, A::x8);
|
|
},{
|
|
0x00,0x01,0x40,0x3d,
|
|
0x00,0x01,0x00,0x3d,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.tbl(A::v0, A::v1, A::v2);
|
|
},{
|
|
0x20,0x00,0x02,0x4e,
|
|
});
|
|
}
|