skia2/tests/ProcessorTest.cpp
Greg Daniel 026a60ca4d Have GrProcessorTestData hold views instead of proxies.
Bug: skia:9556
Change-Id: I2e51331eaca74a6c355872cd19b725f7b3ab551e
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/270199
Commit-Queue: Greg Daniel <egdaniel@google.com>
Reviewed-by: Brian Salomon <bsalomon@google.com>
2020-02-12 16:47:25 +00:00

843 lines
40 KiB
C++

/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "tests/Test.h"
#include "include/gpu/GrContext.h"
#include "include/gpu/GrGpuResource.h"
#include "src/gpu/GrBitmapTextureMaker.h"
#include "src/gpu/GrClip.h"
#include "src/gpu/GrContextPriv.h"
#include "src/gpu/GrImageInfo.h"
#include "src/gpu/GrMemoryPool.h"
#include "src/gpu/GrProxyProvider.h"
#include "src/gpu/GrRenderTargetContext.h"
#include "src/gpu/GrRenderTargetContextPriv.h"
#include "src/gpu/GrResourceProvider.h"
#include "src/gpu/glsl/GrGLSLFragmentProcessor.h"
#include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
#include "src/gpu/ops/GrFillRectOp.h"
#include "src/gpu/ops/GrMeshDrawOp.h"
#include "tests/TestUtils.h"
#include <atomic>
#include <random>
namespace {
class TestOp : public GrMeshDrawOp {
public:
DEFINE_OP_CLASS_ID
static std::unique_ptr<GrDrawOp> Make(GrContext* context,
std::unique_ptr<GrFragmentProcessor> fp) {
GrOpMemoryPool* pool = context->priv().opMemoryPool();
return pool->allocate<TestOp>(std::move(fp));
}
const char* name() const override { return "TestOp"; }
void visitProxies(const VisitProxyFunc& func) const override {
fProcessors.visitProxies(func);
}
FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; }
GrProcessorSet::Analysis finalize(
const GrCaps& caps, const GrAppliedClip* clip, bool hasMixedSampledCoverage,
GrClampType clampType) override {
static constexpr GrProcessorAnalysisColor kUnknownColor;
SkPMColor4f overrideColor;
return fProcessors.finalize(
kUnknownColor, GrProcessorAnalysisCoverage::kNone, clip,
&GrUserStencilSettings::kUnused, hasMixedSampledCoverage, caps, clampType,
&overrideColor);
}
private:
friend class ::GrOpMemoryPool; // for ctor
TestOp(std::unique_ptr<GrFragmentProcessor> fp)
: INHERITED(ClassID()), fProcessors(std::move(fp)) {
this->setBounds(SkRect::MakeWH(100, 100), HasAABloat::kNo, IsHairline::kNo);
}
void onPrepareDraws(Target* target) override { return; }
void onExecute(GrOpFlushState*, const SkRect&) override { return; }
GrProcessorSet fProcessors;
typedef GrMeshDrawOp INHERITED;
};
/**
* FP used to test ref counts on owned GrGpuResources. Can also be a parent FP to test counts
* of resources owned by child FPs.
*/
class TestFP : public GrFragmentProcessor {
public:
static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> child) {
return std::unique_ptr<GrFragmentProcessor>(new TestFP(std::move(child)));
}
static std::unique_ptr<GrFragmentProcessor> Make(const SkTArray<GrSurfaceProxyView>& views,
const SkTArray<sk_sp<GrGpuBuffer>>& buffers) {
return std::unique_ptr<GrFragmentProcessor>(new TestFP(views, buffers));
}
const char* name() const override { return "test"; }
void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const override {
static std::atomic<int32_t> nextKey{0};
b->add32(nextKey++);
}
std::unique_ptr<GrFragmentProcessor> clone() const override {
return std::unique_ptr<GrFragmentProcessor>(new TestFP(*this));
}
private:
TestFP(const SkTArray<GrSurfaceProxyView>& views,
const SkTArray<sk_sp<GrGpuBuffer>>& buffers)
: INHERITED(kTestFP_ClassID, kNone_OptimizationFlags), fSamplers(4) {
for (const auto& view : views) {
fSamplers.emplace_back(view);
}
this->setTextureSamplerCnt(fSamplers.count());
}
TestFP(std::unique_ptr<GrFragmentProcessor> child)
: INHERITED(kTestFP_ClassID, kNone_OptimizationFlags), fSamplers(4) {
this->registerChildProcessor(std::move(child));
}
explicit TestFP(const TestFP& that)
: INHERITED(kTestFP_ClassID, that.optimizationFlags()), fSamplers(4) {
for (int i = 0; i < that.fSamplers.count(); ++i) {
fSamplers.emplace_back(that.fSamplers[i]);
}
for (int i = 0; i < that.numChildProcessors(); ++i) {
this->registerChildProcessor(that.childProcessor(i).clone());
}
this->setTextureSamplerCnt(fSamplers.count());
}
virtual GrGLSLFragmentProcessor* onCreateGLSLInstance() const override {
class TestGLSLFP : public GrGLSLFragmentProcessor {
public:
TestGLSLFP() {}
void emitCode(EmitArgs& args) override {
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
fragBuilder->codeAppendf("%s = %s;", args.fOutputColor, args.fInputColor);
}
private:
};
return new TestGLSLFP();
}
bool onIsEqual(const GrFragmentProcessor&) const override { return false; }
const TextureSampler& onTextureSampler(int i) const override { return fSamplers[i]; }
GrTAllocator<TextureSampler> fSamplers;
typedef GrFragmentProcessor INHERITED;
};
}
DEF_GPUTEST_FOR_ALL_CONTEXTS(ProcessorRefTest, reporter, ctxInfo) {
GrContext* context = ctxInfo.grContext();
GrProxyProvider* proxyProvider = context->priv().proxyProvider();
static constexpr SkISize kDims = {10, 10};
const GrBackendFormat format =
context->priv().caps()->getDefaultBackendFormat(GrColorType::kRGBA_8888,
GrRenderable::kNo);
GrSwizzle swizzle = context->priv().caps()->getReadSwizzle(format, GrColorType::kRGBA_8888);
for (bool makeClone : {false, true}) {
for (int parentCnt = 0; parentCnt < 2; parentCnt++) {
auto renderTargetContext = GrRenderTargetContext::Make(
context, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kApprox, {1, 1});
{
sk_sp<GrTextureProxy> proxy = proxyProvider->createProxy(
format, kDims, swizzle, GrRenderable::kNo, 1, kTopLeft_GrSurfaceOrigin,
GrMipMapped::kNo, SkBackingFit::kExact, SkBudgeted::kYes, GrProtected::kNo);
{
SkTArray<GrSurfaceProxyView> views;
SkTArray<sk_sp<GrGpuBuffer>> buffers;
views.push_back({proxy, kTopLeft_GrSurfaceOrigin, swizzle});
auto fp = TestFP::Make(std::move(views), std::move(buffers));
for (int i = 0; i < parentCnt; ++i) {
fp = TestFP::Make(std::move(fp));
}
std::unique_ptr<GrFragmentProcessor> clone;
if (makeClone) {
clone = fp->clone();
}
std::unique_ptr<GrDrawOp> op(TestOp::Make(context, std::move(fp)));
renderTargetContext->priv().testingOnly_addDrawOp(std::move(op));
if (clone) {
op = TestOp::Make(context, std::move(clone));
renderTargetContext->priv().testingOnly_addDrawOp(std::move(op));
}
}
// If the fp is cloned the number of refs should increase by one (for the clone)
int expectedProxyRefs = makeClone ? 3 : 2;
CheckSingleThreadedProxyRefs(reporter, proxy.get(), expectedProxyRefs, -1);
context->flush();
// just one from the 'proxy' sk_sp
CheckSingleThreadedProxyRefs(reporter, proxy.get(), 1, 1);
}
}
}
}
#include "tools/flags/CommandLineFlags.h"
static DEFINE_bool(randomProcessorTest, false,
"Use non-deterministic seed for random processor tests?");
static DEFINE_int(processorSeed, 0,
"Use specific seed for processor tests. Overridden by --randomProcessorTest.");
#if GR_TEST_UTILS
static GrColor input_texel_color(int i, int j, SkScalar delta) {
// Delta must be less than 0.5 to prevent over/underflow issues with the input color
SkASSERT(delta <= 0.5);
SkColor color = SkColorSetARGB((uint8_t)(i & 0xFF),
(uint8_t)(j & 0xFF),
(uint8_t)((i + j) & 0xFF),
(uint8_t)((2 * j - i) & 0xFF));
SkColor4f color4f = SkColor4f::FromColor(color);
// We only apply delta to the r,g, and b channels. This is because we're using this
// to test the canTweakAlphaForCoverage() optimization. A processor is allowed
// to use the input color's alpha in its calculation and report this optimization.
for (int i = 0; i < 3; i++) {
if (color4f[i] > 0.5) {
color4f[i] -= delta;
} else {
color4f[i] += delta;
}
}
return color4f.premul().toBytes_RGBA();
}
void test_draw_op(GrContext* context,
GrRenderTargetContext* rtc,
std::unique_ptr<GrFragmentProcessor> fp,
GrSurfaceProxyView inputDataView,
SkAlphaType inputAlphaType) {
GrPaint paint;
paint.addColorFragmentProcessor(GrTextureEffect::Make(std::move(inputDataView),
inputAlphaType));
paint.addColorFragmentProcessor(std::move(fp));
paint.setPorterDuffXPFactory(SkBlendMode::kSrc);
auto op = GrFillRectOp::MakeNonAARect(context, std::move(paint), SkMatrix::I(),
SkRect::MakeWH(rtc->width(), rtc->height()));
rtc->priv().testingOnly_addDrawOp(std::move(op));
}
// This assumes that the output buffer will be the same size as inputDataView
void render_fp(GrContext* context, GrRenderTargetContext* rtc, GrFragmentProcessor* fp,
GrSurfaceProxyView inputDataView, SkAlphaType inputAlphaType, GrColor* buffer) {
// test_draw_op needs to take ownership of an FP, so give it a clone that it can own
test_draw_op(context, rtc, fp->clone(), inputDataView, inputAlphaType);
memset(buffer, 0x0,
sizeof(GrColor) * inputDataView.proxy()->width() * inputDataView.proxy()->height());
rtc->readPixels(SkImageInfo::Make(inputDataView.proxy()->dimensions(), kRGBA_8888_SkColorType,
kPremul_SkAlphaType),
buffer, 0, {0, 0});
}
/** Initializes the two test texture proxies that are available to the FP test factories. */
bool init_test_textures(GrResourceProvider* resourceProvider,
GrRecordingContext* context,
SkRandom* random,
GrProcessorTestData::ViewInfo views[2]) {
static const int kTestTextureSize = 256;
{
// Put premul data into the RGBA texture that the test FPs can optionally use.
GrColor* rgbaData = new GrColor[kTestTextureSize * kTestTextureSize];
for (int y = 0; y < kTestTextureSize; ++y) {
for (int x = 0; x < kTestTextureSize; ++x) {
rgbaData[kTestTextureSize * y + x] = input_texel_color(
random->nextULessThan(256), random->nextULessThan(256), 0.0f);
}
}
SkImageInfo ii = SkImageInfo::Make(kTestTextureSize, kTestTextureSize,
kRGBA_8888_SkColorType, kPremul_SkAlphaType);
SkBitmap bitmap;
bitmap.installPixels(ii, rgbaData, ii.minRowBytes(),
[](void* addr, void* context) { delete[] (GrColor*)addr; }, nullptr);
bitmap.setImmutable();
GrBitmapTextureMaker maker(context, bitmap);
auto[view, grCT] = maker.view(GrMipMapped::kNo);
if (!view.proxy() || !view.proxy()->instantiate(resourceProvider)) {
return false;
}
views[0] = {view, GrColorType::kRGBA_8888, kPremul_SkAlphaType};
}
{
// Put random values into the alpha texture that the test FPs can optionally use.
uint8_t* alphaData = new uint8_t[kTestTextureSize * kTestTextureSize];
for (int y = 0; y < kTestTextureSize; ++y) {
for (int x = 0; x < kTestTextureSize; ++x) {
alphaData[kTestTextureSize * y + x] = random->nextULessThan(256);
}
}
SkImageInfo ii = SkImageInfo::Make(kTestTextureSize, kTestTextureSize,
kAlpha_8_SkColorType, kPremul_SkAlphaType);
SkBitmap bitmap;
bitmap.installPixels(ii, alphaData, ii.minRowBytes(),
[](void* addr, void* context) { delete[] (uint8_t*)addr; }, nullptr);
bitmap.setImmutable();
GrBitmapTextureMaker maker(context, bitmap);
auto[view, grCT] = maker.view(GrMipMapped::kNo);
if (!view.proxy() || !view.proxy()->instantiate(resourceProvider)) {
return false;
}
views[1] = {view, GrColorType::kAlpha_8, kPremul_SkAlphaType};
}
return true;
}
// Creates a texture of premul colors used as the output of the fragment processor that precedes
// the fragment processor under test. Color values are those provided by input_texel_color().
GrSurfaceProxyView make_input_texture(GrRecordingContext* context, int width, int height,
SkScalar delta) {
GrColor* data = new GrColor[width * height];
for (int y = 0; y < width; ++y) {
for (int x = 0; x < height; ++x) {
data[width * y + x] = input_texel_color(x, y, delta);
}
}
SkImageInfo ii = SkImageInfo::Make(width, height, kRGBA_8888_SkColorType, kPremul_SkAlphaType);
SkBitmap bitmap;
bitmap.installPixels(ii, data, ii.minRowBytes(),
[](void* addr, void* context) { delete[] (GrColor*)addr; }, nullptr);
bitmap.setImmutable();
GrBitmapTextureMaker maker(context, bitmap);
auto[view, grCT] = maker.view(GrMipMapped::kNo);
return view;
}
// We tag logged data as unpremul to avoid conversion when encoding as PNG. The input texture
// actually contains unpremul data. Also, even though we made the result data by rendering into
// a "unpremul" GrRenderTargetContext, our input texture is unpremul and outside of the random
// effect configuration, we didn't do anything to ensure the output is actually premul. We just
// don't currently allow kUnpremul GrRenderTargetContexts.
static constexpr auto kLogAlphaType = kUnpremul_SkAlphaType;
bool log_pixels(GrColor* pixels, int widthHeight, SkString* dst) {
auto info = SkImageInfo::Make(widthHeight, widthHeight, kRGBA_8888_SkColorType, kLogAlphaType);
SkBitmap bmp;
bmp.installPixels(info, pixels, widthHeight * sizeof(GrColor));
return BipmapToBase64DataURI(bmp, dst);
}
bool log_texture_view(GrContext* context, GrSurfaceProxyView src, SkString* dst) {
SkImageInfo ii = SkImageInfo::Make(src.proxy()->dimensions(), kRGBA_8888_SkColorType,
kLogAlphaType);
auto sContext = GrSurfaceContext::Make(context, std::move(src), GrColorType::kRGBA_8888,
kLogAlphaType, nullptr);
SkBitmap bm;
SkAssertResult(bm.tryAllocPixels(ii));
SkAssertResult(sContext->readPixels(ii, bm.getPixels(), bm.rowBytes(), {0, 0}));
return BipmapToBase64DataURI(bm, dst);
}
bool fuzzy_color_equals(const SkPMColor4f& c1, const SkPMColor4f& c2) {
// With the loss of precision of rendering into 32-bit color, then estimating the FP's output
// from that, it is not uncommon for a valid output to differ from estimate by up to 0.01
// (really 1/128 ~ .0078, but frequently floating point issues make that tolerance a little
// too unforgiving).
static constexpr SkScalar kTolerance = 0.01f;
for (int i = 0; i < 4; i++) {
if (!SkScalarNearlyEqual(c1[i], c2[i], kTolerance)) {
return false;
}
}
return true;
}
// Given three input colors (color preceding the FP being tested) provided to the FP at the same
// local coord and the three corresponding FP outputs, this ensures that either:
// out[0] = fp * in[0].a, out[1] = fp * in[1].a, and out[2] = fp * in[2].a
// where fp is the pre-modulated color that should not be changing across frames (FP's state doesn't
// change), OR:
// out[0] = fp * in[0], out[1] = fp * in[1], and out[2] = fp * in[2]
// (per-channel modulation instead of modulation by just the alpha channel)
// It does this by estimating the pre-modulated fp color from one of the input/output pairs and
// confirms the conditions hold for the other two pairs.
// It is required that the three input colors have the same alpha as fp is allowed to be a function
// of the input alpha (but not r, g, or b).
bool legal_modulation(const GrColor in[3], const GrColor out[3]) {
// Convert to floating point, which is the number space the FP operates in (more or less)
SkPMColor4f inf[3], outf[3];
for (int i = 0; i < 3; ++i) {
inf[i] = SkPMColor4f::FromBytes_RGBA(in[i]);
outf[i] = SkPMColor4f::FromBytes_RGBA(out[i]);
}
// This test is only valid if all the input alphas are the same.
SkASSERT(inf[0].fA == inf[1].fA && inf[1].fA == inf[2].fA);
// Reconstruct the output of the FP before the shader modulated its color with the input value.
// When the original input is very small, it may cause the final output color to round
// to 0, in which case we estimate the pre-modulated color using one of the stepped frames that
// will then have a guaranteed larger channel value (since the offset will be added to it).
SkPMColor4f fpPreColorModulation = {0,0,0,0};
SkPMColor4f fpPreAlphaModulation = {0,0,0,0};
for (int i = 0; i < 4; i++) {
// Use the most stepped up frame
int maxInIdx = inf[0][i] > inf[1][i] ? 0 : 1;
maxInIdx = inf[maxInIdx][i] > inf[2][i] ? maxInIdx : 2;
const auto& in = inf[maxInIdx];
const auto& out = outf[maxInIdx];
if (in[i] > 0) {
fpPreColorModulation[i] = out[i] / in[i];
}
if (in[3] > 0) {
fpPreAlphaModulation[i] = out[i] / in[3];
}
}
// With reconstructed pre-modulated FP output, derive the expected value of fp * input for each
// of the transformed input colors.
SkPMColor4f expectedForAlphaModulation[3];
SkPMColor4f expectedForColorModulation[3];
for (int i = 0; i < 3; ++i) {
expectedForAlphaModulation[i] = fpPreAlphaModulation * inf[i].fA;
expectedForColorModulation[i] = fpPreColorModulation * inf[i];
// If the input alpha is 0 then the other channels should also be zero
// since the color is assumed to be premul. Modulating zeros by anything
// should produce zeros.
if (inf[i].fA == 0) {
SkASSERT(inf[i].fR == 0 && inf[i].fG == 0 && inf[i].fB == 0);
expectedForColorModulation[i] = expectedForAlphaModulation[i] = {0, 0, 0, 0};
}
}
bool isLegalColorModulation = fuzzy_color_equals(outf[0], expectedForColorModulation[0]) &&
fuzzy_color_equals(outf[1], expectedForColorModulation[1]) &&
fuzzy_color_equals(outf[2], expectedForColorModulation[2]);
bool isLegalAlphaModulation = fuzzy_color_equals(outf[0], expectedForAlphaModulation[0]) &&
fuzzy_color_equals(outf[1], expectedForAlphaModulation[1]) &&
fuzzy_color_equals(outf[2], expectedForAlphaModulation[2]);
// This can be enabled to print the values that caused this check to fail.
if (0 && !isLegalColorModulation && !isLegalAlphaModulation) {
SkDebugf("Color modulation test\n\timplied mod color: (%.03f, %.03f, %.03f, %.03f)\n",
fpPreColorModulation[0],
fpPreColorModulation[1],
fpPreColorModulation[2],
fpPreColorModulation[3]);
for (int i = 0; i < 3; ++i) {
SkDebugf("\t(%.03f, %.03f, %.03f, %.03f) -> "
"(%.03f, %.03f, %.03f, %.03f) | "
"(%.03f, %.03f, %.03f, %.03f), ok: %d\n",
inf[i].fR, inf[i].fG, inf[i].fB, inf[i].fA,
outf[i].fR, outf[i].fG, outf[i].fB, outf[i].fA,
expectedForColorModulation[i].fR, expectedForColorModulation[i].fG,
expectedForColorModulation[i].fB, expectedForColorModulation[i].fA,
fuzzy_color_equals(outf[i], expectedForColorModulation[i]));
}
SkDebugf("Alpha modulation test\n\timplied mod color: (%.03f, %.03f, %.03f, %.03f)\n",
fpPreAlphaModulation[0],
fpPreAlphaModulation[1],
fpPreAlphaModulation[2],
fpPreAlphaModulation[3]);
for (int i = 0; i < 3; ++i) {
SkDebugf("\t(%.03f, %.03f, %.03f, %.03f) -> "
"(%.03f, %.03f, %.03f, %.03f) | "
"(%.03f, %.03f, %.03f, %.03f), ok: %d\n",
inf[i].fR, inf[i].fG, inf[i].fB, inf[i].fA,
outf[i].fR, outf[i].fG, outf[i].fB, outf[i].fA,
expectedForAlphaModulation[i].fR, expectedForAlphaModulation[i].fG,
expectedForAlphaModulation[i].fB, expectedForAlphaModulation[i].fA,
fuzzy_color_equals(outf[i], expectedForAlphaModulation[i]));
}
}
return isLegalColorModulation || isLegalAlphaModulation;
}
DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorOptimizationValidationTest, reporter, ctxInfo) {
GrContext* context = ctxInfo.grContext();
auto resourceProvider = context->priv().resourceProvider();
using FPFactory = GrFragmentProcessorTestFactory;
uint32_t seed = FLAGS_processorSeed;
if (FLAGS_randomProcessorTest) {
std::random_device rd;
seed = rd();
}
// If a non-deterministic bot fails this test, check the output to see what seed it used, then
// use --processorSeed <seed> (without --randomProcessorTest) to reproduce.
SkRandom random(seed);
// Make the destination context for the test.
static constexpr int kRenderSize = 256;
auto rtc = GrRenderTargetContext::Make(
context, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kExact,
{kRenderSize, kRenderSize});
GrProcessorTestData::ViewInfo views[2];
if (!init_test_textures(resourceProvider, context, &random, views)) {
ERRORF(reporter, "Could not create test textures");
return;
}
GrProcessorTestData testData(&random, context, 2, views);
// Coverage optimization uses three frames with a linearly transformed input texture. The first
// frame has no offset, second frames add .2 and .4, which should then be present as a fixed
// difference between the frame outputs if the FP is properly following the modulation
// requirements of the coverage optimization.
static constexpr SkScalar kInputDelta = 0.2f;
auto inputTexture1 = make_input_texture(context, kRenderSize, kRenderSize, 0.0f);
auto inputTexture2 = make_input_texture(context, kRenderSize, kRenderSize, kInputDelta);
auto inputTexture3 = make_input_texture(context, kRenderSize, kRenderSize, 2*kInputDelta);
// Encoded images are very verbose and this tests many potential images, so only export the
// first failure (subsequent failures have a reasonable chance of being related).
bool loggedFirstFailure = false;
bool loggedFirstWarning = false;
// Storage for the three frames required for coverage compatibility optimization. Each frame
// uses the correspondingly numbered inputTextureX.
std::unique_ptr<GrColor[]> readData1(new GrColor[kRenderSize * kRenderSize]);
std::unique_ptr<GrColor[]> readData2(new GrColor[kRenderSize * kRenderSize]);
std::unique_ptr<GrColor[]> readData3(new GrColor[kRenderSize * kRenderSize]);
// Because processor factories configure themselves in random ways, this is not exhaustive.
for (int i = 0; i < FPFactory::Count(); ++i) {
int timesToInvokeFactory = 5;
// Increase the number of attempts if the FP has child FPs since optimizations likely depend
// on child optimizations being present.
std::unique_ptr<GrFragmentProcessor> fp = FPFactory::MakeIdx(i, &testData);
for (int j = 0; j < fp->numChildProcessors(); ++j) {
// This value made a reasonable trade off between time and coverage when this test was
// written.
timesToInvokeFactory *= FPFactory::Count() / 2;
}
#if defined(__MSVC_RUNTIME_CHECKS)
// This test is infuriatingly slow with MSVC runtime checks enabled
timesToInvokeFactory = 1;
#endif
for (int j = 0; j < timesToInvokeFactory; ++j) {
fp = FPFactory::MakeIdx(i, &testData);
if (!fp->hasConstantOutputForConstantInput() && !fp->preservesOpaqueInput() &&
!fp->compatibleWithCoverageAsAlpha()) {
continue;
}
if (fp->compatibleWithCoverageAsAlpha()) {
// 2nd and 3rd frames are only used when checking coverage optimization
render_fp(context, rtc.get(), fp.get(), inputTexture2, kPremul_SkAlphaType,
readData2.get());
render_fp(context, rtc.get(), fp.get(), inputTexture3, kPremul_SkAlphaType,
readData3.get());
}
// Draw base frame last so that rtc holds the original FP behavior if we need to
// dump the image to the log.
render_fp(context, rtc.get(), fp.get(), inputTexture1, kPremul_SkAlphaType,
readData1.get());
if (0) { // Useful to see what FPs are being tested.
SkString children;
for (int c = 0; c < fp->numChildProcessors(); ++c) {
if (!c) {
children.append("(");
}
children.append(fp->childProcessor(c).name());
children.append(c == fp->numChildProcessors() - 1 ? ")" : ", ");
}
SkDebugf("%s %s\n", fp->name(), children.c_str());
}
// This test has a history of being flaky on a number of devices. If an FP is logically
// violating the optimizations, it's reasonable to expect it to violate requirements on
// a large number of pixels in the image. Sporadic pixel violations are more indicative
// of device errors and represents a separate problem.
#if defined(SK_BUILD_FOR_SKQP)
static constexpr int kMaxAcceptableFailedPixels = 0; // Strict when running as SKQP
#else
static constexpr int kMaxAcceptableFailedPixels = 2 * kRenderSize; // ~0.7% of the image
#endif
int failedPixelCount = 0;
// Collect first optimization failure message, to be output later as a warning or an
// error depending on whether the rendering "passed" or failed.
SkString coverageMessage;
SkString opaqueMessage;
SkString constMessage;
for (int y = 0; y < kRenderSize; ++y) {
for (int x = 0; x < kRenderSize; ++x) {
bool passing = true;
GrColor input = input_texel_color(x, y, 0.0f);
GrColor output = readData1.get()[y * kRenderSize + x];
if (fp->compatibleWithCoverageAsAlpha()) {
GrColor ins[3];
ins[0] = input;
ins[1] = input_texel_color(x, y, kInputDelta);
ins[2] = input_texel_color(x, y, 2 * kInputDelta);
GrColor outs[3];
outs[0] = output;
outs[1] = readData2.get()[y * kRenderSize + x];
outs[2] = readData3.get()[y * kRenderSize + x];
if (!legal_modulation(ins, outs)) {
passing = false;
if (coverageMessage.isEmpty()) {
coverageMessage.printf(
"\"Modulating\" processor %s did not match "
"alpha-modulation nor color-modulation rules. "
"Input: 0x%08x, Output: 0x%08x, pixel (%d, %d).",
fp->name(), input, output, x, y);
}
}
}
SkPMColor4f input4f = SkPMColor4f::FromBytes_RGBA(input);
SkPMColor4f output4f = SkPMColor4f::FromBytes_RGBA(output);
SkPMColor4f expected4f;
if (fp->hasConstantOutputForConstantInput(input4f, &expected4f)) {
float rDiff = fabsf(output4f.fR - expected4f.fR);
float gDiff = fabsf(output4f.fG - expected4f.fG);
float bDiff = fabsf(output4f.fB - expected4f.fB);
float aDiff = fabsf(output4f.fA - expected4f.fA);
static constexpr float kTol = 4 / 255.f;
if (rDiff > kTol || gDiff > kTol || bDiff > kTol || aDiff > kTol) {
if (constMessage.isEmpty()) {
passing = false;
constMessage.printf("Processor %s claimed output for const input "
"doesn't match actual output. Error: %f, Tolerance: %f, "
"input: (%f, %f, %f, %f), actual: (%f, %f, %f, %f), "
"expected(%f, %f, %f, %f)", fp->name(),
std::max(rDiff, std::max(gDiff, std::max(bDiff, aDiff))), kTol,
input4f.fR, input4f.fG, input4f.fB, input4f.fA,
output4f.fR, output4f.fG, output4f.fB, output4f.fA,
expected4f.fR, expected4f.fG, expected4f.fB, expected4f.fA);
}
}
}
if (input4f.isOpaque() && fp->preservesOpaqueInput() && !output4f.isOpaque()) {
passing = false;
if (opaqueMessage.isEmpty()) {
opaqueMessage.printf("Processor %s claimed opaqueness is preserved but "
"it is not. Input: 0x%08x, Output: 0x%08x.",
fp->name(), input, output);
}
}
if (!passing) {
// Regardless of how many optimizations the pixel violates, count it as a
// single bad pixel.
failedPixelCount++;
}
}
}
// Finished analyzing the entire image, see if the number of pixel failures meets the
// threshold for an FP violating the optimization requirements.
if (failedPixelCount > kMaxAcceptableFailedPixels) {
ERRORF(reporter, "Processor violated %d of %d pixels, seed: 0x%08x, processor: %s"
", first failing pixel details are below:",
failedPixelCount, kRenderSize * kRenderSize, seed,
fp->dumpInfo().c_str());
// Print first failing pixel's details.
if (!coverageMessage.isEmpty()) {
ERRORF(reporter, coverageMessage.c_str());
}
if (!constMessage.isEmpty()) {
ERRORF(reporter, constMessage.c_str());
}
if (!opaqueMessage.isEmpty()) {
ERRORF(reporter, opaqueMessage.c_str());
}
if (!loggedFirstFailure) {
// Print with ERRORF to make sure the encoded image is output
SkString input;
log_texture_view(context, inputTexture1, &input);
SkString output;
log_pixels(readData1.get(), kRenderSize, &output);
ERRORF(reporter, "Input image: %s\n\n"
"===========================================================\n\n"
"Output image: %s\n", input.c_str(), output.c_str());
loggedFirstFailure = true;
}
} else if(failedPixelCount > 0) {
// Don't trigger an error, but don't just hide the failures either.
INFOF(reporter, "Processor violated %d of %d pixels (below error threshold), seed: "
"0x%08x, processor: %s", failedPixelCount, kRenderSize * kRenderSize,
seed, fp->dumpInfo().c_str());
if (!coverageMessage.isEmpty()) {
INFOF(reporter, coverageMessage.c_str());
}
if (!constMessage.isEmpty()) {
INFOF(reporter, constMessage.c_str());
}
if (!opaqueMessage.isEmpty()) {
INFOF(reporter, opaqueMessage.c_str());
}
if (!loggedFirstWarning) {
SkString input;
log_texture_view(context, inputTexture1, &input);
SkString output;
log_pixels(readData1.get(), kRenderSize, &output);
INFOF(reporter, "Input image: %s\n\n"
"===========================================================\n\n"
"Output image: %s\n", input.c_str(), output.c_str());
loggedFirstWarning = true;
}
}
}
}
}
// Tests that fragment processors returned by GrFragmentProcessor::clone() are equivalent to their
// progenitors.
DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorCloneTest, reporter, ctxInfo) {
GrContext* context = ctxInfo.grContext();
auto resourceProvider = context->priv().resourceProvider();
SkRandom random;
// Make the destination context for the test.
static constexpr int kRenderSize = 1024;
auto rtc = GrRenderTargetContext::Make(
context, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kExact,
{kRenderSize, kRenderSize});
GrProcessorTestData::ViewInfo views[2];
if (!init_test_textures(resourceProvider, context, &random, views)) {
ERRORF(reporter, "Could not create test textures");
return;
}
GrProcessorTestData testData(&random, context, 2, views);
auto inputTexture = make_input_texture(context, kRenderSize, kRenderSize, 0.0f);
std::unique_ptr<GrColor[]> readData1(new GrColor[kRenderSize * kRenderSize]);
std::unique_ptr<GrColor[]> readData2(new GrColor[kRenderSize * kRenderSize]);
// On failure we write out images, but just write the first failing set as the print is very
// large.
bool loggedFirstFailure = false;
// This test has a history of being flaky on a number of devices. If an FP clone is logically
// wrong, it's reasonable to expect it produce a large number of pixel differences in the image
// Sporadic pixel violations are more indicative device errors and represents a separate
// problem.
#if defined(SK_BUILD_FOR_SKQP)
static constexpr int kMaxAcceptableFailedPixels = 0; // Strict when running as SKQP
#else
static constexpr int kMaxAcceptableFailedPixels = 2 * kRenderSize; // ~0.7% of the image
#endif
// Because processor factories configure themselves in random ways, this is not exhaustive.
for (int i = 0; i < GrFragmentProcessorTestFactory::Count(); ++i) {
static constexpr int kTimesToInvokeFactory = 10;
for (int j = 0; j < kTimesToInvokeFactory; ++j) {
auto fp = GrFragmentProcessorTestFactory::MakeIdx(i, &testData);
auto clone = fp->clone();
if (!clone) {
ERRORF(reporter, "Clone of processor %s failed.", fp->name());
continue;
}
const char* name = fp->name();
REPORTER_ASSERT(reporter, !strcmp(fp->name(), clone->name()));
REPORTER_ASSERT(reporter, fp->compatibleWithCoverageAsAlpha() ==
clone->compatibleWithCoverageAsAlpha());
REPORTER_ASSERT(reporter, fp->isEqual(*clone));
REPORTER_ASSERT(reporter, fp->preservesOpaqueInput() == clone->preservesOpaqueInput());
REPORTER_ASSERT(reporter, fp->hasConstantOutputForConstantInput() ==
clone->hasConstantOutputForConstantInput());
REPORTER_ASSERT(reporter, fp->numChildProcessors() == clone->numChildProcessors());
REPORTER_ASSERT(reporter, fp->usesLocalCoords() == clone->usesLocalCoords());
// Draw with original and read back the results.
render_fp(context, rtc.get(), fp.get(), inputTexture, kPremul_SkAlphaType,
readData1.get());
// Draw with clone and read back the results.
render_fp(context, rtc.get(), clone.get(), inputTexture, kPremul_SkAlphaType,
readData2.get());
// Check that the results are the same.
bool passing = true;
int failedPixelCount = 0;
int firstWrongX = 0;
int firstWrongY = 0;
for (int y = 0; y < kRenderSize && passing; ++y) {
for (int x = 0; x < kRenderSize && passing; ++x) {
int idx = y * kRenderSize + x;
if (readData1[idx] != readData2[idx]) {
if (!failedPixelCount) {
firstWrongX = x;
firstWrongY = y;
}
++failedPixelCount;
}
if (failedPixelCount > kMaxAcceptableFailedPixels) {
passing = false;
idx = firstWrongY * kRenderSize + firstWrongX;
ERRORF(reporter,
"Processor %s made clone produced different output at (%d, %d). "
"Input color: 0x%08x, Original Output Color: 0x%08x, "
"Clone Output Color: 0x%08x.",
name, firstWrongX, firstWrongY, input_texel_color(x, y, 0.0f),
readData1[idx], readData2[idx]);
if (!loggedFirstFailure) {
// Write the images out as data urls for inspection.
// We mark the data as unpremul to avoid conversion when encoding as
// PNG. Also, even though we made the data by rendering into
// a "unpremul" GrRenderTargetContext, our input texture is unpremul and
// outside of the random effect configuration, we didn't do anything to
// ensure the output is actually premul.
auto info = SkImageInfo::Make(kRenderSize, kRenderSize,
kRGBA_8888_SkColorType,
kUnpremul_SkAlphaType);
SkString input, orig, clone;
if (log_texture_view(context, inputTexture, &input) &&
log_pixels(readData1.get(), kRenderSize, &orig) &&
log_pixels(readData2.get(), kRenderSize, &clone)) {
ERRORF(reporter,
"\nInput image:\n%s\n\n"
"==========================================================="
"\n\n"
"Orig output image:\n%s\n"
"==========================================================="
"\n\n"
"Clone output image:\n%s\n",
input.c_str(), orig.c_str(), clone.c_str());
loggedFirstFailure = true;
}
}
}
}
}
}
}
}
#endif // GR_TEST_UTILS