64022c1ed2
Here's the ray tracer I wrote. I've commented out the calls to experimental stroking -- enough of it remains working to help visualize what you've been talking to me about. R=reed@google.com GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2014993002 Review-Url: https://codereview.chromium.org/2014993002
1870 lines
63 KiB
C++
1870 lines
63 KiB
C++
/*
|
|
* Copyright 2015 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "SampleCode.h"
|
|
#include "SkCanvas.h"
|
|
#include "SkGeometry.h"
|
|
#include "SkIntersections.h"
|
|
#include "SkOpEdgeBuilder.h"
|
|
// #include "SkPathOpsSimplifyAA.h"
|
|
// #include "SkPathStroker.h"
|
|
#include "SkView.h"
|
|
|
|
#if 0
|
|
void SkStrokeSegment::dump() const {
|
|
SkDebugf("{{{%1.9g,%1.9g}, {%1.9g,%1.9g}", fPts[0].fX, fPts[0].fY, fPts[1].fX, fPts[1].fY);
|
|
if (SkPath::kQuad_Verb == fVerb) {
|
|
SkDebugf(", {%1.9g,%1.9g}", fPts[2].fX, fPts[2].fY);
|
|
}
|
|
SkDebugf("}}");
|
|
#ifdef SK_DEBUG
|
|
SkDebugf(" id=%d", fDebugID);
|
|
#endif
|
|
SkDebugf("\n");
|
|
}
|
|
|
|
void SkStrokeSegment::dumpAll() const {
|
|
const SkStrokeSegment* segment = this;
|
|
while (segment) {
|
|
segment->dump();
|
|
segment = segment->fNext;
|
|
}
|
|
}
|
|
|
|
void SkStrokeTriple::dump() const {
|
|
SkDebugf("{{{%1.9g,%1.9g}, {%1.9g,%1.9g}", fPts[0].fX, fPts[0].fY, fPts[1].fX, fPts[1].fY);
|
|
if (SkPath::kQuad_Verb <= fVerb) {
|
|
SkDebugf(", {%1.9g,%1.9g}", fPts[2].fX, fPts[2].fY);
|
|
}
|
|
if (SkPath::kCubic_Verb == fVerb) {
|
|
SkDebugf(", {%1.9g,%1.9g}", fPts[3].fX, fPts[3].fY);
|
|
} else if (SkPath::kConic_Verb == fVerb) {
|
|
SkDebugf(", %1.9g", weight());
|
|
}
|
|
SkDebugf("}}");
|
|
#ifdef SK_DEBUG
|
|
SkDebugf(" triple id=%d", fDebugID);
|
|
#endif
|
|
SkDebugf("\ninner:\n");
|
|
fInner->dumpAll();
|
|
SkDebugf("outer:\n");
|
|
fOuter->dumpAll();
|
|
SkDebugf("join:\n");
|
|
fJoin->dumpAll();
|
|
}
|
|
|
|
void SkStrokeTriple::dumpAll() const {
|
|
const SkStrokeTriple* triple = this;
|
|
while (triple) {
|
|
triple->dump();
|
|
triple = triple->fNext;
|
|
}
|
|
}
|
|
|
|
void SkStrokeContour::dump() const {
|
|
#ifdef SK_DEBUG
|
|
SkDebugf("id=%d ", fDebugID);
|
|
#endif
|
|
SkDebugf("head:\n");
|
|
fHead->dumpAll();
|
|
SkDebugf("head cap:\n");
|
|
fHeadCap->dumpAll();
|
|
SkDebugf("tail cap:\n");
|
|
fTailCap->dumpAll();
|
|
}
|
|
|
|
void SkStrokeContour::dumpAll() const {
|
|
const SkStrokeContour* contour = this;
|
|
while (contour) {
|
|
contour->dump();
|
|
contour = contour->fNext;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
SkScalar gCurveDistance = 10;
|
|
|
|
#if 0 // unused
|
|
static SkPath::Verb get_path_verb(int index, const SkPath& path) {
|
|
if (index < 0) {
|
|
return SkPath::kMove_Verb;
|
|
}
|
|
SkPoint pts[4];
|
|
SkPath::Verb verb;
|
|
SkPath::Iter iter(path, true);
|
|
int counter = -1;
|
|
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
|
|
if (++counter < index) {
|
|
continue;
|
|
}
|
|
return verb;
|
|
}
|
|
SkASSERT(0);
|
|
return SkPath::kMove_Verb;
|
|
}
|
|
#endif
|
|
|
|
static SkScalar get_path_weight(int index, const SkPath& path) {
|
|
SkPoint pts[4];
|
|
SkPath::Verb verb;
|
|
SkPath::Iter iter(path, true);
|
|
int counter = -1;
|
|
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
|
|
if (++counter < index) {
|
|
continue;
|
|
}
|
|
return verb == SkPath::kConic_Verb ? iter.conicWeight() : 1;
|
|
}
|
|
SkASSERT(0);
|
|
return 0;
|
|
}
|
|
|
|
static void set_path_pt(int index, const SkPoint& pt, SkPath* path) {
|
|
SkPath result;
|
|
SkPoint pts[4];
|
|
SkPath::Verb verb;
|
|
SkPath::RawIter iter(*path);
|
|
int startIndex = 0;
|
|
int endIndex = 0;
|
|
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
|
|
switch (verb) {
|
|
case SkPath::kMove_Verb:
|
|
endIndex += 1;
|
|
break;
|
|
case SkPath::kLine_Verb:
|
|
endIndex += 1;
|
|
break;
|
|
case SkPath::kQuad_Verb:
|
|
case SkPath::kConic_Verb:
|
|
endIndex += 2;
|
|
break;
|
|
case SkPath::kCubic_Verb:
|
|
endIndex += 3;
|
|
break;
|
|
case SkPath::kClose_Verb:
|
|
break;
|
|
case SkPath::kDone_Verb:
|
|
break;
|
|
default:
|
|
SkASSERT(0);
|
|
}
|
|
if (startIndex <= index && index < endIndex) {
|
|
pts[index - startIndex] = pt;
|
|
index = -1;
|
|
}
|
|
switch (verb) {
|
|
case SkPath::kMove_Verb:
|
|
result.moveTo(pts[0]);
|
|
break;
|
|
case SkPath::kLine_Verb:
|
|
result.lineTo(pts[1]);
|
|
startIndex += 1;
|
|
break;
|
|
case SkPath::kQuad_Verb:
|
|
result.quadTo(pts[1], pts[2]);
|
|
startIndex += 2;
|
|
break;
|
|
case SkPath::kConic_Verb:
|
|
result.conicTo(pts[1], pts[2], iter.conicWeight());
|
|
startIndex += 2;
|
|
break;
|
|
case SkPath::kCubic_Verb:
|
|
result.cubicTo(pts[1], pts[2], pts[3]);
|
|
startIndex += 3;
|
|
break;
|
|
case SkPath::kClose_Verb:
|
|
result.close();
|
|
startIndex += 1;
|
|
break;
|
|
case SkPath::kDone_Verb:
|
|
break;
|
|
default:
|
|
SkASSERT(0);
|
|
}
|
|
}
|
|
#if 0
|
|
SkDebugf("\n\noriginal\n");
|
|
path->dump();
|
|
SkDebugf("\nedited\n");
|
|
result.dump();
|
|
#endif
|
|
*path = result;
|
|
}
|
|
|
|
static void add_path_segment(int index, SkPath* path) {
|
|
SkPath result;
|
|
SkPoint pts[4];
|
|
SkPoint firstPt = { 0, 0 }; // init to avoid warning
|
|
SkPoint lastPt = { 0, 0 }; // init to avoid warning
|
|
SkPath::Verb verb;
|
|
SkPath::RawIter iter(*path);
|
|
int counter = -1;
|
|
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
|
|
SkScalar weight SK_INIT_TO_AVOID_WARNING;
|
|
if (++counter == index) {
|
|
switch (verb) {
|
|
case SkPath::kLine_Verb:
|
|
result.lineTo((pts[0].fX + pts[1].fX) / 2, (pts[0].fY + pts[1].fY) / 2);
|
|
break;
|
|
case SkPath::kQuad_Verb: {
|
|
SkPoint chop[5];
|
|
SkChopQuadAtHalf(pts, chop);
|
|
result.quadTo(chop[1], chop[2]);
|
|
pts[1] = chop[3];
|
|
} break;
|
|
case SkPath::kConic_Verb: {
|
|
SkConic chop[2];
|
|
SkConic conic;
|
|
conic.set(pts, iter.conicWeight());
|
|
conic.chopAt(0.5f, chop);
|
|
result.conicTo(chop[0].fPts[1], chop[0].fPts[2], chop[0].fW);
|
|
pts[1] = chop[1].fPts[1];
|
|
weight = chop[1].fW;
|
|
} break;
|
|
case SkPath::kCubic_Verb: {
|
|
SkPoint chop[7];
|
|
SkChopCubicAtHalf(pts, chop);
|
|
result.cubicTo(chop[1], chop[2], chop[3]);
|
|
pts[1] = chop[4];
|
|
pts[2] = chop[5];
|
|
} break;
|
|
case SkPath::kClose_Verb: {
|
|
result.lineTo((lastPt.fX + firstPt.fX) / 2, (lastPt.fY + firstPt.fY) / 2);
|
|
} break;
|
|
default:
|
|
SkASSERT(0);
|
|
}
|
|
} else if (verb == SkPath::kConic_Verb) {
|
|
weight = iter.conicWeight();
|
|
}
|
|
switch (verb) {
|
|
case SkPath::kMove_Verb:
|
|
result.moveTo(firstPt = pts[0]);
|
|
break;
|
|
case SkPath::kLine_Verb:
|
|
result.lineTo(lastPt = pts[1]);
|
|
break;
|
|
case SkPath::kQuad_Verb:
|
|
result.quadTo(pts[1], lastPt = pts[2]);
|
|
break;
|
|
case SkPath::kConic_Verb:
|
|
result.conicTo(pts[1], lastPt = pts[2], weight);
|
|
break;
|
|
case SkPath::kCubic_Verb:
|
|
result.cubicTo(pts[1], pts[2], lastPt = pts[3]);
|
|
break;
|
|
case SkPath::kClose_Verb:
|
|
result.close();
|
|
break;
|
|
case SkPath::kDone_Verb:
|
|
break;
|
|
default:
|
|
SkASSERT(0);
|
|
}
|
|
}
|
|
*path = result;
|
|
}
|
|
|
|
static void delete_path_segment(int index, SkPath* path) {
|
|
SkPath result;
|
|
SkPoint pts[4];
|
|
SkPath::Verb verb;
|
|
SkPath::RawIter iter(*path);
|
|
int counter = -1;
|
|
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
|
|
if (++counter == index) {
|
|
continue;
|
|
}
|
|
switch (verb) {
|
|
case SkPath::kMove_Verb:
|
|
result.moveTo(pts[0]);
|
|
break;
|
|
case SkPath::kLine_Verb:
|
|
result.lineTo(pts[1]);
|
|
break;
|
|
case SkPath::kQuad_Verb:
|
|
result.quadTo(pts[1], pts[2]);
|
|
break;
|
|
case SkPath::kConic_Verb:
|
|
result.conicTo(pts[1], pts[2], iter.conicWeight());
|
|
break;
|
|
case SkPath::kCubic_Verb:
|
|
result.cubicTo(pts[1], pts[2], pts[3]);
|
|
break;
|
|
case SkPath::kClose_Verb:
|
|
result.close();
|
|
break;
|
|
case SkPath::kDone_Verb:
|
|
break;
|
|
default:
|
|
SkASSERT(0);
|
|
}
|
|
}
|
|
*path = result;
|
|
}
|
|
|
|
static void set_path_weight(int index, SkScalar w, SkPath* path) {
|
|
SkPath result;
|
|
SkPoint pts[4];
|
|
SkPath::Verb verb;
|
|
SkPath::Iter iter(*path, true);
|
|
int counter = -1;
|
|
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
|
|
++counter;
|
|
switch (verb) {
|
|
case SkPath::kMove_Verb:
|
|
result.moveTo(pts[0]);
|
|
break;
|
|
case SkPath::kLine_Verb:
|
|
result.lineTo(pts[1]);
|
|
break;
|
|
case SkPath::kQuad_Verb:
|
|
result.quadTo(pts[1], pts[2]);
|
|
break;
|
|
case SkPath::kConic_Verb:
|
|
result.conicTo(pts[1], pts[2], counter == index ? w : iter.conicWeight());
|
|
break;
|
|
case SkPath::kCubic_Verb:
|
|
result.cubicTo(pts[1], pts[2], pts[3]);
|
|
break;
|
|
case SkPath::kClose_Verb:
|
|
result.close();
|
|
break;
|
|
case SkPath::kDone_Verb:
|
|
break;
|
|
default:
|
|
SkASSERT(0);
|
|
}
|
|
}
|
|
*path = result;
|
|
}
|
|
|
|
static void set_path_verb(int index, SkPath::Verb v, SkPath* path, SkScalar w) {
|
|
SkASSERT(SkPath::kLine_Verb <= v && v <= SkPath::kCubic_Verb);
|
|
SkPath result;
|
|
SkPoint pts[4];
|
|
SkPath::Verb verb;
|
|
SkPath::Iter iter(*path, true);
|
|
int counter = -1;
|
|
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
|
|
SkScalar weight = verb == SkPath::kConic_Verb ? iter.conicWeight() : 1;
|
|
if (++counter == index && v != verb) {
|
|
SkASSERT(SkPath::kLine_Verb <= verb && verb <= SkPath::kCubic_Verb);
|
|
switch (verb) {
|
|
case SkPath::kLine_Verb:
|
|
switch (v) {
|
|
case SkPath::kConic_Verb:
|
|
weight = w;
|
|
case SkPath::kQuad_Verb:
|
|
pts[2] = pts[1];
|
|
pts[1].fX = (pts[0].fX + pts[2].fX) / 2;
|
|
pts[1].fY = (pts[0].fY + pts[2].fY) / 2;
|
|
break;
|
|
case SkPath::kCubic_Verb:
|
|
pts[3] = pts[1];
|
|
pts[1].fX = (pts[0].fX * 2 + pts[3].fX) / 3;
|
|
pts[1].fY = (pts[0].fY * 2 + pts[3].fY) / 3;
|
|
pts[2].fX = (pts[0].fX + pts[3].fX * 2) / 3;
|
|
pts[2].fY = (pts[0].fY + pts[3].fY * 2) / 3;
|
|
break;
|
|
default:
|
|
SkASSERT(0);
|
|
break;
|
|
}
|
|
break;
|
|
case SkPath::kQuad_Verb:
|
|
case SkPath::kConic_Verb:
|
|
switch (v) {
|
|
case SkPath::kLine_Verb:
|
|
pts[1] = pts[2];
|
|
break;
|
|
case SkPath::kConic_Verb:
|
|
weight = w;
|
|
case SkPath::kQuad_Verb:
|
|
break;
|
|
case SkPath::kCubic_Verb: {
|
|
SkDQuad dQuad;
|
|
dQuad.set(pts);
|
|
SkDCubic dCubic = dQuad.debugToCubic();
|
|
pts[3] = pts[2];
|
|
pts[1] = dCubic[1].asSkPoint();
|
|
pts[2] = dCubic[2].asSkPoint();
|
|
} break;
|
|
default:
|
|
SkASSERT(0);
|
|
break;
|
|
}
|
|
break;
|
|
case SkPath::kCubic_Verb:
|
|
switch (v) {
|
|
case SkPath::kLine_Verb:
|
|
pts[1] = pts[3];
|
|
break;
|
|
case SkPath::kConic_Verb:
|
|
weight = w;
|
|
case SkPath::kQuad_Verb: {
|
|
SkDCubic dCubic;
|
|
dCubic.set(pts);
|
|
SkDQuad dQuad = dCubic.toQuad();
|
|
pts[1] = dQuad[1].asSkPoint();
|
|
pts[2] = pts[3];
|
|
} break;
|
|
default:
|
|
SkASSERT(0);
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
SkASSERT(0);
|
|
break;
|
|
}
|
|
verb = v;
|
|
}
|
|
switch (verb) {
|
|
case SkPath::kMove_Verb:
|
|
result.moveTo(pts[0]);
|
|
break;
|
|
case SkPath::kLine_Verb:
|
|
result.lineTo(pts[1]);
|
|
break;
|
|
case SkPath::kQuad_Verb:
|
|
result.quadTo(pts[1], pts[2]);
|
|
break;
|
|
case SkPath::kConic_Verb:
|
|
result.conicTo(pts[1], pts[2], weight);
|
|
break;
|
|
case SkPath::kCubic_Verb:
|
|
result.cubicTo(pts[1], pts[2], pts[3]);
|
|
break;
|
|
case SkPath::kClose_Verb:
|
|
result.close();
|
|
break;
|
|
default:
|
|
SkASSERT(0);
|
|
break;
|
|
}
|
|
}
|
|
*path = result;
|
|
}
|
|
|
|
static void add_to_map(SkScalar coverage, int x, int y, uint8_t* distanceMap, int w, int h) {
|
|
int byteCoverage = (int) (coverage * 256);
|
|
if (byteCoverage < 0) {
|
|
byteCoverage = 0;
|
|
} else if (byteCoverage > 255) {
|
|
byteCoverage = 255;
|
|
}
|
|
SkASSERT(x < w);
|
|
SkASSERT(y < h);
|
|
distanceMap[y * w + x] = SkTMax(distanceMap[y * w + x], (uint8_t) byteCoverage);
|
|
}
|
|
|
|
static void filter_coverage(const uint8_t* map, int len, uint8_t min, uint8_t max,
|
|
uint8_t* filter) {
|
|
for (int index = 0; index < len; ++index) {
|
|
uint8_t in = map[index];
|
|
filter[index] = in < min ? 0 : max < in ? 0 : in;
|
|
}
|
|
}
|
|
|
|
static void construct_path(SkPath& path) {
|
|
path.reset();
|
|
path.moveTo(442, 101.5f);
|
|
path.quadTo(413.5f, 691, 772, 514);
|
|
path.lineTo(346, 721.5f);
|
|
path.lineTo(154, 209);
|
|
path.lineTo(442, 101.5f);
|
|
path.close();
|
|
}
|
|
|
|
struct ButtonPaints {
|
|
static const int kMaxStateCount = 3;
|
|
SkPaint fDisabled;
|
|
SkPaint fStates[kMaxStateCount];
|
|
SkPaint fLabel;
|
|
|
|
ButtonPaints() {
|
|
fStates[0].setAntiAlias(true);
|
|
fStates[0].setStyle(SkPaint::kStroke_Style);
|
|
fStates[0].setColor(0xFF3F0000);
|
|
fStates[1] = fStates[0];
|
|
fStates[1].setStrokeWidth(3);
|
|
fStates[2] = fStates[1];
|
|
fStates[2].setColor(0xFFcf0000);
|
|
fLabel.setAntiAlias(true);
|
|
fLabel.setTextSize(25.0f);
|
|
fLabel.setTextAlign(SkPaint::kCenter_Align);
|
|
fLabel.setStyle(SkPaint::kFill_Style);
|
|
}
|
|
};
|
|
|
|
struct Button {
|
|
SkRect fBounds;
|
|
int fStateCount;
|
|
int fState;
|
|
char fLabel;
|
|
bool fVisible;
|
|
|
|
Button(char label) {
|
|
fStateCount = 2;
|
|
fState = 0;
|
|
fLabel = label;
|
|
fVisible = false;
|
|
}
|
|
|
|
Button(char label, int stateCount) {
|
|
SkASSERT(stateCount <= ButtonPaints::kMaxStateCount);
|
|
fStateCount = stateCount;
|
|
fState = 0;
|
|
fLabel = label;
|
|
fVisible = false;
|
|
}
|
|
|
|
bool contains(const SkRect& rect) {
|
|
return fVisible && fBounds.contains(rect);
|
|
}
|
|
|
|
bool enabled() {
|
|
return SkToBool(fState);
|
|
}
|
|
|
|
void draw(SkCanvas* canvas, const ButtonPaints& paints) {
|
|
if (!fVisible) {
|
|
return;
|
|
}
|
|
canvas->drawRect(fBounds, paints.fStates[fState]);
|
|
canvas->drawText(&fLabel, 1, fBounds.centerX(), fBounds.fBottom - 5, paints.fLabel);
|
|
}
|
|
|
|
void toggle() {
|
|
if (++fState == fStateCount) {
|
|
fState = 0;
|
|
}
|
|
}
|
|
|
|
void setEnabled(bool enabled) {
|
|
fState = (int) enabled;
|
|
}
|
|
};
|
|
|
|
struct ControlPaints {
|
|
SkPaint fOutline;
|
|
SkPaint fIndicator;
|
|
SkPaint fFill;
|
|
SkPaint fLabel;
|
|
SkPaint fValue;
|
|
|
|
ControlPaints() {
|
|
fOutline.setAntiAlias(true);
|
|
fOutline.setStyle(SkPaint::kStroke_Style);
|
|
fIndicator = fOutline;
|
|
fIndicator.setColor(SK_ColorRED);
|
|
fFill.setAntiAlias(true);
|
|
fFill.setColor(0x7fff0000);
|
|
fLabel.setAntiAlias(true);
|
|
fLabel.setTextSize(13.0f);
|
|
fValue.setAntiAlias(true);
|
|
fValue.setTextSize(11.0f);
|
|
}
|
|
};
|
|
|
|
struct UniControl {
|
|
SkString fName;
|
|
SkRect fBounds;
|
|
SkScalar fMin;
|
|
SkScalar fMax;
|
|
SkScalar fValLo;
|
|
SkScalar fYLo;
|
|
bool fVisible;
|
|
|
|
UniControl(const char* name, SkScalar min, SkScalar max) {
|
|
fName = name;
|
|
fValLo = fMin = min;
|
|
fMax = max;
|
|
fVisible = false;
|
|
|
|
}
|
|
|
|
virtual ~UniControl() {}
|
|
|
|
bool contains(const SkRect& rect) {
|
|
return fVisible && fBounds.contains(rect);
|
|
}
|
|
|
|
virtual void draw(SkCanvas* canvas, const ControlPaints& paints) {
|
|
if (!fVisible) {
|
|
return;
|
|
}
|
|
canvas->drawRect(fBounds, paints.fOutline);
|
|
fYLo = fBounds.fTop + (fValLo - fMin) * fBounds.height() / (fMax - fMin);
|
|
canvas->drawLine(fBounds.fLeft - 5, fYLo, fBounds.fRight + 5, fYLo, paints.fIndicator);
|
|
SkString label;
|
|
label.printf("%0.3g", fValLo);
|
|
canvas->drawText(label.c_str(), label.size(), fBounds.fLeft + 5, fYLo - 5, paints.fValue);
|
|
canvas->drawText(fName.c_str(), fName.size(), fBounds.fLeft, fBounds.bottom() + 11,
|
|
paints.fLabel);
|
|
}
|
|
};
|
|
|
|
struct BiControl : public UniControl {
|
|
SkScalar fValHi;
|
|
|
|
BiControl(const char* name, SkScalar min, SkScalar max)
|
|
: UniControl(name, min, max)
|
|
, fValHi(fMax) {
|
|
}
|
|
|
|
virtual ~BiControl() {}
|
|
|
|
virtual void draw(SkCanvas* canvas, const ControlPaints& paints) {
|
|
UniControl::draw(canvas, paints);
|
|
if (!fVisible || fValHi == fValLo) {
|
|
return;
|
|
}
|
|
SkScalar yPos = fBounds.fTop + (fValHi - fMin) * fBounds.height() / (fMax - fMin);
|
|
canvas->drawLine(fBounds.fLeft - 5, yPos, fBounds.fRight + 5, yPos, paints.fIndicator);
|
|
SkString label;
|
|
label.printf("%0.3g", fValHi);
|
|
if (yPos < fYLo + 10) {
|
|
yPos = fYLo + 10;
|
|
}
|
|
canvas->drawText(label.c_str(), label.size(), fBounds.fLeft + 5, yPos - 5, paints.fValue);
|
|
SkRect fill = { fBounds.fLeft, fYLo, fBounds.fRight, yPos };
|
|
canvas->drawRect(fill, paints.fFill);
|
|
}
|
|
};
|
|
|
|
|
|
class MyClick : public SampleView::Click {
|
|
public:
|
|
enum ClickType {
|
|
kInvalidType = -1,
|
|
kPtType,
|
|
kVerbType,
|
|
kControlType,
|
|
kPathType,
|
|
} fType;
|
|
|
|
enum ControlType {
|
|
kInvalidControl = -1,
|
|
kFirstControl,
|
|
kFilterControl = kFirstControl,
|
|
kResControl,
|
|
kWeightControl,
|
|
kWidthControl,
|
|
kLastControl = kWidthControl,
|
|
kFirstButton,
|
|
kCubicButton = kFirstButton,
|
|
kConicButton,
|
|
kQuadButton,
|
|
kLineButton,
|
|
kLastVerbButton = kLineButton,
|
|
kAddButton,
|
|
kDeleteButton,
|
|
kInOutButton,
|
|
kFillButton,
|
|
kSkeletonButton,
|
|
kFilterButton,
|
|
kBisectButton,
|
|
kJoinButton,
|
|
kLastButton = kJoinButton,
|
|
kPathMove,
|
|
} fControl;
|
|
|
|
SkPath::Verb fVerb;
|
|
SkScalar fWeight;
|
|
|
|
MyClick(SkView* target, ClickType type, ControlType control)
|
|
: Click(target)
|
|
, fType(type)
|
|
, fControl(control)
|
|
, fVerb((SkPath::Verb) -1)
|
|
, fWeight(1) {
|
|
}
|
|
|
|
MyClick(SkView* target, ClickType type, int index)
|
|
: Click(target)
|
|
, fType(type)
|
|
, fControl((ControlType) index)
|
|
, fVerb((SkPath::Verb) -1)
|
|
, fWeight(1) {
|
|
}
|
|
|
|
MyClick(SkView* target, ClickType type, int index, SkPath::Verb verb, SkScalar weight)
|
|
: Click(target)
|
|
, fType(type)
|
|
, fControl((ControlType) index)
|
|
, fVerb(verb)
|
|
, fWeight(weight) {
|
|
}
|
|
|
|
bool isButton() {
|
|
return kFirstButton <= fControl && fControl <= kLastButton;
|
|
}
|
|
|
|
int ptHit() const {
|
|
SkASSERT(fType == kPtType);
|
|
return (int) fControl;
|
|
}
|
|
|
|
int verbHit() const {
|
|
SkASSERT(fType == kVerbType);
|
|
return (int) fControl;
|
|
}
|
|
};
|
|
|
|
enum {
|
|
kControlCount = MyClick::kLastControl - MyClick::kFirstControl + 1,
|
|
};
|
|
|
|
static struct ControlPair {
|
|
UniControl* fControl;
|
|
MyClick::ControlType fControlType;
|
|
} kControlList[kControlCount];
|
|
|
|
enum {
|
|
kButtonCount = MyClick::kLastButton - MyClick::kFirstButton + 1,
|
|
kVerbCount = MyClick::kLastVerbButton - MyClick::kFirstButton + 1,
|
|
};
|
|
|
|
static struct ButtonPair {
|
|
Button* fButton;
|
|
MyClick::ControlType fButtonType;
|
|
} kButtonList[kButtonCount];
|
|
|
|
static void enable_verb_button(MyClick::ControlType type) {
|
|
for (int index = 0; index < kButtonCount; ++index) {
|
|
MyClick::ControlType testType = kButtonList[index].fButtonType;
|
|
if (MyClick::kFirstButton <= testType && testType <= MyClick::kLastVerbButton) {
|
|
Button* button = kButtonList[index].fButton;
|
|
button->setEnabled(testType == type);
|
|
}
|
|
}
|
|
}
|
|
|
|
struct Stroke;
|
|
|
|
struct Active {
|
|
Active* fNext;
|
|
Stroke* fParent;
|
|
SkScalar fStart;
|
|
SkScalar fEnd;
|
|
|
|
void reset() {
|
|
fNext = NULL;
|
|
fStart = 0;
|
|
fEnd = 1;
|
|
}
|
|
};
|
|
|
|
struct Stroke {
|
|
SkPath fPath;
|
|
Active fActive;
|
|
bool fInner;
|
|
|
|
void reset() {
|
|
fPath.reset();
|
|
fActive.reset();
|
|
}
|
|
};
|
|
|
|
struct PathUndo {
|
|
SkPath fPath;
|
|
PathUndo* fNext;
|
|
};
|
|
|
|
class AAGeometryView : public SampleView {
|
|
SkPaint fActivePaint;
|
|
SkPaint fComplexPaint;
|
|
SkPaint fCoveragePaint;
|
|
SkPaint fLegendLeftPaint;
|
|
SkPaint fLegendRightPaint;
|
|
SkPaint fPointPaint;
|
|
SkPaint fSkeletonPaint;
|
|
SkPaint fLightSkeletonPaint;
|
|
SkPath fPath;
|
|
ControlPaints fControlPaints;
|
|
UniControl fResControl;
|
|
UniControl fWeightControl;
|
|
UniControl fWidthControl;
|
|
BiControl fFilterControl;
|
|
ButtonPaints fButtonPaints;
|
|
Button fCubicButton;
|
|
Button fConicButton;
|
|
Button fQuadButton;
|
|
Button fLineButton;
|
|
Button fAddButton;
|
|
Button fDeleteButton;
|
|
Button fFillButton;
|
|
Button fSkeletonButton;
|
|
Button fFilterButton;
|
|
Button fBisectButton;
|
|
Button fJoinButton;
|
|
Button fInOutButton;
|
|
SkTArray<Stroke> fStrokes;
|
|
PathUndo* fUndo;
|
|
int fActivePt;
|
|
int fActiveVerb;
|
|
bool fHandlePathMove;
|
|
bool fShowLegend;
|
|
bool fHideAll;
|
|
const int kHitToleranace = 5;
|
|
|
|
public:
|
|
|
|
AAGeometryView()
|
|
: fResControl("error", 0, 10)
|
|
, fWeightControl("weight", 0, 5)
|
|
, fWidthControl("width", FLT_EPSILON, 100)
|
|
, fFilterControl("filter", 0, 255)
|
|
, fCubicButton('C')
|
|
, fConicButton('K')
|
|
, fQuadButton('Q')
|
|
, fLineButton('L')
|
|
, fAddButton('+')
|
|
, fDeleteButton('x')
|
|
, fFillButton('p')
|
|
, fSkeletonButton('s')
|
|
, fFilterButton('f', 3)
|
|
, fBisectButton('b')
|
|
, fJoinButton('j')
|
|
, fInOutButton('|')
|
|
, fUndo(NULL)
|
|
, fActivePt(-1)
|
|
, fActiveVerb(-1)
|
|
, fHandlePathMove(true)
|
|
, fShowLegend(false)
|
|
, fHideAll(false)
|
|
{
|
|
fCoveragePaint.setAntiAlias(true);
|
|
fCoveragePaint.setColor(SK_ColorBLUE);
|
|
SkPaint strokePaint;
|
|
strokePaint.setAntiAlias(true);
|
|
strokePaint.setStyle(SkPaint::kStroke_Style);
|
|
fPointPaint = strokePaint;
|
|
fPointPaint.setColor(0x99ee3300);
|
|
fSkeletonPaint = strokePaint;
|
|
fSkeletonPaint.setColor(SK_ColorRED);
|
|
fLightSkeletonPaint = fSkeletonPaint;
|
|
fLightSkeletonPaint.setColor(0xFFFF7f7f);
|
|
fActivePaint = strokePaint;
|
|
fActivePaint.setColor(0x99ee3300);
|
|
fActivePaint.setStrokeWidth(5);
|
|
fComplexPaint = fActivePaint;
|
|
fComplexPaint.setColor(SK_ColorBLUE);
|
|
fLegendLeftPaint.setAntiAlias(true);
|
|
fLegendLeftPaint.setTextSize(13);
|
|
fLegendRightPaint = fLegendLeftPaint;
|
|
fLegendRightPaint.setTextAlign(SkPaint::kRight_Align);
|
|
construct_path(fPath);
|
|
fFillButton.fVisible = fSkeletonButton.fVisible = fFilterButton.fVisible
|
|
= fBisectButton.fVisible = fJoinButton.fVisible = fInOutButton.fVisible = true;
|
|
fSkeletonButton.setEnabled(true);
|
|
fInOutButton.setEnabled(true);
|
|
fJoinButton.setEnabled(true);
|
|
fFilterControl.fValLo = 120;
|
|
fFilterControl.fValHi = 141;
|
|
fFilterControl.fVisible = fFilterButton.fState == 2;
|
|
fResControl.fValLo = 5;
|
|
fResControl.fVisible = true;
|
|
fWidthControl.fValLo = 50;
|
|
fWidthControl.fVisible = true;
|
|
init_controlList();
|
|
init_buttonList();
|
|
}
|
|
|
|
bool constructPath() {
|
|
construct_path(fPath);
|
|
this->inval(NULL);
|
|
return true;
|
|
}
|
|
|
|
void savePath(Click::State state) {
|
|
if (state != Click::kDown_State) {
|
|
return;
|
|
}
|
|
if (fUndo && fUndo->fPath == fPath) {
|
|
return;
|
|
}
|
|
PathUndo* undo = new PathUndo;
|
|
undo->fPath = fPath;
|
|
undo->fNext = fUndo;
|
|
fUndo = undo;
|
|
}
|
|
|
|
bool undo() {
|
|
if (!fUndo) {
|
|
return false;
|
|
}
|
|
fPath = fUndo->fPath;
|
|
validatePath();
|
|
PathUndo* next = fUndo->fNext;
|
|
delete fUndo;
|
|
fUndo = next;
|
|
this->inval(NULL);
|
|
return true;
|
|
}
|
|
|
|
void validatePath() {
|
|
PathUndo* undo = fUndo;
|
|
int match = 0;
|
|
while (undo) {
|
|
match += fPath == undo->fPath;
|
|
undo = undo->fNext;
|
|
}
|
|
}
|
|
|
|
void set_controlList(int index, UniControl* control, MyClick::ControlType type) {
|
|
kControlList[index].fControl = control;
|
|
kControlList[index].fControlType = type;
|
|
}
|
|
|
|
#define SET_CONTROL(Name) set_controlList(index++, &f##Name##Control, \
|
|
MyClick::k##Name##Control)
|
|
|
|
bool hideAll() {
|
|
fHideAll ^= true;
|
|
this->inval(NULL);
|
|
return true;
|
|
}
|
|
|
|
void init_controlList() {
|
|
int index = 0;
|
|
SET_CONTROL(Width);
|
|
SET_CONTROL(Res);
|
|
SET_CONTROL(Filter);
|
|
SET_CONTROL(Weight);
|
|
};
|
|
|
|
#undef SET_CONTROL
|
|
|
|
void set_buttonList(int index, Button* button, MyClick::ControlType type) {
|
|
kButtonList[index].fButton = button;
|
|
kButtonList[index].fButtonType = type;
|
|
}
|
|
|
|
#define SET_BUTTON(Name) set_buttonList(index++, &f##Name##Button, \
|
|
MyClick::k##Name##Button)
|
|
|
|
void init_buttonList() {
|
|
int index = 0;
|
|
SET_BUTTON(Fill);
|
|
SET_BUTTON(Skeleton);
|
|
SET_BUTTON(Filter);
|
|
SET_BUTTON(Bisect);
|
|
SET_BUTTON(Join);
|
|
SET_BUTTON(InOut);
|
|
SET_BUTTON(Cubic);
|
|
SET_BUTTON(Conic);
|
|
SET_BUTTON(Quad);
|
|
SET_BUTTON(Line);
|
|
SET_BUTTON(Add);
|
|
SET_BUTTON(Delete);
|
|
}
|
|
|
|
#undef SET_BUTTON
|
|
|
|
// overrides from SkEventSink
|
|
bool onQuery(SkEvent* evt) override;
|
|
|
|
void onSizeChange() override {
|
|
setControlButtonsPos();
|
|
this->INHERITED::onSizeChange();
|
|
}
|
|
|
|
bool pathDump() {
|
|
fPath.dump();
|
|
return true;
|
|
}
|
|
|
|
bool scaleDown() {
|
|
SkMatrix matrix;
|
|
SkRect bounds = fPath.getBounds();
|
|
matrix.setScale(1.f / 1.5f, 1.f / 1.5f, bounds.centerX(), bounds.centerY());
|
|
fPath.transform(matrix);
|
|
validatePath();
|
|
this->inval(NULL);
|
|
return true;
|
|
}
|
|
|
|
bool scaleToFit() {
|
|
SkMatrix matrix;
|
|
SkRect bounds = fPath.getBounds();
|
|
SkScalar scale = SkTMin(this->width() / bounds.width(), this->height() / bounds.height())
|
|
* 0.8f;
|
|
matrix.setScale(scale, scale, bounds.centerX(), bounds.centerY());
|
|
fPath.transform(matrix);
|
|
bounds = fPath.getBounds();
|
|
SkScalar offsetX = (this->width() - bounds.width()) / 2 - bounds.fLeft;
|
|
SkScalar offsetY = (this->height() - bounds.height()) / 2 - bounds.fTop;
|
|
fPath.offset(offsetX, offsetY);
|
|
validatePath();
|
|
this->inval(NULL);
|
|
return true;
|
|
}
|
|
|
|
bool scaleUp() {
|
|
SkMatrix matrix;
|
|
SkRect bounds = fPath.getBounds();
|
|
matrix.setScale(1.5f, 1.5f, bounds.centerX(), bounds.centerY());
|
|
fPath.transform(matrix);
|
|
validatePath();
|
|
this->inval(NULL);
|
|
return true;
|
|
}
|
|
|
|
void setControlButtonsPos() {
|
|
SkScalar widthOffset = this->width() - 100;
|
|
for (int index = 0; index < kControlCount; ++index) {
|
|
if (kControlList[index].fControl->fVisible) {
|
|
kControlList[index].fControl->fBounds.setXYWH(widthOffset, 30, 30, 400);
|
|
widthOffset -= 50;
|
|
}
|
|
}
|
|
SkScalar buttonOffset = 0;
|
|
for (int index = 0; index < kButtonCount; ++index) {
|
|
kButtonList[index].fButton->fBounds.setXYWH(this->width() - 50,
|
|
buttonOffset += 50, 30, 30);
|
|
}
|
|
}
|
|
|
|
bool showLegend() {
|
|
fShowLegend ^= true;
|
|
this->inval(NULL);
|
|
return true;
|
|
}
|
|
|
|
void draw_bisect(SkCanvas* canvas, const SkVector& lastVector, const SkVector& vector,
|
|
const SkPoint& pt) {
|
|
SkVector lastV = lastVector;
|
|
SkScalar lastLen = lastVector.length();
|
|
SkVector nextV = vector;
|
|
SkScalar nextLen = vector.length();
|
|
if (lastLen < nextLen) {
|
|
lastV.setLength(nextLen);
|
|
} else {
|
|
nextV.setLength(lastLen);
|
|
}
|
|
|
|
SkVector bisect = { (lastV.fX + nextV.fX) / 2, (lastV.fY + nextV.fY) / 2 };
|
|
bisect.setLength(fWidthControl.fValLo * 2);
|
|
if (fBisectButton.enabled()) {
|
|
canvas->drawLine(pt.fX, pt.fY, pt.fX + bisect.fX, pt.fY + bisect.fY, fSkeletonPaint);
|
|
}
|
|
lastV.setLength(fWidthControl.fValLo);
|
|
if (fBisectButton.enabled()) {
|
|
canvas->drawLine(pt.fX, pt.fY, pt.fX - lastV.fY, pt.fY + lastV.fX, fSkeletonPaint);
|
|
}
|
|
nextV.setLength(fWidthControl.fValLo);
|
|
if (fBisectButton.enabled()) {
|
|
canvas->drawLine(pt.fX, pt.fY, pt.fX + nextV.fY, pt.fY - nextV.fX, fSkeletonPaint);
|
|
}
|
|
if (fJoinButton.enabled()) {
|
|
SkScalar r = fWidthControl.fValLo;
|
|
SkRect oval = { pt.fX - r, pt.fY - r, pt.fX + r, pt.fY + r};
|
|
SkScalar startAngle = SkScalarATan2(lastV.fX, -lastV.fY) * 180.f / SK_ScalarPI;
|
|
SkScalar endAngle = SkScalarATan2(-nextV.fX, nextV.fY) * 180.f / SK_ScalarPI;
|
|
if (endAngle > startAngle) {
|
|
canvas->drawArc(oval, startAngle, endAngle - startAngle, false, fSkeletonPaint);
|
|
} else {
|
|
canvas->drawArc(oval, startAngle, 360 - (startAngle - endAngle), false,
|
|
fSkeletonPaint);
|
|
}
|
|
}
|
|
}
|
|
|
|
void draw_bisects(SkCanvas* canvas, bool activeOnly) {
|
|
SkVector firstVector, lastVector, nextLast, vector;
|
|
SkPoint pts[4];
|
|
SkPoint firstPt = { 0, 0 }; // init to avoid warning;
|
|
SkPath::Verb verb;
|
|
SkPath::Iter iter(fPath, true);
|
|
bool foundFirst = false;
|
|
int counter = -1;
|
|
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
|
|
++counter;
|
|
if (activeOnly && counter != fActiveVerb && counter - 1 != fActiveVerb
|
|
&& counter + 1 != fActiveVerb
|
|
&& (fActiveVerb != 1 || counter != fPath.countVerbs())) {
|
|
continue;
|
|
}
|
|
switch (verb) {
|
|
case SkPath::kLine_Verb:
|
|
nextLast = pts[0] - pts[1];
|
|
vector = pts[1] - pts[0];
|
|
break;
|
|
case SkPath::kQuad_Verb: {
|
|
nextLast = pts[1] - pts[2];
|
|
if (SkScalarNearlyZero(nextLast.length())) {
|
|
nextLast = pts[0] - pts[2];
|
|
}
|
|
vector = pts[1] - pts[0];
|
|
if (SkScalarNearlyZero(vector.length())) {
|
|
vector = pts[2] - pts[0];
|
|
}
|
|
if (!fBisectButton.enabled()) {
|
|
break;
|
|
}
|
|
SkScalar t = SkFindQuadMaxCurvature(pts);
|
|
if (0 < t && t < 1) {
|
|
SkPoint maxPt = SkEvalQuadAt(pts, t);
|
|
SkVector tangent = SkEvalQuadTangentAt(pts, t);
|
|
tangent.setLength(fWidthControl.fValLo * 2);
|
|
canvas->drawLine(maxPt.fX, maxPt.fY,
|
|
maxPt.fX + tangent.fY, maxPt.fY - tangent.fX, fSkeletonPaint);
|
|
}
|
|
} break;
|
|
case SkPath::kConic_Verb:
|
|
nextLast = pts[1] - pts[2];
|
|
if (SkScalarNearlyZero(nextLast.length())) {
|
|
nextLast = pts[0] - pts[2];
|
|
}
|
|
vector = pts[1] - pts[0];
|
|
if (SkScalarNearlyZero(vector.length())) {
|
|
vector = pts[2] - pts[0];
|
|
}
|
|
if (!fBisectButton.enabled()) {
|
|
break;
|
|
}
|
|
// FIXME : need max curvature or equivalent here
|
|
break;
|
|
case SkPath::kCubic_Verb: {
|
|
nextLast = pts[2] - pts[3];
|
|
if (SkScalarNearlyZero(nextLast.length())) {
|
|
nextLast = pts[1] - pts[3];
|
|
if (SkScalarNearlyZero(nextLast.length())) {
|
|
nextLast = pts[0] - pts[3];
|
|
}
|
|
}
|
|
vector = pts[0] - pts[1];
|
|
if (SkScalarNearlyZero(vector.length())) {
|
|
vector = pts[0] - pts[2];
|
|
if (SkScalarNearlyZero(vector.length())) {
|
|
vector = pts[0] - pts[3];
|
|
}
|
|
}
|
|
if (!fBisectButton.enabled()) {
|
|
break;
|
|
}
|
|
SkScalar tMax[2];
|
|
int tMaxCount = SkFindCubicMaxCurvature(pts, tMax);
|
|
for (int tIndex = 0; tIndex < tMaxCount; ++tIndex) {
|
|
if (0 >= tMax[tIndex] || tMax[tIndex] >= 1) {
|
|
continue;
|
|
}
|
|
SkPoint maxPt;
|
|
SkVector tangent;
|
|
SkEvalCubicAt(pts, tMax[tIndex], &maxPt, &tangent, NULL);
|
|
tangent.setLength(fWidthControl.fValLo * 2);
|
|
canvas->drawLine(maxPt.fX, maxPt.fY,
|
|
maxPt.fX + tangent.fY, maxPt.fY - tangent.fX, fSkeletonPaint);
|
|
}
|
|
} break;
|
|
case SkPath::kClose_Verb:
|
|
if (foundFirst) {
|
|
draw_bisect(canvas, lastVector, firstVector, firstPt);
|
|
foundFirst = false;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (SkPath::kLine_Verb <= verb && verb <= SkPath::kCubic_Verb) {
|
|
if (!foundFirst) {
|
|
firstPt = pts[0];
|
|
firstVector = vector;
|
|
foundFirst = true;
|
|
} else {
|
|
draw_bisect(canvas, lastVector, vector, pts[0]);
|
|
}
|
|
lastVector = nextLast;
|
|
}
|
|
}
|
|
}
|
|
|
|
void draw_legend(SkCanvas* canvas);
|
|
|
|
void draw_segment(SkCanvas* canvas) {
|
|
SkPoint pts[4];
|
|
SkPath::Verb verb;
|
|
SkPath::Iter iter(fPath, true);
|
|
int counter = -1;
|
|
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
|
|
if (++counter < fActiveVerb) {
|
|
continue;
|
|
}
|
|
switch (verb) {
|
|
case SkPath::kLine_Verb:
|
|
canvas->drawPoints(SkCanvas::kLines_PointMode, 2, pts, fActivePaint);
|
|
draw_points(canvas, pts, 2);
|
|
break;
|
|
case SkPath::kQuad_Verb: {
|
|
SkPath qPath;
|
|
qPath.moveTo(pts[0]);
|
|
qPath.quadTo(pts[1], pts[2]);
|
|
canvas->drawPath(qPath, fActivePaint);
|
|
draw_points(canvas, pts, 3);
|
|
} break;
|
|
case SkPath::kConic_Verb: {
|
|
SkPath conicPath;
|
|
conicPath.moveTo(pts[0]);
|
|
conicPath.conicTo(pts[1], pts[2], iter.conicWeight());
|
|
canvas->drawPath(conicPath, fActivePaint);
|
|
draw_points(canvas, pts, 3);
|
|
} break;
|
|
case SkPath::kCubic_Verb: {
|
|
SkScalar loopT;
|
|
bool complex = SkDCubic::ComplexBreak(pts, &loopT);
|
|
SkPath cPath;
|
|
cPath.moveTo(pts[0]);
|
|
cPath.cubicTo(pts[1], pts[2], pts[3]);
|
|
canvas->drawPath(cPath, complex ? fComplexPaint : fActivePaint);
|
|
draw_points(canvas, pts, 4);
|
|
} break;
|
|
default:
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
void draw_points(SkCanvas* canvas, SkPoint* points, int count) {
|
|
for (int index = 0; index < count; ++index) {
|
|
canvas->drawCircle(points[index].fX, points[index].fY, 10, fPointPaint);
|
|
}
|
|
}
|
|
|
|
int hittest_verb(SkPoint pt, SkPath::Verb* verbPtr, SkScalar* weight) {
|
|
SkIntersections i;
|
|
SkDLine hHit = {{{pt.fX - kHitToleranace, pt.fY }, {pt.fX + kHitToleranace, pt.fY}}};
|
|
SkDLine vHit = {{{pt.fX, pt.fY - kHitToleranace }, {pt.fX, pt.fY + kHitToleranace}}};
|
|
SkPoint pts[4];
|
|
SkPath::Verb verb;
|
|
SkPath::Iter iter(fPath, true);
|
|
int counter = -1;
|
|
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
|
|
++counter;
|
|
switch (verb) {
|
|
case SkPath::kLine_Verb: {
|
|
SkDLine line;
|
|
line.set(pts);
|
|
if (i.intersect(line, hHit) || i.intersect(line, vHit)) {
|
|
*verbPtr = verb;
|
|
*weight = 1;
|
|
return counter;
|
|
}
|
|
} break;
|
|
case SkPath::kQuad_Verb: {
|
|
SkDQuad quad;
|
|
quad.set(pts);
|
|
if (i.intersect(quad, hHit) || i.intersect(quad, vHit)) {
|
|
*verbPtr = verb;
|
|
*weight = 1;
|
|
return counter;
|
|
}
|
|
} break;
|
|
case SkPath::kConic_Verb: {
|
|
SkDConic conic;
|
|
SkScalar w = iter.conicWeight();
|
|
conic.set(pts, w);
|
|
if (i.intersect(conic, hHit) || i.intersect(conic, vHit)) {
|
|
*verbPtr = verb;
|
|
*weight = w;
|
|
return counter;
|
|
}
|
|
} break;
|
|
case SkPath::kCubic_Verb: {
|
|
SkDCubic cubic;
|
|
cubic.set(pts);
|
|
if (i.intersect(cubic, hHit) || i.intersect(cubic, vHit)) {
|
|
*verbPtr = verb;
|
|
*weight = 1;
|
|
return counter;
|
|
}
|
|
} break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
SkScalar pt_to_line(SkPoint s, SkPoint e, int x, int y) {
|
|
SkScalar radius = fWidthControl.fValLo;
|
|
SkVector adjOpp = e - s;
|
|
SkScalar lenSq = adjOpp.lengthSqd();
|
|
SkPoint rotated = {
|
|
(y - s.fY) * adjOpp.fY + (x - s.fX) * adjOpp.fX,
|
|
(y - s.fY) * adjOpp.fX - (x - s.fX) * adjOpp.fY,
|
|
};
|
|
if (rotated.fX < 0 || rotated.fX > lenSq) {
|
|
return -radius;
|
|
}
|
|
rotated.fY /= SkScalarSqrt(lenSq);
|
|
return SkTMax(-radius, SkTMin(radius, rotated.fY));
|
|
}
|
|
|
|
// given a line, compute the interior and exterior gradient coverage
|
|
bool coverage(SkPoint s, SkPoint e, uint8_t* distanceMap, int w, int h) {
|
|
SkScalar radius = fWidthControl.fValLo;
|
|
int minX = SkTMax(0, (int) (SkTMin(s.fX, e.fX) - radius));
|
|
int minY = SkTMax(0, (int) (SkTMin(s.fY, e.fY) - radius));
|
|
int maxX = SkTMin(w, (int) (SkTMax(s.fX, e.fX) + radius) + 1);
|
|
int maxY = SkTMin(h, (int) (SkTMax(s.fY, e.fY) + radius) + 1);
|
|
for (int y = minY; y < maxY; ++y) {
|
|
for (int x = minX; x < maxX; ++x) {
|
|
SkScalar ptToLineDist = pt_to_line(s, e, x, y);
|
|
if (ptToLineDist > -radius && ptToLineDist < radius) {
|
|
SkScalar coverage = ptToLineDist / radius;
|
|
add_to_map(1 - SkScalarAbs(coverage), x, y, distanceMap, w, h);
|
|
}
|
|
SkVector ptToS = { x - s.fX, y - s.fY };
|
|
SkScalar dist = ptToS.length();
|
|
if (dist < radius) {
|
|
SkScalar coverage = dist / radius;
|
|
add_to_map(1 - SkScalarAbs(coverage), x, y, distanceMap, w, h);
|
|
}
|
|
SkVector ptToE = { x - e.fX, y - e.fY };
|
|
dist = ptToE.length();
|
|
if (dist < radius) {
|
|
SkScalar coverage = dist / radius;
|
|
add_to_map(1 - SkScalarAbs(coverage), x, y, distanceMap, w, h);
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void quad_coverage(SkPoint pts[3], uint8_t* distanceMap, int w, int h) {
|
|
SkScalar dist = pts[0].Distance(pts[0], pts[2]);
|
|
if (dist < gCurveDistance) {
|
|
(void) coverage(pts[0], pts[2], distanceMap, w, h);
|
|
return;
|
|
}
|
|
SkPoint split[5];
|
|
SkChopQuadAt(pts, split, 0.5f);
|
|
quad_coverage(&split[0], distanceMap, w, h);
|
|
quad_coverage(&split[2], distanceMap, w, h);
|
|
}
|
|
|
|
void conic_coverage(SkPoint pts[3], SkScalar weight, uint8_t* distanceMap, int w, int h) {
|
|
SkScalar dist = pts[0].Distance(pts[0], pts[2]);
|
|
if (dist < gCurveDistance) {
|
|
(void) coverage(pts[0], pts[2], distanceMap, w, h);
|
|
return;
|
|
}
|
|
SkConic split[2];
|
|
SkConic conic;
|
|
conic.set(pts, weight);
|
|
conic.chopAt(0.5f, split);
|
|
conic_coverage(split[0].fPts, split[0].fW, distanceMap, w, h);
|
|
conic_coverage(split[1].fPts, split[1].fW, distanceMap, w, h);
|
|
}
|
|
|
|
void cubic_coverage(SkPoint pts[4], uint8_t* distanceMap, int w, int h) {
|
|
SkScalar dist = pts[0].Distance(pts[0], pts[3]);
|
|
if (dist < gCurveDistance) {
|
|
(void) coverage(pts[0], pts[3], distanceMap, w, h);
|
|
return;
|
|
}
|
|
SkPoint split[7];
|
|
SkChopCubicAt(pts, split, 0.5f);
|
|
cubic_coverage(&split[0], distanceMap, w, h);
|
|
cubic_coverage(&split[3], distanceMap, w, h);
|
|
}
|
|
|
|
void path_coverage(const SkPath& path, uint8_t* distanceMap, int w, int h) {
|
|
memset(distanceMap, 0, sizeof(distanceMap[0]) * w * h);
|
|
SkPoint pts[4];
|
|
SkPath::Verb verb;
|
|
SkPath::Iter iter(path, true);
|
|
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
|
|
switch (verb) {
|
|
case SkPath::kLine_Verb:
|
|
(void) coverage(pts[0], pts[1], distanceMap, w, h);
|
|
break;
|
|
case SkPath::kQuad_Verb:
|
|
quad_coverage(pts, distanceMap, w, h);
|
|
break;
|
|
case SkPath::kConic_Verb:
|
|
conic_coverage(pts, iter.conicWeight(), distanceMap, w, h);
|
|
break;
|
|
case SkPath::kCubic_Verb:
|
|
cubic_coverage(pts, distanceMap, w, h);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static uint8_t* set_up_dist_map(const SkImageInfo& imageInfo, SkBitmap* distMap) {
|
|
distMap->setInfo(imageInfo);
|
|
distMap->setIsVolatile(true);
|
|
SkAssertResult(distMap->tryAllocPixels());
|
|
SkASSERT((int) distMap->rowBytes() == imageInfo.width());
|
|
return distMap->getAddr8(0, 0);
|
|
}
|
|
|
|
void path_stroke(int index, SkPath* inner, SkPath* outer) {
|
|
#if 0
|
|
SkPathStroker stroker(fPath, fWidthControl.fValLo, 0,
|
|
SkPaint::kRound_Cap, SkPaint::kRound_Join, fResControl.fValLo);
|
|
SkPoint pts[4], firstPt, lastPt;
|
|
SkPath::Verb verb;
|
|
SkPath::Iter iter(fPath, true);
|
|
int counter = -1;
|
|
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
|
|
++counter;
|
|
switch (verb) {
|
|
case SkPath::kMove_Verb:
|
|
firstPt = pts[0];
|
|
break;
|
|
case SkPath::kLine_Verb:
|
|
if (counter == index) {
|
|
stroker.moveTo(pts[0]);
|
|
stroker.lineTo(pts[1]);
|
|
goto done;
|
|
}
|
|
lastPt = pts[1];
|
|
break;
|
|
case SkPath::kQuad_Verb:
|
|
if (counter == index) {
|
|
stroker.moveTo(pts[0]);
|
|
stroker.quadTo(pts[1], pts[2]);
|
|
goto done;
|
|
}
|
|
lastPt = pts[2];
|
|
break;
|
|
case SkPath::kConic_Verb:
|
|
if (counter == index) {
|
|
stroker.moveTo(pts[0]);
|
|
stroker.conicTo(pts[1], pts[2], iter.conicWeight());
|
|
goto done;
|
|
}
|
|
lastPt = pts[2];
|
|
break;
|
|
case SkPath::kCubic_Verb:
|
|
if (counter == index) {
|
|
stroker.moveTo(pts[0]);
|
|
stroker.cubicTo(pts[1], pts[2], pts[3]);
|
|
goto done;
|
|
}
|
|
lastPt = pts[3];
|
|
break;
|
|
case SkPath::kClose_Verb:
|
|
if (counter == index) {
|
|
stroker.moveTo(lastPt);
|
|
stroker.lineTo(firstPt);
|
|
goto done;
|
|
}
|
|
break;
|
|
case SkPath::kDone_Verb:
|
|
break;
|
|
default:
|
|
SkASSERT(0);
|
|
}
|
|
}
|
|
done:
|
|
*inner = stroker.fInner;
|
|
*outer = stroker.fOuter;
|
|
#endif
|
|
}
|
|
|
|
void draw_stroke(SkCanvas* canvas, int active) {
|
|
SkPath inner, outer;
|
|
path_stroke(active, &inner, &outer);
|
|
canvas->drawPath(inner, fSkeletonPaint);
|
|
canvas->drawPath(outer, fSkeletonPaint);
|
|
}
|
|
|
|
void gather_strokes() {
|
|
fStrokes.reset();
|
|
for (int index = 0; index < fPath.countVerbs(); ++index) {
|
|
Stroke& inner = fStrokes.push_back();
|
|
inner.reset();
|
|
inner.fInner = true;
|
|
Stroke& outer = fStrokes.push_back();
|
|
outer.reset();
|
|
outer.fInner = false;
|
|
path_stroke(index, &inner.fPath, &outer.fPath);
|
|
}
|
|
}
|
|
|
|
void trim_strokes() {
|
|
// eliminate self-itersecting loops
|
|
// trim outside edges
|
|
gather_strokes();
|
|
for (int index = 0; index < fStrokes.count(); ++index) {
|
|
SkPath& outPath = fStrokes[index].fPath;
|
|
for (int inner = 0; inner < fStrokes.count(); ++inner) {
|
|
if (index == inner) {
|
|
continue;
|
|
}
|
|
SkPath& inPath = fStrokes[inner].fPath;
|
|
if (!outPath.getBounds().intersects(inPath.getBounds())) {
|
|
continue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
void onDrawContent(SkCanvas* canvas) override {
|
|
#if 0
|
|
SkDEBUGCODE(SkDebugStrokeGlobals debugGlobals);
|
|
SkOpAA aaResult(fPath, fWidthControl.fValLo, fResControl.fValLo
|
|
SkDEBUGPARAMS(&debugGlobals));
|
|
#endif
|
|
SkPath strokePath;
|
|
// aaResult.simplify(&strokePath);
|
|
canvas->drawPath(strokePath, fSkeletonPaint);
|
|
SkRect bounds = fPath.getBounds();
|
|
SkScalar radius = fWidthControl.fValLo;
|
|
int w = (int) (bounds.fRight + radius + 1);
|
|
int h = (int) (bounds.fBottom + radius + 1);
|
|
SkImageInfo imageInfo = SkImageInfo::MakeA8(w, h);
|
|
SkBitmap distMap;
|
|
uint8_t* distanceMap = set_up_dist_map(imageInfo, &distMap);
|
|
path_coverage(fPath, distanceMap, w, h);
|
|
if (fFillButton.enabled()) {
|
|
canvas->drawPath(fPath, fCoveragePaint);
|
|
}
|
|
if (fFilterButton.fState == 2
|
|
&& (0 < fFilterControl.fValLo || fFilterControl.fValHi < 255)) {
|
|
SkBitmap filteredMap;
|
|
uint8_t* filtered = set_up_dist_map(imageInfo, &filteredMap);
|
|
filter_coverage(distanceMap, sizeof(uint8_t) * w * h, (uint8_t) fFilterControl.fValLo,
|
|
(uint8_t) fFilterControl.fValHi, filtered);
|
|
canvas->drawBitmap(filteredMap, 0, 0, &fCoveragePaint);
|
|
} else if (fFilterButton.enabled()) {
|
|
canvas->drawBitmap(distMap, 0, 0, &fCoveragePaint);
|
|
}
|
|
if (fSkeletonButton.enabled()) {
|
|
canvas->drawPath(fPath, fActiveVerb >= 0 ? fLightSkeletonPaint : fSkeletonPaint);
|
|
}
|
|
if (fActiveVerb >= 0) {
|
|
draw_segment(canvas);
|
|
}
|
|
if (fBisectButton.enabled() || fJoinButton.enabled()) {
|
|
draw_bisects(canvas, fActiveVerb >= 0);
|
|
}
|
|
if (fInOutButton.enabled()) {
|
|
if (fActiveVerb >= 0) {
|
|
draw_stroke(canvas, fActiveVerb);
|
|
} else {
|
|
for (int index = 0; index < fPath.countVerbs(); ++index) {
|
|
draw_stroke(canvas, index);
|
|
}
|
|
}
|
|
}
|
|
if (fHideAll) {
|
|
return;
|
|
}
|
|
for (int index = 0; index < kControlCount; ++index) {
|
|
kControlList[index].fControl->draw(canvas, fControlPaints);
|
|
}
|
|
for (int index = 0; index < kButtonCount; ++index) {
|
|
kButtonList[index].fButton->draw(canvas, fButtonPaints);
|
|
}
|
|
if (fShowLegend) {
|
|
draw_legend(canvas);
|
|
}
|
|
|
|
#if 0
|
|
SkPaint paint;
|
|
paint.setARGB(255, 34, 31, 31);
|
|
paint.setAntiAlias(true);
|
|
|
|
SkPath path;
|
|
path.moveTo(18,439);
|
|
path.lineTo(414,439);
|
|
path.lineTo(414,702);
|
|
path.lineTo(18,702);
|
|
path.lineTo(18,439);
|
|
|
|
path.moveTo(19,701);
|
|
path.lineTo(413,701);
|
|
path.lineTo(413,440);
|
|
path.lineTo(19,440);
|
|
path.lineTo(19,701);
|
|
path.close();
|
|
canvas->drawPath(path, paint);
|
|
|
|
canvas->scale(1.0f, -1.0f);
|
|
canvas->translate(0.0f, -800.0f);
|
|
canvas->drawPath(path, paint);
|
|
#endif
|
|
|
|
}
|
|
|
|
int hittest_pt(SkPoint pt) {
|
|
for (int index = 0; index < fPath.countPoints(); ++index) {
|
|
if (SkPoint::Distance(fPath.getPoint(index), pt) <= kHitToleranace * 2) {
|
|
return index;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
virtual SkView::Click* onFindClickHandler(SkScalar x, SkScalar y, unsigned modi) override {
|
|
SkPoint pt = {x, y};
|
|
int ptHit = hittest_pt(pt);
|
|
if (ptHit >= 0) {
|
|
return new MyClick(this, MyClick::kPtType, ptHit);
|
|
}
|
|
SkPath::Verb verb;
|
|
SkScalar weight;
|
|
int verbHit = hittest_verb(pt, &verb, &weight);
|
|
if (verbHit >= 0) {
|
|
return new MyClick(this, MyClick::kVerbType, verbHit, verb, weight);
|
|
}
|
|
if (!fHideAll) {
|
|
const SkRect& rectPt = SkRect::MakeXYWH(x, y, 1, 1);
|
|
for (int index = 0; index < kControlCount; ++index) {
|
|
if (kControlList[index].fControl->contains(rectPt)) {
|
|
return new MyClick(this, MyClick::kControlType,
|
|
kControlList[index].fControlType);
|
|
}
|
|
}
|
|
for (int index = 0; index < kButtonCount; ++index) {
|
|
if (kButtonList[index].fButton->contains(rectPt)) {
|
|
return new MyClick(this, MyClick::kControlType, kButtonList[index].fButtonType);
|
|
}
|
|
}
|
|
}
|
|
fLineButton.fVisible = fQuadButton.fVisible = fConicButton.fVisible
|
|
= fCubicButton.fVisible = fWeightControl.fVisible = fAddButton.fVisible
|
|
= fDeleteButton.fVisible = false;
|
|
fActiveVerb = -1;
|
|
fActivePt = -1;
|
|
if (fHandlePathMove) {
|
|
return new MyClick(this, MyClick::kPathType, MyClick::kPathMove);
|
|
}
|
|
return this->INHERITED::onFindClickHandler(x, y, modi);
|
|
}
|
|
|
|
static SkScalar MapScreenYtoValue(int y, const UniControl& control) {
|
|
return SkTMin(1.f, SkTMax(0.f,
|
|
SkIntToScalar(y) - control.fBounds.fTop) / control.fBounds.height())
|
|
* (control.fMax - control.fMin) + control.fMin;
|
|
}
|
|
|
|
bool onClick(Click* click) override {
|
|
MyClick* myClick = (MyClick*) click;
|
|
switch (myClick->fType) {
|
|
case MyClick::kPtType: {
|
|
savePath(click->fState);
|
|
fActivePt = myClick->ptHit();
|
|
SkPoint pt = fPath.getPoint((int) myClick->fControl);
|
|
pt.offset(SkIntToScalar(click->fICurr.fX - click->fIPrev.fX),
|
|
SkIntToScalar(click->fICurr.fY - click->fIPrev.fY));
|
|
set_path_pt(fActivePt, pt, &fPath);
|
|
validatePath();
|
|
this->inval(NULL);
|
|
return true;
|
|
}
|
|
case MyClick::kPathType:
|
|
savePath(click->fState);
|
|
fPath.offset(SkIntToScalar(click->fICurr.fX - click->fIPrev.fX),
|
|
SkIntToScalar(click->fICurr.fY - click->fIPrev.fY));
|
|
validatePath();
|
|
this->inval(NULL);
|
|
return true;
|
|
case MyClick::kVerbType: {
|
|
fActiveVerb = myClick->verbHit();
|
|
fLineButton.fVisible = fQuadButton.fVisible = fConicButton.fVisible
|
|
= fCubicButton.fVisible = fAddButton.fVisible = fDeleteButton.fVisible
|
|
= true;
|
|
fLineButton.setEnabled(myClick->fVerb == SkPath::kLine_Verb);
|
|
fQuadButton.setEnabled(myClick->fVerb == SkPath::kQuad_Verb);
|
|
fConicButton.setEnabled(myClick->fVerb == SkPath::kConic_Verb);
|
|
fCubicButton.setEnabled(myClick->fVerb == SkPath::kCubic_Verb);
|
|
fWeightControl.fValLo = myClick->fWeight;
|
|
fWeightControl.fVisible = myClick->fVerb == SkPath::kConic_Verb;
|
|
} break;
|
|
case MyClick::kControlType: {
|
|
if (click->fState != Click::kDown_State && myClick->isButton()) {
|
|
return true;
|
|
}
|
|
switch (myClick->fControl) {
|
|
case MyClick::kFilterControl: {
|
|
SkScalar val = MapScreenYtoValue(click->fICurr.fY, fFilterControl);
|
|
if (val - fFilterControl.fValLo < fFilterControl.fValHi - val) {
|
|
fFilterControl.fValLo = SkTMax(0.f, val);
|
|
} else {
|
|
fFilterControl.fValHi = SkTMin(255.f, val);
|
|
}
|
|
} break;
|
|
case MyClick::kResControl:
|
|
fResControl.fValLo = MapScreenYtoValue(click->fICurr.fY, fResControl);
|
|
break;
|
|
case MyClick::kWeightControl: {
|
|
savePath(click->fState);
|
|
SkScalar w = MapScreenYtoValue(click->fICurr.fY, fWeightControl);
|
|
set_path_weight(fActiveVerb, w, &fPath);
|
|
validatePath();
|
|
fWeightControl.fValLo = w;
|
|
} break;
|
|
case MyClick::kWidthControl:
|
|
fWidthControl.fValLo = MapScreenYtoValue(click->fICurr.fY, fWidthControl);
|
|
break;
|
|
case MyClick::kLineButton:
|
|
savePath(click->fState);
|
|
enable_verb_button(myClick->fControl);
|
|
fWeightControl.fVisible = false;
|
|
set_path_verb(fActiveVerb, SkPath::kLine_Verb, &fPath, 1);
|
|
validatePath();
|
|
break;
|
|
case MyClick::kQuadButton:
|
|
savePath(click->fState);
|
|
enable_verb_button(myClick->fControl);
|
|
fWeightControl.fVisible = false;
|
|
set_path_verb(fActiveVerb, SkPath::kQuad_Verb, &fPath, 1);
|
|
validatePath();
|
|
break;
|
|
case MyClick::kConicButton: {
|
|
savePath(click->fState);
|
|
enable_verb_button(myClick->fControl);
|
|
fWeightControl.fVisible = true;
|
|
const SkScalar defaultConicWeight = 1.f / SkScalarSqrt(2);
|
|
set_path_verb(fActiveVerb, SkPath::kConic_Verb, &fPath, defaultConicWeight);
|
|
validatePath();
|
|
fWeightControl.fValLo = get_path_weight(fActiveVerb, fPath);
|
|
} break;
|
|
case MyClick::kCubicButton:
|
|
savePath(click->fState);
|
|
enable_verb_button(myClick->fControl);
|
|
fWeightControl.fVisible = false;
|
|
set_path_verb(fActiveVerb, SkPath::kCubic_Verb, &fPath, 1);
|
|
validatePath();
|
|
break;
|
|
case MyClick::kAddButton:
|
|
savePath(click->fState);
|
|
add_path_segment(fActiveVerb, &fPath);
|
|
validatePath();
|
|
if (fWeightControl.fVisible) {
|
|
fWeightControl.fValLo = get_path_weight(fActiveVerb, fPath);
|
|
}
|
|
break;
|
|
case MyClick::kDeleteButton:
|
|
savePath(click->fState);
|
|
delete_path_segment(fActiveVerb, &fPath);
|
|
validatePath();
|
|
break;
|
|
case MyClick::kFillButton:
|
|
fFillButton.toggle();
|
|
break;
|
|
case MyClick::kSkeletonButton:
|
|
fSkeletonButton.toggle();
|
|
break;
|
|
case MyClick::kFilterButton:
|
|
fFilterButton.toggle();
|
|
fFilterControl.fVisible = fFilterButton.fState == 2;
|
|
break;
|
|
case MyClick::kBisectButton:
|
|
fBisectButton.toggle();
|
|
break;
|
|
case MyClick::kJoinButton:
|
|
fJoinButton.toggle();
|
|
break;
|
|
case MyClick::kInOutButton:
|
|
fInOutButton.toggle();
|
|
break;
|
|
default:
|
|
SkASSERT(0);
|
|
break;
|
|
}
|
|
} break;
|
|
default:
|
|
SkASSERT(0);
|
|
break;
|
|
}
|
|
setControlButtonsPos();
|
|
this->inval(NULL);
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
typedef SampleView INHERITED;
|
|
};
|
|
|
|
static struct KeyCommand {
|
|
char fKey;
|
|
char fAlternate;
|
|
const char* fDescriptionL;
|
|
const char* fDescriptionR;
|
|
bool (AAGeometryView::*fFunction)();
|
|
} kKeyCommandList[] = {
|
|
{ ' ', 0, "space", "center path", &AAGeometryView::scaleToFit },
|
|
{ '-', 0, "-", "zoom out", &AAGeometryView::scaleDown },
|
|
{ '+', '=', "+/=", "zoom in", &AAGeometryView::scaleUp },
|
|
{ 'd', 0, "d", "dump to console", &AAGeometryView::pathDump },
|
|
{ 'h', 0, "h", "hide controls", &AAGeometryView::hideAll },
|
|
{ 'r', 0, "r", "reset path", &AAGeometryView::constructPath },
|
|
{ 'z', 0, "z", "undo", &AAGeometryView::undo },
|
|
{ '?', 0, "?", "show legend", &AAGeometryView::showLegend },
|
|
};
|
|
|
|
const int kKeyCommandCount = (int) SK_ARRAY_COUNT(kKeyCommandList);
|
|
|
|
void AAGeometryView::draw_legend(SkCanvas* canvas) {
|
|
SkScalar bottomOffset = this->height() - 10;
|
|
for (int index = kKeyCommandCount - 1; index >= 0; --index) {
|
|
bottomOffset -= 15;
|
|
canvas->drawText(kKeyCommandList[index].fDescriptionL,
|
|
strlen(kKeyCommandList[index].fDescriptionL), this->width() - 160, bottomOffset,
|
|
fLegendLeftPaint);
|
|
canvas->drawText(kKeyCommandList[index].fDescriptionR,
|
|
strlen(kKeyCommandList[index].fDescriptionR), this->width() - 20, bottomOffset,
|
|
fLegendRightPaint);
|
|
}
|
|
}
|
|
|
|
// overrides from SkEventSink
|
|
bool AAGeometryView::onQuery(SkEvent* evt) {
|
|
if (SampleCode::TitleQ(*evt)) {
|
|
SampleCode::TitleR(evt, "AAGeometry");
|
|
return true;
|
|
}
|
|
SkUnichar uni;
|
|
if (false) {
|
|
return this->INHERITED::onQuery(evt);
|
|
}
|
|
if (SampleCode::CharQ(*evt, &uni)) {
|
|
for (int index = 0; index < kButtonCount; ++index) {
|
|
Button* button = kButtonList[index].fButton;
|
|
if (button->fVisible && uni == button->fLabel) {
|
|
MyClick click(this, MyClick::kControlType, kButtonList[index].fButtonType);
|
|
click.fState = Click::kDown_State;
|
|
(void) this->onClick(&click);
|
|
return true;
|
|
}
|
|
}
|
|
for (int index = 0; index < kKeyCommandCount; ++index) {
|
|
KeyCommand& keyCommand = kKeyCommandList[index];
|
|
if (uni == keyCommand.fKey || uni == keyCommand.fAlternate) {
|
|
return (this->*keyCommand.fFunction)();
|
|
}
|
|
}
|
|
if (('A' <= uni && uni <= 'Z') || ('a' <= uni && uni <= 'z')) {
|
|
for (int index = 0; index < kButtonCount; ++index) {
|
|
Button* button = kButtonList[index].fButton;
|
|
if (button->fVisible && (uni & ~0x20) == (button->fLabel & ~0x20)) {
|
|
MyClick click(this, MyClick::kControlType, kButtonList[index].fButtonType);
|
|
click.fState = Click::kDown_State;
|
|
(void) this->onClick(&click);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return this->INHERITED::onQuery(evt);
|
|
}
|
|
|
|
DEF_SAMPLE( return new AAGeometryView; )
|