5587ac09be
R=joth@chromium.org, mtklein@google.com, reed@google.com, scroggo@google.com Committed: https://code.google.com/p/skia/source/detail?r=11010 Review URL: https://codereview.chromium.org/23545017 git-svn-id: http://skia.googlecode.com/svn/trunk@11013 2bbb7eff-a529-9590-31e7-b0007b416f81
306 lines
9.1 KiB
C++
306 lines
9.1 KiB
C++
|
|
/*
|
|
* Copyright 2008 The Android Open Source Project
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
|
|
#ifndef SkWriter32_DEFINED
|
|
#define SkWriter32_DEFINED
|
|
|
|
#include "SkTypes.h"
|
|
|
|
#include "SkScalar.h"
|
|
#include "SkPath.h"
|
|
#include "SkPoint.h"
|
|
#include "SkRect.h"
|
|
#include "SkRRect.h"
|
|
#include "SkMatrix.h"
|
|
#include "SkRegion.h"
|
|
|
|
class SkStream;
|
|
class SkWStream;
|
|
|
|
class SkWriter32 : SkNoncopyable {
|
|
struct BlockHeader;
|
|
public:
|
|
/**
|
|
* The caller can specify an initial block of storage, which the caller manages.
|
|
* SkWriter32 will not attempt to free this in its destructor. It is up to the
|
|
* implementation to decide if, and how much, of the storage to utilize, and it
|
|
* is possible that it may be ignored entirely.
|
|
*/
|
|
SkWriter32(size_t minSize, void* initialStorage, size_t storageSize);
|
|
|
|
SkWriter32(size_t minSize)
|
|
: fHead(NULL)
|
|
, fTail(NULL)
|
|
, fMinSize(minSize)
|
|
, fSize(0)
|
|
, fWrittenBeforeLastBlock(0)
|
|
{}
|
|
|
|
~SkWriter32();
|
|
|
|
// return the current offset (will always be a multiple of 4)
|
|
uint32_t bytesWritten() const { return fSize; }
|
|
// DEPRECATED: use bytesWritten instead TODO(mtklein): clean up
|
|
uint32_t size() const { return this->bytesWritten(); }
|
|
|
|
// Returns true if we've written only into the storage passed into constructor or reset.
|
|
// (You may be able to use this to avoid a call to flatten.)
|
|
bool wroteOnlyToStorage() const {
|
|
return fHead == &fExternalBlock && this->bytesWritten() <= fExternalBlock.fSizeOfBlock;
|
|
}
|
|
|
|
void reset();
|
|
void reset(void* storage, size_t size);
|
|
|
|
// size MUST be multiple of 4
|
|
uint32_t* reserve(size_t size) {
|
|
SkASSERT(SkAlign4(size) == size);
|
|
|
|
Block* block = fTail;
|
|
if (NULL == block || block->available() < size) {
|
|
block = this->doReserve(size);
|
|
}
|
|
fSize += size;
|
|
return block->alloc(size);
|
|
}
|
|
|
|
bool writeBool(bool value) {
|
|
this->writeInt(value);
|
|
return value;
|
|
}
|
|
|
|
void writeInt(int32_t value) {
|
|
*(int32_t*)this->reserve(sizeof(value)) = value;
|
|
}
|
|
|
|
void write8(int32_t value) {
|
|
*(int32_t*)this->reserve(sizeof(value)) = value & 0xFF;
|
|
}
|
|
|
|
void write16(int32_t value) {
|
|
*(int32_t*)this->reserve(sizeof(value)) = value & 0xFFFF;
|
|
}
|
|
|
|
void write32(int32_t value) {
|
|
*(int32_t*)this->reserve(sizeof(value)) = value;
|
|
}
|
|
|
|
void writePtr(void* ptr) {
|
|
// Since we "know" that we're always 4-byte aligned, we can tell the
|
|
// compiler that here, by assigning to an int32 ptr.
|
|
int32_t* addr = (int32_t*)this->reserve(sizeof(void*));
|
|
if (4 == sizeof(void*)) {
|
|
*(void**)addr = ptr;
|
|
} else {
|
|
memcpy(addr, &ptr, sizeof(void*));
|
|
}
|
|
}
|
|
|
|
void writeScalar(SkScalar value) {
|
|
*(SkScalar*)this->reserve(sizeof(value)) = value;
|
|
}
|
|
|
|
void writePoint(const SkPoint& pt) {
|
|
*(SkPoint*)this->reserve(sizeof(pt)) = pt;
|
|
}
|
|
|
|
void writeRect(const SkRect& rect) {
|
|
*(SkRect*)this->reserve(sizeof(rect)) = rect;
|
|
}
|
|
|
|
void writeIRect(const SkIRect& rect) {
|
|
*(SkIRect*)this->reserve(sizeof(rect)) = rect;
|
|
}
|
|
|
|
void writeRRect(const SkRRect& rrect) {
|
|
rrect.writeToMemory(this->reserve(SkRRect::kSizeInMemory));
|
|
}
|
|
|
|
void writePath(const SkPath& path) {
|
|
size_t size = path.writeToMemory(NULL);
|
|
SkASSERT(SkAlign4(size) == size);
|
|
path.writeToMemory(this->reserve(size));
|
|
}
|
|
|
|
void writeMatrix(const SkMatrix& matrix) {
|
|
size_t size = matrix.writeToMemory(NULL);
|
|
SkASSERT(SkAlign4(size) == size);
|
|
matrix.writeToMemory(this->reserve(size));
|
|
}
|
|
|
|
void writeRegion(const SkRegion& rgn) {
|
|
size_t size = rgn.writeToMemory(NULL);
|
|
SkASSERT(SkAlign4(size) == size);
|
|
rgn.writeToMemory(this->reserve(size));
|
|
}
|
|
|
|
// write count bytes (must be a multiple of 4)
|
|
void writeMul4(const void* values, size_t size) {
|
|
this->write(values, size);
|
|
}
|
|
|
|
/**
|
|
* Write size bytes from values. size must be a multiple of 4, though
|
|
* values need not be 4-byte aligned.
|
|
*/
|
|
void write(const void* values, size_t size) {
|
|
SkASSERT(SkAlign4(size) == size);
|
|
// if we could query how much is avail in the current block, we might
|
|
// copy that much, and then alloc the rest. That would reduce the waste
|
|
// in the current block
|
|
memcpy(this->reserve(size), values, size);
|
|
}
|
|
|
|
/**
|
|
* Reserve size bytes. Does not need to be 4 byte aligned. The remaining space (if any) will be
|
|
* filled in with zeroes.
|
|
*/
|
|
uint32_t* reservePad(size_t size);
|
|
|
|
/**
|
|
* Write size bytes from src, and pad to 4 byte alignment with zeroes.
|
|
*/
|
|
void writePad(const void* src, size_t size);
|
|
|
|
/**
|
|
* Writes a string to the writer, which can be retrieved with
|
|
* SkReader32::readString().
|
|
* The length can be specified, or if -1 is passed, it will be computed by
|
|
* calling strlen(). The length must be < max size_t.
|
|
*
|
|
* If you write NULL, it will be read as "".
|
|
*/
|
|
void writeString(const char* str, size_t len = (size_t)-1);
|
|
|
|
/**
|
|
* Computes the size (aligned to multiple of 4) need to write the string
|
|
* in a call to writeString(). If the length is not specified, it will be
|
|
* computed by calling strlen().
|
|
*/
|
|
static size_t WriteStringSize(const char* str, size_t len = (size_t)-1);
|
|
|
|
// return the address of the 4byte int at the specified offset (which must
|
|
// be a multiple of 4. This does not allocate any new space, so the returned
|
|
// address is only valid for 1 int.
|
|
uint32_t* peek32(size_t offset);
|
|
|
|
/**
|
|
* Move the cursor back to offset bytes from the beginning.
|
|
* This has the same restrictions as peek32: offset must be <= size() and
|
|
* offset must be a multiple of 4.
|
|
*/
|
|
void rewindToOffset(size_t offset);
|
|
|
|
// copy into a single buffer (allocated by caller). Must be at least size()
|
|
void flatten(void* dst) const;
|
|
|
|
// read from the stream, and write up to length bytes. Return the actual
|
|
// number of bytes written.
|
|
size_t readFromStream(SkStream*, size_t length);
|
|
|
|
bool writeToStream(SkWStream*);
|
|
|
|
private:
|
|
struct Block {
|
|
Block* fNext;
|
|
char* fBasePtr;
|
|
size_t fSizeOfBlock; // total space allocated (after this)
|
|
size_t fAllocatedSoFar; // space used so far
|
|
|
|
size_t available() const { return fSizeOfBlock - fAllocatedSoFar; }
|
|
char* base() { return fBasePtr; }
|
|
const char* base() const { return fBasePtr; }
|
|
|
|
uint32_t* alloc(size_t size) {
|
|
SkASSERT(SkAlign4(size) == size);
|
|
SkASSERT(this->available() >= size);
|
|
void* ptr = this->base() + fAllocatedSoFar;
|
|
fAllocatedSoFar += size;
|
|
SkASSERT(fAllocatedSoFar <= fSizeOfBlock);
|
|
return (uint32_t*)ptr;
|
|
}
|
|
|
|
uint32_t* peek32(size_t offset) {
|
|
SkASSERT(offset <= fAllocatedSoFar + 4);
|
|
void* ptr = this->base() + offset;
|
|
return (uint32_t*)ptr;
|
|
}
|
|
|
|
void rewind() {
|
|
fNext = NULL;
|
|
fAllocatedSoFar = 0;
|
|
// keep fSizeOfBlock as is
|
|
}
|
|
|
|
static Block* Create(size_t size) {
|
|
SkASSERT(SkIsAlign4(size));
|
|
Block* block = (Block*)sk_malloc_throw(sizeof(Block) + size);
|
|
block->fNext = NULL;
|
|
block->fBasePtr = (char*)(block + 1);
|
|
block->fSizeOfBlock = size;
|
|
block->fAllocatedSoFar = 0;
|
|
return block;
|
|
}
|
|
|
|
Block* initFromStorage(void* storage, size_t size) {
|
|
SkASSERT(SkIsAlign4((intptr_t)storage));
|
|
SkASSERT(SkIsAlign4(size));
|
|
Block* block = this;
|
|
block->fNext = NULL;
|
|
block->fBasePtr = (char*)storage;
|
|
block->fSizeOfBlock = size;
|
|
block->fAllocatedSoFar = 0;
|
|
return block;
|
|
}
|
|
};
|
|
|
|
enum {
|
|
MIN_BLOCKSIZE = sizeof(SkWriter32::Block) + sizeof(intptr_t)
|
|
};
|
|
|
|
Block fExternalBlock;
|
|
Block* fHead;
|
|
Block* fTail;
|
|
size_t fMinSize;
|
|
uint32_t fSize;
|
|
// sum of bytes written in all blocks *before* fTail
|
|
uint32_t fWrittenBeforeLastBlock;
|
|
|
|
bool isHeadExternallyAllocated() const {
|
|
return fHead == &fExternalBlock;
|
|
}
|
|
|
|
Block* newBlock(size_t bytes);
|
|
|
|
// only call from reserve()
|
|
Block* doReserve(size_t bytes);
|
|
|
|
SkDEBUGCODE(void validate() const;)
|
|
};
|
|
|
|
/**
|
|
* Helper class to allocated SIZE bytes as part of the writer, and to provide
|
|
* that storage to the constructor as its initial storage buffer.
|
|
*
|
|
* This wrapper ensures proper alignment rules are met for the storage.
|
|
*/
|
|
template <size_t SIZE> class SkSWriter32 : public SkWriter32 {
|
|
public:
|
|
SkSWriter32(size_t minSize) : SkWriter32(minSize, fData.fStorage, SIZE) {}
|
|
|
|
private:
|
|
union {
|
|
void* fPtrAlignment;
|
|
double fDoubleAlignment;
|
|
char fStorage[SIZE];
|
|
} fData;
|
|
};
|
|
|
|
#endif
|