skia2/gm/convexpaths.cpp
Jim Van Verth 8600b1b3d6 Revert "Use SDF path miplevels based on the original path's size."
This reverts commit 6e83b13c22.

Reason for revert: Fractional path sizes are causing asserts on the bots.

Original change's description:
> Use SDF path miplevels based on the original path's size.
> 
> Should produce sharper results than arbitrary fixed sizes.
> Adds a new test to pathfill GM.
> 
> BUG=chromium:682918
> 
> Change-Id: I5a394098665d01e995a244fde278236f1471e6c9
> Reviewed-on: https://skia-review.googlesource.com/8328
> Reviewed-by: Brian Salomon <bsalomon@google.com>
> Commit-Queue: Jim Van Verth <jvanverth@google.com>
> 

TBR=jvanverth@google.com,bsalomon@google.com,reviews@skia.org
NOPRESUBMIT=true
NOTREECHECKS=true
NOTRY=true
BUG=chromium:682918

Change-Id: I4a52df808ef3f769d0e6f75785148d46936a6747
Reviewed-on: https://skia-review.googlesource.com/8342
Commit-Queue: Jim Van Verth <jvanverth@google.com>
Reviewed-by: Jim Van Verth <jvanverth@google.com>
2017-02-10 21:45:59 +00:00

299 lines
12 KiB
C++

/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "gm.h"
#include "SkPath.h"
#include "SkRandom.h"
#include "SkTArray.h"
class SkDoOnce : SkNoncopyable {
public:
SkDoOnce() { fDidOnce = false; }
bool needToDo() const { return !fDidOnce; }
bool alreadyDone() const { return fDidOnce; }
void accomplished() {
SkASSERT(!fDidOnce);
fDidOnce = true;
}
private:
bool fDidOnce;
};
namespace skiagm {
class ConvexPathsGM : public GM {
SkDoOnce fOnce;
public:
ConvexPathsGM() {
this->setBGColor(0xFF000000);
}
protected:
virtual SkString onShortName() {
return SkString("convexpaths");
}
virtual SkISize onISize() {
return SkISize::Make(1200, 1100);
}
void makePaths() {
if (fOnce.alreadyDone()) {
return;
}
fOnce.accomplished();
fPaths.push_back().moveTo(0, 0);
fPaths.back().quadTo(50 * SK_Scalar1, 100 * SK_Scalar1,
0, 100 * SK_Scalar1);
fPaths.back().lineTo(0, 0);
fPaths.push_back().moveTo(0, 50 * SK_Scalar1);
fPaths.back().quadTo(50 * SK_Scalar1, 0,
100 * SK_Scalar1, 50 * SK_Scalar1);
fPaths.back().quadTo(50 * SK_Scalar1, 100 * SK_Scalar1,
0, 50 * SK_Scalar1);
fPaths.push_back().addRect(0, 0,
100 * SK_Scalar1, 100 * SK_Scalar1,
SkPath::kCW_Direction);
fPaths.push_back().addRect(0, 0,
100 * SK_Scalar1, 100 * SK_Scalar1,
SkPath::kCCW_Direction);
fPaths.push_back().addCircle(50 * SK_Scalar1, 50 * SK_Scalar1,
50 * SK_Scalar1, SkPath::kCW_Direction);
fPaths.push_back().addOval(SkRect::MakeXYWH(0, 0,
50 * SK_Scalar1,
100 * SK_Scalar1),
SkPath::kCW_Direction);
fPaths.push_back().addOval(SkRect::MakeXYWH(0, 0,
100 * SK_Scalar1,
5 * SK_Scalar1),
SkPath::kCCW_Direction);
fPaths.push_back().addOval(SkRect::MakeXYWH(0, 0,
SK_Scalar1,
100 * SK_Scalar1),
SkPath::kCCW_Direction);
fPaths.push_back().addRoundRect(SkRect::MakeXYWH(0, 0,
SK_Scalar1 * 100,
SK_Scalar1 * 100),
40 * SK_Scalar1, 20 * SK_Scalar1,
SkPath::kCW_Direction);
// large number of points
enum {
kLength = 100,
kPtsPerSide = (1 << 12),
};
fPaths.push_back().moveTo(0, 0);
for (int i = 1; i < kPtsPerSide; ++i) { // skip the first point due to moveTo.
fPaths.back().lineTo(kLength * SkIntToScalar(i) / kPtsPerSide, 0);
}
for (int i = 0; i < kPtsPerSide; ++i) {
fPaths.back().lineTo(kLength, kLength * SkIntToScalar(i) / kPtsPerSide);
}
for (int i = kPtsPerSide; i > 0; --i) {
fPaths.back().lineTo(kLength * SkIntToScalar(i) / kPtsPerSide, kLength);
}
for (int i = kPtsPerSide; i > 0; --i) {
fPaths.back().lineTo(0, kLength * SkIntToScalar(i) / kPtsPerSide);
}
// shallow diagonals
fPaths.push_back().lineTo(100 * SK_Scalar1, SK_Scalar1);
fPaths.back().lineTo(98 * SK_Scalar1, 100 * SK_Scalar1);
fPaths.back().lineTo(3 * SK_Scalar1, 96 * SK_Scalar1);
fPaths.push_back().arcTo(SkRect::MakeXYWH(0, 0,
50 * SK_Scalar1,
100 * SK_Scalar1),
25 * SK_Scalar1, 130 * SK_Scalar1, false);
// cubics
fPaths.push_back().cubicTo( 1 * SK_Scalar1, 1 * SK_Scalar1,
10 * SK_Scalar1, 90 * SK_Scalar1,
0 * SK_Scalar1, 100 * SK_Scalar1);
fPaths.push_back().cubicTo(100 * SK_Scalar1, 50 * SK_Scalar1,
20 * SK_Scalar1, 100 * SK_Scalar1,
0 * SK_Scalar1, 0 * SK_Scalar1);
// path that has a cubic with a repeated first control point and
// a repeated last control point.
fPaths.push_back().moveTo(SK_Scalar1 * 10, SK_Scalar1 * 10);
fPaths.back().cubicTo(10 * SK_Scalar1, 10 * SK_Scalar1,
10 * SK_Scalar1, 0,
20 * SK_Scalar1, 0);
fPaths.back().lineTo(40 * SK_Scalar1, 0);
fPaths.back().cubicTo(40 * SK_Scalar1, 0,
50 * SK_Scalar1, 0,
50 * SK_Scalar1, 10 * SK_Scalar1);
// path that has two cubics with repeated middle control points.
fPaths.push_back().moveTo(SK_Scalar1 * 10, SK_Scalar1 * 10);
fPaths.back().cubicTo(10 * SK_Scalar1, 0,
10 * SK_Scalar1, 0,
20 * SK_Scalar1, 0);
fPaths.back().lineTo(40 * SK_Scalar1, 0);
fPaths.back().cubicTo(50 * SK_Scalar1, 0,
50 * SK_Scalar1, 0,
50 * SK_Scalar1, 10 * SK_Scalar1);
// cubic where last three points are almost a line
fPaths.push_back().moveTo(0, 228 * SK_Scalar1 / 8);
fPaths.back().cubicTo(628 * SK_Scalar1 / 8, 82 * SK_Scalar1 / 8,
1255 * SK_Scalar1 / 8, 141 * SK_Scalar1 / 8,
1883 * SK_Scalar1 / 8, 202 * SK_Scalar1 / 8);
// flat cubic where the at end point tangents both point outward.
fPaths.push_back().moveTo(10 * SK_Scalar1, 0);
fPaths.back().cubicTo(0, SK_Scalar1,
30 * SK_Scalar1, SK_Scalar1,
20 * SK_Scalar1, 0);
// flat cubic where initial tangent is in, end tangent out
fPaths.push_back().moveTo(0, 0 * SK_Scalar1);
fPaths.back().cubicTo(10 * SK_Scalar1, SK_Scalar1,
30 * SK_Scalar1, SK_Scalar1,
20 * SK_Scalar1, 0);
// flat cubic where initial tangent is out, end tangent in
fPaths.push_back().moveTo(10 * SK_Scalar1, 0);
fPaths.back().cubicTo(0, SK_Scalar1,
20 * SK_Scalar1, SK_Scalar1,
30 * SK_Scalar1, 0);
// triangle where one edge is a degenerate quad
fPaths.push_back().moveTo(8.59375f, 45 * SK_Scalar1);
fPaths.back().quadTo(16.9921875f, 45 * SK_Scalar1,
31.25f, 45 * SK_Scalar1);
fPaths.back().lineTo(100 * SK_Scalar1, 100 * SK_Scalar1);
fPaths.back().lineTo(8.59375f, 45 * SK_Scalar1);
// triangle where one edge is a quad with a repeated point
fPaths.push_back().moveTo(0, 25 * SK_Scalar1);
fPaths.back().lineTo(50 * SK_Scalar1, 0);
fPaths.back().quadTo(50 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1);
// triangle where one edge is a cubic with a 2x repeated point
fPaths.push_back().moveTo(0, 25 * SK_Scalar1);
fPaths.back().lineTo(50 * SK_Scalar1, 0);
fPaths.back().cubicTo(50 * SK_Scalar1, 0,
50 * SK_Scalar1, 50 * SK_Scalar1,
50 * SK_Scalar1, 50 * SK_Scalar1);
// triangle where one edge is a quad with a nearly repeated point
fPaths.push_back().moveTo(0, 25 * SK_Scalar1);
fPaths.back().lineTo(50 * SK_Scalar1, 0);
fPaths.back().quadTo(50 * SK_Scalar1, 49.95f,
50 * SK_Scalar1, 50 * SK_Scalar1);
// triangle where one edge is a cubic with a 3x nearly repeated point
fPaths.push_back().moveTo(0, 25 * SK_Scalar1);
fPaths.back().lineTo(50 * SK_Scalar1, 0);
fPaths.back().cubicTo(50 * SK_Scalar1, 49.95f,
50 * SK_Scalar1, 49.97f,
50 * SK_Scalar1, 50 * SK_Scalar1);
// triangle where there is a point degenerate cubic at one corner
fPaths.push_back().moveTo(0, 25 * SK_Scalar1);
fPaths.back().lineTo(50 * SK_Scalar1, 0);
fPaths.back().lineTo(50 * SK_Scalar1, 50 * SK_Scalar1);
fPaths.back().cubicTo(50 * SK_Scalar1, 50 * SK_Scalar1,
50 * SK_Scalar1, 50 * SK_Scalar1,
50 * SK_Scalar1, 50 * SK_Scalar1);
// point line
fPaths.push_back().moveTo(50 * SK_Scalar1, 50 * SK_Scalar1);
fPaths.back().lineTo(50 * SK_Scalar1, 50 * SK_Scalar1);
// point quad
fPaths.push_back().moveTo(50 * SK_Scalar1, 50 * SK_Scalar1);
fPaths.back().quadTo(50 * SK_Scalar1, 50 * SK_Scalar1,
50 * SK_Scalar1, 50 * SK_Scalar1);
// point cubic
fPaths.push_back().moveTo(50 * SK_Scalar1, 50 * SK_Scalar1);
fPaths.back().cubicTo(50 * SK_Scalar1, 50 * SK_Scalar1,
50 * SK_Scalar1, 50 * SK_Scalar1,
50 * SK_Scalar1, 50 * SK_Scalar1);
// moveTo only paths
fPaths.push_back().moveTo(0, 0);
fPaths.back().moveTo(0, 0);
fPaths.back().moveTo(SK_Scalar1, SK_Scalar1);
fPaths.back().moveTo(SK_Scalar1, SK_Scalar1);
fPaths.back().moveTo(10 * SK_Scalar1, 10 * SK_Scalar1);
fPaths.push_back().moveTo(0, 0);
fPaths.back().moveTo(0, 0);
// line degenerate
fPaths.push_back().lineTo(100 * SK_Scalar1, 100 * SK_Scalar1);
fPaths.push_back().quadTo(100 * SK_Scalar1, 100 * SK_Scalar1, 0, 0);
fPaths.push_back().quadTo(100 * SK_Scalar1, 100 * SK_Scalar1,
50 * SK_Scalar1, 50 * SK_Scalar1);
fPaths.push_back().quadTo(50 * SK_Scalar1, 50 * SK_Scalar1,
100 * SK_Scalar1, 100 * SK_Scalar1);
fPaths.push_back().cubicTo(0, 0,
0, 0,
100 * SK_Scalar1, 100 * SK_Scalar1);
// small circle. This is listed last so that it has device coords far
// from the origin (small area relative to x,y values).
fPaths.push_back().addCircle(0, 0, 1.2f);
}
virtual void onDraw(SkCanvas* canvas) {
this->makePaths();
SkPaint paint;
paint.setAntiAlias(true);
SkRandom rand;
canvas->translate(20 * SK_Scalar1, 20 * SK_Scalar1);
// As we've added more paths this has gotten pretty big. Scale the whole thing down.
canvas->scale(2 * SK_Scalar1 / 3, 2 * SK_Scalar1 / 3);
for (int i = 0; i < fPaths.count(); ++i) {
canvas->save();
// position the path, and make it at off-integer coords.
canvas->translate(SK_Scalar1 * 200 * (i % 5) + SK_Scalar1 / 10,
SK_Scalar1 * 200 * (i / 5) + 9 * SK_Scalar1 / 10);
SkColor color = rand.nextU();
color |= 0xff000000;
paint.setColor(color);
#if 0 // This hitting on 32bit Linux builds for some paths. Temporarily disabling while it is
// debugged.
SkASSERT(fPaths[i].isConvex());
#endif
canvas->drawPath(fPaths[i], paint);
canvas->restore();
}
}
private:
typedef GM INHERITED;
SkTArray<SkPath> fPaths;
};
//////////////////////////////////////////////////////////////////////////////
static GM* MyFactory(void*) { return new ConvexPathsGM; }
static GMRegistry reg(MyFactory);
}