skia2/tests/SkRasterPipelineTest.cpp
Mike Klein f3b4e16c36 Fold clamp_{x,y} into the gathers.
All three image tile modes go through exclusive_clamp() and then a
gather today, so we can move the work of exclusive_clamp() into eac
gather_ stage, eliminating the need for clamp_{x,y} stages.

Luckily, we've got a convenient place to bottleneck this, ptr_and_ix(),
which works out the pointer and vector of indices to load for gathers.

This deletes SkRasterPipeline_repeat_tiling unit test, which now
no longer exactly makes sense.  It tests that repeat_x does that
clamp, but that's now done automatically outside that stage.

Change-Id: I24637ef60921bec7aa00082984c0c6a49dd86ca9
Reviewed-on: https://skia-review.googlesource.com/50260
Commit-Queue: Mike Klein <mtklein@chromium.org>
Reviewed-by: Mike Reed <reed@google.com>
Reviewed-by: Florin Malita <fmalita@chromium.org>
2017-09-22 22:06:08 +00:00

265 lines
8.4 KiB
C++

/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Test.h"
#include "SkHalf.h"
#include "SkRasterPipeline.h"
#include "../src/jumper/SkJumper.h"
DEF_TEST(SkRasterPipeline, r) {
// Build and run a simple pipeline to exercise SkRasterPipeline,
// drawing 50% transparent blue over opaque red in half-floats.
uint64_t red = 0x3c00000000003c00ull,
blue = 0x3800380000000000ull,
result;
SkJumper_MemoryCtx load_s_ctx = { &blue, 0 },
load_d_ctx = { &red, 0 },
store_ctx = { &result, 0 };
SkRasterPipeline_<256> p;
p.append(SkRasterPipeline::load_f16, &load_s_ctx);
p.append(SkRasterPipeline::load_f16_dst, &load_d_ctx);
p.append(SkRasterPipeline::srcover);
p.append(SkRasterPipeline::store_f16, &store_ctx);
p.run(0,0,1,1);
// We should see half-intensity magenta.
REPORTER_ASSERT(r, ((result >> 0) & 0xffff) == 0x3800);
REPORTER_ASSERT(r, ((result >> 16) & 0xffff) == 0x0000);
REPORTER_ASSERT(r, ((result >> 32) & 0xffff) == 0x3800);
REPORTER_ASSERT(r, ((result >> 48) & 0xffff) == 0x3c00);
}
DEF_TEST(SkRasterPipeline_empty, r) {
// No asserts... just a test that this is safe to run.
SkRasterPipeline_<256> p;
p.run(0,0,20,1);
}
DEF_TEST(SkRasterPipeline_nonsense, r) {
// No asserts... just a test that this is safe to run and terminates.
// srcover() calls st->next(); this makes sure we've always got something there to call.
SkRasterPipeline_<256> p;
p.append(SkRasterPipeline::srcover);
p.run(0,0,20,1);
}
DEF_TEST(SkRasterPipeline_JIT, r) {
// This tests a couple odd corners that a JIT backend can stumble over.
uint32_t buf[72] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
SkJumper_MemoryCtx src = { buf + 0, 0 },
dst = { buf + 36, 0 };
// Copy buf[x] to buf[x+36] for x in [15,35).
SkRasterPipeline_<256> p;
p.append(SkRasterPipeline:: load_8888, &src);
p.append(SkRasterPipeline::store_8888, &dst);
p.run(15,0, 20,1);
for (int i = 0; i < 36; i++) {
if (i < 15 || i == 35) {
REPORTER_ASSERT(r, buf[i+36] == 0);
} else {
REPORTER_ASSERT(r, buf[i+36] == (uint32_t)(i - 11));
}
}
}
static uint16_t h(float f) {
// Remember, a float is 1-8-23 (sign-exponent-mantissa) with 127 exponent bias.
uint32_t sem;
memcpy(&sem, &f, sizeof(sem));
uint32_t s = sem & 0x80000000,
em = sem ^ s;
// Convert to 1-5-10 half with 15 bias, flushing denorm halfs (including zero) to zero.
auto denorm = (int32_t)em < 0x38800000; // I32 comparison is often quicker, and always safe
// here.
return denorm ? SkTo<uint16_t>(0)
: SkTo<uint16_t>((s>>16) + (em>>13) - ((127-15)<<10));
}
static uint16_t n(uint16_t x) {
return (x<<8) | (x>>8);
}
static float a(uint16_t x) {
return (1/65535.0f) * x;
}
DEF_TEST(SkRasterPipeline_tail, r) {
{
float data[][4] = {
{00, 01, 02, 03},
{10, 11, 12, 13},
{20, 21, 22, 23},
{30, 31, 32, 33},
};
float buffer[4][4];
SkJumper_MemoryCtx src = { &data[0][0], 0 },
dst = { &buffer[0][0], 0 };
for (unsigned i = 1; i <= 4; i++) {
memset(buffer, 0xff, sizeof(buffer));
SkRasterPipeline_<256> p;
p.append(SkRasterPipeline::load_f32, &src);
p.append(SkRasterPipeline::store_f32, &dst);
p.run(0,0, i,1);
for (unsigned j = 0; j < i; j++) {
for (unsigned k = 0; k < 4; k++) {
if (buffer[j][k] != data[j][k]) {
ERRORF(r, "(%u, %u) - a: %g r: %g\n", j, k, data[j][k], buffer[j][k]);
}
}
}
for (int j = i; j < 4; j++) {
for (auto f : buffer[j]) {
REPORTER_ASSERT(r, SkScalarIsNaN(f));
}
}
}
}
{
uint16_t data[][4] = {
{h(00), h(01), h(02), h(03)},
{h(10), h(11), h(12), h(13)},
{h(20), h(21), h(22), h(23)},
{h(30), h(31), h(32), h(33)},
};
uint16_t buffer[4][4];
SkJumper_MemoryCtx src = { &data[0][0], 0 },
dst = { &buffer[0][0], 0 };
for (unsigned i = 1; i <= 4; i++) {
memset(buffer, 0xff, sizeof(buffer));
SkRasterPipeline_<256> p;
p.append(SkRasterPipeline::load_f16, &src);
p.append(SkRasterPipeline::store_f16, &dst);
p.run(0,0, i,1);
for (unsigned j = 0; j < i; j++) {
REPORTER_ASSERT(r,
!memcmp(&data[j][0], &buffer[j][0], sizeof(buffer[j])));
}
for (int j = i; j < 4; j++) {
for (auto f : buffer[j]) {
REPORTER_ASSERT(r, f == 0xffff);
}
}
}
}
{
uint16_t data[][3] = {
{n(00), n(01), n(02)},
{n(10), n(11), n(12)},
{n(20), n(21), n(22)},
{n(30), n(31), n(32)}
};
float answer[][4] = {
{a(00), a(01), a(02), 1.0f},
{a(10), a(11), a(12), 1.0f},
{a(20), a(21), a(22), 1.0f},
{a(30), a(31), a(32), 1.0f}
};
float buffer[4][4];
SkJumper_MemoryCtx src = { &data[0][0], 0 },
dst = { &buffer[0][0], 0 };
for (unsigned i = 1; i <= 4; i++) {
memset(buffer, 0xff, sizeof(buffer));
SkRasterPipeline_<256> p;
p.append(SkRasterPipeline::load_rgb_u16_be, &src);
p.append(SkRasterPipeline::store_f32, &dst);
p.run(0,0, i,1);
for (unsigned j = 0; j < i; j++) {
for (unsigned k = 0; k < 4; k++) {
if (buffer[j][k] != answer[j][k]) {
ERRORF(r, "(%u, %u) - a: %g r: %g\n", j, k, answer[j][k], buffer[j][k]);
}
}
}
for (int j = i; j < 4; j++) {
for (auto f : buffer[j]) {
REPORTER_ASSERT(r, SkScalarIsNaN(f));
}
}
}
}
}
DEF_TEST(SkRasterPipeline_lowp, r) {
uint32_t rgba[64];
for (int i = 0; i < 64; i++) {
rgba[i] = (4*i+0) << 0
| (4*i+1) << 8
| (4*i+2) << 16
| (4*i+3) << 24;
}
SkJumper_MemoryCtx ptr = { rgba, 0 };
SkRasterPipeline_<256> p;
p.append(SkRasterPipeline::load_bgra, &ptr);
p.append(SkRasterPipeline::store_8888, &ptr);
p.run(0,0,64,1);
for (int i = 0; i < 64; i++) {
uint32_t want = (4*i+0) << 16
| (4*i+1) << 8
| (4*i+2) << 0
| (4*i+3) << 24;
if (rgba[i] != want) {
ERRORF(r, "got %08x, want %08x\n", rgba[i], want);
}
}
}
DEF_TEST(SkRasterPipeline_2d, r) {
uint32_t rgba[2*2] = {0,0,0,0};
SkSTArenaAlloc<256> alloc;
SkRasterPipeline p(&alloc);
// Splat out the (2d) dst coordinates: (0.5,0.5), (1.5,0.5), (0.5,1.5), (1.5,1.5).
p.append(SkRasterPipeline::seed_shader);
// Scale down to [0,1] range to write out as bytes.
p.append_matrix(&alloc, SkMatrix::Concat(SkMatrix::MakeScale(0.5f),
SkMatrix::MakeTrans(-0.5f, -0.5f)));
// Write out to rgba, with row stride = 2 pixels.
SkJumper_MemoryCtx ctx = { rgba, 2 };
p.append(SkRasterPipeline::store_8888, &ctx);
p.run(0,0, 2,2);
REPORTER_ASSERT(r, ((rgba[0] >> 0) & 0xff) == 0);
REPORTER_ASSERT(r, ((rgba[1] >> 0) & 0xff) == 128);
REPORTER_ASSERT(r, ((rgba[2] >> 0) & 0xff) == 0);
REPORTER_ASSERT(r, ((rgba[3] >> 0) & 0xff) == 128);
REPORTER_ASSERT(r, ((rgba[0] >> 8) & 0xff) == 0);
REPORTER_ASSERT(r, ((rgba[1] >> 8) & 0xff) == 0);
REPORTER_ASSERT(r, ((rgba[2] >> 8) & 0xff) == 128);
REPORTER_ASSERT(r, ((rgba[3] >> 8) & 0xff) == 128);
}