185ffe916e
Bug: skia: Change-Id: Id55344ba2f33563d22c2bf4d5829a9a31095a47d Reviewed-on: https://skia-review.googlesource.com/92143 Commit-Queue: Mike Reed <reed@google.com> Reviewed-by: Cary Clark <caryclark@google.com> Reviewed-by: Brian Salomon <bsalomon@google.com>
877 lines
31 KiB
C++
877 lines
31 KiB
C++
/*
|
|
* Copyright 2017 ARM Ltd.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "SkDistanceFieldGen.h"
|
|
#include "GrDistanceFieldGenFromVector.h"
|
|
|
|
#include "GrConfig.h"
|
|
#include "GrPathUtils.h"
|
|
#include "SkAutoMalloc.h"
|
|
#include "SkGeometry.h"
|
|
#include "SkMatrix.h"
|
|
#include "SkPathOps.h"
|
|
#include "SkPointPriv.h"
|
|
#include "SkRectPriv.h"
|
|
|
|
/**
|
|
* If a scanline (a row of texel) cross from the kRight_SegSide
|
|
* of a segment to the kLeft_SegSide, the winding score should
|
|
* add 1.
|
|
* And winding score should subtract 1 if the scanline cross
|
|
* from kLeft_SegSide to kRight_SegSide.
|
|
* Always return kNA_SegSide if the scanline does not cross over
|
|
* the segment. Winding score should be zero in this case.
|
|
* You can get the winding number for each texel of the scanline
|
|
* by adding the winding score from left to right.
|
|
* Assuming we always start from outside, so the winding number
|
|
* should always start from zero.
|
|
* ________ ________
|
|
* | | | |
|
|
* ...R|L......L|R.....L|R......R|L..... <= Scanline & side of segment
|
|
* |+1 |-1 |-1 |+1 <= Winding score
|
|
* 0 | 1 ^ 0 ^ -1 |0 <= Winding number
|
|
* |________| |________|
|
|
*
|
|
* .......NA................NA..........
|
|
* 0 0
|
|
*/
|
|
enum SegSide {
|
|
kLeft_SegSide = -1,
|
|
kOn_SegSide = 0,
|
|
kRight_SegSide = 1,
|
|
kNA_SegSide = 2,
|
|
};
|
|
|
|
struct DFData {
|
|
float fDistSq; // distance squared to nearest (so far) edge
|
|
int fDeltaWindingScore; // +1 or -1 whenever a scanline cross over a segment
|
|
};
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
/*
|
|
* Type definition for double precision DPoint and DAffineMatrix
|
|
*/
|
|
|
|
// Point with double precision
|
|
struct DPoint {
|
|
double fX, fY;
|
|
|
|
static DPoint Make(double x, double y) {
|
|
DPoint pt;
|
|
pt.set(x, y);
|
|
return pt;
|
|
}
|
|
|
|
double x() const { return fX; }
|
|
double y() const { return fY; }
|
|
|
|
void set(double x, double y) { fX = x; fY = y; }
|
|
|
|
/** Returns the euclidian distance from (0,0) to (x,y)
|
|
*/
|
|
static double Length(double x, double y) {
|
|
return sqrt(x * x + y * y);
|
|
}
|
|
|
|
/** Returns the euclidian distance between a and b
|
|
*/
|
|
static double Distance(const DPoint& a, const DPoint& b) {
|
|
return Length(a.fX - b.fX, a.fY - b.fY);
|
|
}
|
|
|
|
double distanceToSqd(const DPoint& pt) const {
|
|
double dx = fX - pt.fX;
|
|
double dy = fY - pt.fY;
|
|
return dx * dx + dy * dy;
|
|
}
|
|
};
|
|
|
|
// Matrix with double precision for affine transformation.
|
|
// We don't store row 3 because its always (0, 0, 1).
|
|
class DAffineMatrix {
|
|
public:
|
|
double operator[](int index) const {
|
|
SkASSERT((unsigned)index < 6);
|
|
return fMat[index];
|
|
}
|
|
|
|
double& operator[](int index) {
|
|
SkASSERT((unsigned)index < 6);
|
|
return fMat[index];
|
|
}
|
|
|
|
void setAffine(double m11, double m12, double m13,
|
|
double m21, double m22, double m23) {
|
|
fMat[0] = m11;
|
|
fMat[1] = m12;
|
|
fMat[2] = m13;
|
|
fMat[3] = m21;
|
|
fMat[4] = m22;
|
|
fMat[5] = m23;
|
|
}
|
|
|
|
/** Set the matrix to identity
|
|
*/
|
|
void reset() {
|
|
fMat[0] = fMat[4] = 1.0;
|
|
fMat[1] = fMat[3] =
|
|
fMat[2] = fMat[5] = 0.0;
|
|
}
|
|
|
|
// alias for reset()
|
|
void setIdentity() { this->reset(); }
|
|
|
|
DPoint mapPoint(const SkPoint& src) const {
|
|
DPoint pt = DPoint::Make(src.x(), src.y());
|
|
return this->mapPoint(pt);
|
|
}
|
|
|
|
DPoint mapPoint(const DPoint& src) const {
|
|
return DPoint::Make(fMat[0] * src.x() + fMat[1] * src.y() + fMat[2],
|
|
fMat[3] * src.x() + fMat[4] * src.y() + fMat[5]);
|
|
}
|
|
private:
|
|
double fMat[6];
|
|
};
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
static const double kClose = (SK_Scalar1 / 16.0);
|
|
static const double kCloseSqd = kClose * kClose;
|
|
static const double kNearlyZero = (SK_Scalar1 / (1 << 18));
|
|
static const double kTangentTolerance = (SK_Scalar1 / (1 << 11));
|
|
static const float kConicTolerance = 0.25f;
|
|
|
|
static inline bool between_closed_open(double a, double b, double c,
|
|
double tolerance = 0.0,
|
|
bool xformToleranceToX = false) {
|
|
SkASSERT(tolerance >= 0.0);
|
|
double tolB = tolerance;
|
|
double tolC = tolerance;
|
|
|
|
if (xformToleranceToX) {
|
|
// Canonical space is y = x^2 and the derivative of x^2 is 2x.
|
|
// So the slope of the tangent line at point (x, x^2) is 2x.
|
|
//
|
|
// /|
|
|
// sqrt(2x * 2x + 1 * 1) / | 2x
|
|
// /__|
|
|
// 1
|
|
tolB = tolerance / sqrt(4.0 * b * b + 1.0);
|
|
tolC = tolerance / sqrt(4.0 * c * c + 1.0);
|
|
}
|
|
return b < c ? (a >= b - tolB && a < c - tolC) :
|
|
(a >= c - tolC && a < b - tolB);
|
|
}
|
|
|
|
static inline bool between_closed(double a, double b, double c,
|
|
double tolerance = 0.0,
|
|
bool xformToleranceToX = false) {
|
|
SkASSERT(tolerance >= 0.0);
|
|
double tolB = tolerance;
|
|
double tolC = tolerance;
|
|
|
|
if (xformToleranceToX) {
|
|
tolB = tolerance / sqrt(4.0 * b * b + 1.0);
|
|
tolC = tolerance / sqrt(4.0 * c * c + 1.0);
|
|
}
|
|
return b < c ? (a >= b - tolB && a <= c + tolC) :
|
|
(a >= c - tolC && a <= b + tolB);
|
|
}
|
|
|
|
static inline bool nearly_zero(double x, double tolerance = kNearlyZero) {
|
|
SkASSERT(tolerance >= 0.0);
|
|
return fabs(x) <= tolerance;
|
|
}
|
|
|
|
static inline bool nearly_equal(double x, double y,
|
|
double tolerance = kNearlyZero,
|
|
bool xformToleranceToX = false) {
|
|
SkASSERT(tolerance >= 0.0);
|
|
if (xformToleranceToX) {
|
|
tolerance = tolerance / sqrt(4.0 * y * y + 1.0);
|
|
}
|
|
return fabs(x - y) <= tolerance;
|
|
}
|
|
|
|
static inline double sign_of(const double &val) {
|
|
return (val < 0.0) ? -1.0 : 1.0;
|
|
}
|
|
|
|
static bool is_colinear(const SkPoint pts[3]) {
|
|
return nearly_zero((pts[1].y() - pts[0].y()) * (pts[1].x() - pts[2].x()) -
|
|
(pts[1].y() - pts[2].y()) * (pts[1].x() - pts[0].x()), kCloseSqd);
|
|
}
|
|
|
|
class PathSegment {
|
|
public:
|
|
enum {
|
|
// These enum values are assumed in member functions below.
|
|
kLine = 0,
|
|
kQuad = 1,
|
|
} fType;
|
|
|
|
// line uses 2 pts, quad uses 3 pts
|
|
SkPoint fPts[3];
|
|
|
|
DPoint fP0T, fP2T;
|
|
DAffineMatrix fXformMatrix;
|
|
double fScalingFactor;
|
|
double fScalingFactorSqd;
|
|
double fNearlyZeroScaled;
|
|
double fTangentTolScaledSqd;
|
|
SkRect fBoundingBox;
|
|
|
|
void init();
|
|
|
|
int countPoints() {
|
|
GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
|
|
return fType + 2;
|
|
}
|
|
|
|
const SkPoint& endPt() const {
|
|
GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
|
|
return fPts[fType + 1];
|
|
}
|
|
};
|
|
|
|
typedef SkTArray<PathSegment, true> PathSegmentArray;
|
|
|
|
void PathSegment::init() {
|
|
const DPoint p0 = DPoint::Make(fPts[0].x(), fPts[0].y());
|
|
const DPoint p2 = DPoint::Make(this->endPt().x(), this->endPt().y());
|
|
const double p0x = p0.x();
|
|
const double p0y = p0.y();
|
|
const double p2x = p2.x();
|
|
const double p2y = p2.y();
|
|
|
|
fBoundingBox.set(fPts[0], this->endPt());
|
|
|
|
if (fType == PathSegment::kLine) {
|
|
fScalingFactorSqd = fScalingFactor = 1.0;
|
|
double hypotenuse = DPoint::Distance(p0, p2);
|
|
|
|
const double cosTheta = (p2x - p0x) / hypotenuse;
|
|
const double sinTheta = (p2y - p0y) / hypotenuse;
|
|
|
|
fXformMatrix.setAffine(
|
|
cosTheta, sinTheta, -(cosTheta * p0x) - (sinTheta * p0y),
|
|
-sinTheta, cosTheta, (sinTheta * p0x) - (cosTheta * p0y)
|
|
);
|
|
} else {
|
|
SkASSERT(fType == PathSegment::kQuad);
|
|
|
|
// Calculate bounding box
|
|
const SkPoint _P1mP0 = fPts[1] - fPts[0];
|
|
SkPoint t = _P1mP0 - fPts[2] + fPts[1];
|
|
t.fX = _P1mP0.x() / t.x();
|
|
t.fY = _P1mP0.y() / t.y();
|
|
t.fX = SkScalarClampMax(t.x(), 1.0);
|
|
t.fY = SkScalarClampMax(t.y(), 1.0);
|
|
t.fX = _P1mP0.x() * t.x();
|
|
t.fY = _P1mP0.y() * t.y();
|
|
const SkPoint m = fPts[0] + t;
|
|
SkRectPriv::GrowToInclude(&fBoundingBox, m);
|
|
|
|
const double p1x = fPts[1].x();
|
|
const double p1y = fPts[1].y();
|
|
|
|
const double p0xSqd = p0x * p0x;
|
|
const double p0ySqd = p0y * p0y;
|
|
const double p2xSqd = p2x * p2x;
|
|
const double p2ySqd = p2y * p2y;
|
|
const double p1xSqd = p1x * p1x;
|
|
const double p1ySqd = p1y * p1y;
|
|
|
|
const double p01xProd = p0x * p1x;
|
|
const double p02xProd = p0x * p2x;
|
|
const double b12xProd = p1x * p2x;
|
|
const double p01yProd = p0y * p1y;
|
|
const double p02yProd = p0y * p2y;
|
|
const double b12yProd = p1y * p2y;
|
|
|
|
const double sqrtA = p0y - (2.0 * p1y) + p2y;
|
|
const double a = sqrtA * sqrtA;
|
|
const double h = -1.0 * (p0y - (2.0 * p1y) + p2y) * (p0x - (2.0 * p1x) + p2x);
|
|
const double sqrtB = p0x - (2.0 * p1x) + p2x;
|
|
const double b = sqrtB * sqrtB;
|
|
const double c = (p0xSqd * p2ySqd) - (4.0 * p01xProd * b12yProd)
|
|
- (2.0 * p02xProd * p02yProd) + (4.0 * p02xProd * p1ySqd)
|
|
+ (4.0 * p1xSqd * p02yProd) - (4.0 * b12xProd * p01yProd)
|
|
+ (p2xSqd * p0ySqd);
|
|
const double g = (p0x * p02yProd) - (2.0 * p0x * p1ySqd)
|
|
+ (2.0 * p0x * b12yProd) - (p0x * p2ySqd)
|
|
+ (2.0 * p1x * p01yProd) - (4.0 * p1x * p02yProd)
|
|
+ (2.0 * p1x * b12yProd) - (p2x * p0ySqd)
|
|
+ (2.0 * p2x * p01yProd) + (p2x * p02yProd)
|
|
- (2.0 * p2x * p1ySqd);
|
|
const double f = -((p0xSqd * p2y) - (2.0 * p01xProd * p1y)
|
|
- (2.0 * p01xProd * p2y) - (p02xProd * p0y)
|
|
+ (4.0 * p02xProd * p1y) - (p02xProd * p2y)
|
|
+ (2.0 * p1xSqd * p0y) + (2.0 * p1xSqd * p2y)
|
|
- (2.0 * b12xProd * p0y) - (2.0 * b12xProd * p1y)
|
|
+ (p2xSqd * p0y));
|
|
|
|
const double cosTheta = sqrt(a / (a + b));
|
|
const double sinTheta = -1.0 * sign_of((a + b) * h) * sqrt(b / (a + b));
|
|
|
|
const double gDef = cosTheta * g - sinTheta * f;
|
|
const double fDef = sinTheta * g + cosTheta * f;
|
|
|
|
|
|
const double x0 = gDef / (a + b);
|
|
const double y0 = (1.0 / (2.0 * fDef)) * (c - (gDef * gDef / (a + b)));
|
|
|
|
|
|
const double lambda = -1.0 * ((a + b) / (2.0 * fDef));
|
|
fScalingFactor = fabs(1.0 / lambda);
|
|
fScalingFactorSqd = fScalingFactor * fScalingFactor;
|
|
|
|
const double lambda_cosTheta = lambda * cosTheta;
|
|
const double lambda_sinTheta = lambda * sinTheta;
|
|
|
|
fXformMatrix.setAffine(
|
|
lambda_cosTheta, -lambda_sinTheta, lambda * x0,
|
|
lambda_sinTheta, lambda_cosTheta, lambda * y0
|
|
);
|
|
}
|
|
|
|
fNearlyZeroScaled = kNearlyZero / fScalingFactor;
|
|
fTangentTolScaledSqd = kTangentTolerance * kTangentTolerance / fScalingFactorSqd;
|
|
|
|
fP0T = fXformMatrix.mapPoint(p0);
|
|
fP2T = fXformMatrix.mapPoint(p2);
|
|
}
|
|
|
|
static void init_distances(DFData* data, int size) {
|
|
DFData* currData = data;
|
|
|
|
for (int i = 0; i < size; ++i) {
|
|
// init distance to "far away"
|
|
currData->fDistSq = SK_DistanceFieldMagnitude * SK_DistanceFieldMagnitude;
|
|
currData->fDeltaWindingScore = 0;
|
|
++currData;
|
|
}
|
|
}
|
|
|
|
static inline void add_line_to_segment(const SkPoint pts[2],
|
|
PathSegmentArray* segments) {
|
|
segments->push_back();
|
|
segments->back().fType = PathSegment::kLine;
|
|
segments->back().fPts[0] = pts[0];
|
|
segments->back().fPts[1] = pts[1];
|
|
|
|
segments->back().init();
|
|
}
|
|
|
|
static inline void add_quad_segment(const SkPoint pts[3],
|
|
PathSegmentArray* segments) {
|
|
if (SkPointPriv::DistanceToSqd(pts[0], pts[1]) < kCloseSqd ||
|
|
SkPointPriv::DistanceToSqd(pts[1], pts[2]) < kCloseSqd ||
|
|
is_colinear(pts)) {
|
|
if (pts[0] != pts[2]) {
|
|
SkPoint line_pts[2];
|
|
line_pts[0] = pts[0];
|
|
line_pts[1] = pts[2];
|
|
add_line_to_segment(line_pts, segments);
|
|
}
|
|
} else {
|
|
segments->push_back();
|
|
segments->back().fType = PathSegment::kQuad;
|
|
segments->back().fPts[0] = pts[0];
|
|
segments->back().fPts[1] = pts[1];
|
|
segments->back().fPts[2] = pts[2];
|
|
|
|
segments->back().init();
|
|
}
|
|
}
|
|
|
|
static inline void add_cubic_segments(const SkPoint pts[4],
|
|
PathSegmentArray* segments) {
|
|
SkSTArray<15, SkPoint, true> quads;
|
|
GrPathUtils::convertCubicToQuads(pts, SK_Scalar1, &quads);
|
|
int count = quads.count();
|
|
for (int q = 0; q < count; q += 3) {
|
|
add_quad_segment(&quads[q], segments);
|
|
}
|
|
}
|
|
|
|
static float calculate_nearest_point_for_quad(
|
|
const PathSegment& segment,
|
|
const DPoint &xFormPt) {
|
|
static const float kThird = 0.33333333333f;
|
|
static const float kTwentySeventh = 0.037037037f;
|
|
|
|
const float a = 0.5f - (float)xFormPt.y();
|
|
const float b = -0.5f * (float)xFormPt.x();
|
|
|
|
const float a3 = a * a * a;
|
|
const float b2 = b * b;
|
|
|
|
const float c = (b2 * 0.25f) + (a3 * kTwentySeventh);
|
|
|
|
if (c >= 0.f) {
|
|
const float sqrtC = sqrt(c);
|
|
const float result = (float)cbrt((-b * 0.5f) + sqrtC) + (float)cbrt((-b * 0.5f) - sqrtC);
|
|
return result;
|
|
} else {
|
|
const float cosPhi = (float)sqrt((b2 * 0.25f) * (-27.f / a3)) * ((b > 0) ? -1.f : 1.f);
|
|
const float phi = (float)acos(cosPhi);
|
|
float result;
|
|
if (xFormPt.x() > 0.f) {
|
|
result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThird);
|
|
if (!between_closed(result, segment.fP0T.x(), segment.fP2T.x())) {
|
|
result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThird) + (SK_ScalarPI * 2.f * kThird));
|
|
}
|
|
} else {
|
|
result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThird) + (SK_ScalarPI * 2.f * kThird));
|
|
if (!between_closed(result, segment.fP0T.x(), segment.fP2T.x())) {
|
|
result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThird);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
}
|
|
|
|
// This structure contains some intermediate values shared by the same row.
|
|
// It is used to calculate segment side of a quadratic bezier.
|
|
struct RowData {
|
|
// The intersection type of a scanline and y = x * x parabola in canonical space.
|
|
enum IntersectionType {
|
|
kNoIntersection,
|
|
kVerticalLine,
|
|
kTangentLine,
|
|
kTwoPointsIntersect
|
|
} fIntersectionType;
|
|
|
|
// The direction of the quadratic segment/scanline in the canonical space.
|
|
// 1: The quadratic segment/scanline going from negative x-axis to positive x-axis.
|
|
// 0: The scanline is a vertical line in the canonical space.
|
|
// -1: The quadratic segment/scanline going from positive x-axis to negative x-axis.
|
|
int fQuadXDirection;
|
|
int fScanlineXDirection;
|
|
|
|
// The y-value(equal to x*x) of intersection point for the kVerticalLine intersection type.
|
|
double fYAtIntersection;
|
|
|
|
// The x-value for two intersection points.
|
|
double fXAtIntersection1;
|
|
double fXAtIntersection2;
|
|
};
|
|
|
|
void precomputation_for_row(
|
|
RowData *rowData,
|
|
const PathSegment& segment,
|
|
const SkPoint& pointLeft,
|
|
const SkPoint& pointRight
|
|
) {
|
|
if (segment.fType != PathSegment::kQuad) {
|
|
return;
|
|
}
|
|
|
|
const DPoint& xFormPtLeft = segment.fXformMatrix.mapPoint(pointLeft);
|
|
const DPoint& xFormPtRight = segment.fXformMatrix.mapPoint(pointRight);;
|
|
|
|
rowData->fQuadXDirection = (int)sign_of(segment.fP2T.x() - segment.fP0T.x());
|
|
rowData->fScanlineXDirection = (int)sign_of(xFormPtRight.x() - xFormPtLeft.x());
|
|
|
|
const double x1 = xFormPtLeft.x();
|
|
const double y1 = xFormPtLeft.y();
|
|
const double x2 = xFormPtRight.x();
|
|
const double y2 = xFormPtRight.y();
|
|
|
|
if (nearly_equal(x1, x2, segment.fNearlyZeroScaled, true)) {
|
|
rowData->fIntersectionType = RowData::kVerticalLine;
|
|
rowData->fYAtIntersection = x1 * x1;
|
|
rowData->fScanlineXDirection = 0;
|
|
return;
|
|
}
|
|
|
|
// Line y = mx + b
|
|
const double m = (y2 - y1) / (x2 - x1);
|
|
const double b = -m * x1 + y1;
|
|
|
|
const double m2 = m * m;
|
|
const double c = m2 + 4.0 * b;
|
|
|
|
const double tol = 4.0 * segment.fTangentTolScaledSqd / (m2 + 1.0);
|
|
|
|
// Check if the scanline is the tangent line of the curve,
|
|
// and the curve start or end at the same y-coordinate of the scanline
|
|
if ((rowData->fScanlineXDirection == 1 &&
|
|
(segment.fPts[0].y() == pointLeft.y() ||
|
|
segment.fPts[2].y() == pointLeft.y())) &&
|
|
nearly_zero(c, tol)) {
|
|
rowData->fIntersectionType = RowData::kTangentLine;
|
|
rowData->fXAtIntersection1 = m / 2.0;
|
|
rowData->fXAtIntersection2 = m / 2.0;
|
|
} else if (c <= 0.0) {
|
|
rowData->fIntersectionType = RowData::kNoIntersection;
|
|
return;
|
|
} else {
|
|
rowData->fIntersectionType = RowData::kTwoPointsIntersect;
|
|
const double d = sqrt(c);
|
|
rowData->fXAtIntersection1 = (m + d) / 2.0;
|
|
rowData->fXAtIntersection2 = (m - d) / 2.0;
|
|
}
|
|
}
|
|
|
|
SegSide calculate_side_of_quad(
|
|
const PathSegment& segment,
|
|
const SkPoint& point,
|
|
const DPoint& xFormPt,
|
|
const RowData& rowData) {
|
|
SegSide side = kNA_SegSide;
|
|
|
|
if (RowData::kVerticalLine == rowData.fIntersectionType) {
|
|
side = (SegSide)(int)(sign_of(xFormPt.y() - rowData.fYAtIntersection) * rowData.fQuadXDirection);
|
|
}
|
|
else if (RowData::kTwoPointsIntersect == rowData.fIntersectionType) {
|
|
const double p1 = rowData.fXAtIntersection1;
|
|
const double p2 = rowData.fXAtIntersection2;
|
|
|
|
int signP1 = (int)sign_of(p1 - xFormPt.x());
|
|
bool includeP1 = true;
|
|
bool includeP2 = true;
|
|
|
|
if (rowData.fScanlineXDirection == 1) {
|
|
if ((rowData.fQuadXDirection == -1 && segment.fPts[0].y() <= point.y() &&
|
|
nearly_equal(segment.fP0T.x(), p1, segment.fNearlyZeroScaled, true)) ||
|
|
(rowData.fQuadXDirection == 1 && segment.fPts[2].y() <= point.y() &&
|
|
nearly_equal(segment.fP2T.x(), p1, segment.fNearlyZeroScaled, true))) {
|
|
includeP1 = false;
|
|
}
|
|
if ((rowData.fQuadXDirection == -1 && segment.fPts[2].y() <= point.y() &&
|
|
nearly_equal(segment.fP2T.x(), p2, segment.fNearlyZeroScaled, true)) ||
|
|
(rowData.fQuadXDirection == 1 && segment.fPts[0].y() <= point.y() &&
|
|
nearly_equal(segment.fP0T.x(), p2, segment.fNearlyZeroScaled, true))) {
|
|
includeP2 = false;
|
|
}
|
|
}
|
|
|
|
if (includeP1 && between_closed(p1, segment.fP0T.x(), segment.fP2T.x(),
|
|
segment.fNearlyZeroScaled, true)) {
|
|
side = (SegSide)(signP1 * rowData.fQuadXDirection);
|
|
}
|
|
if (includeP2 && between_closed(p2, segment.fP0T.x(), segment.fP2T.x(),
|
|
segment.fNearlyZeroScaled, true)) {
|
|
int signP2 = (int)sign_of(p2 - xFormPt.x());
|
|
if (side == kNA_SegSide || signP2 == 1) {
|
|
side = (SegSide)(-signP2 * rowData.fQuadXDirection);
|
|
}
|
|
}
|
|
} else if (RowData::kTangentLine == rowData.fIntersectionType) {
|
|
// The scanline is the tangent line of current quadratic segment.
|
|
|
|
const double p = rowData.fXAtIntersection1;
|
|
int signP = (int)sign_of(p - xFormPt.x());
|
|
if (rowData.fScanlineXDirection == 1) {
|
|
// The path start or end at the tangent point.
|
|
if (segment.fPts[0].y() == point.y()) {
|
|
side = (SegSide)(signP);
|
|
} else if (segment.fPts[2].y() == point.y()) {
|
|
side = (SegSide)(-signP);
|
|
}
|
|
}
|
|
}
|
|
|
|
return side;
|
|
}
|
|
|
|
static float distance_to_segment(const SkPoint& point,
|
|
const PathSegment& segment,
|
|
const RowData& rowData,
|
|
SegSide* side) {
|
|
SkASSERT(side);
|
|
|
|
const DPoint xformPt = segment.fXformMatrix.mapPoint(point);
|
|
|
|
if (segment.fType == PathSegment::kLine) {
|
|
float result = SK_DistanceFieldPad * SK_DistanceFieldPad;
|
|
|
|
if (between_closed(xformPt.x(), segment.fP0T.x(), segment.fP2T.x())) {
|
|
result = (float)(xformPt.y() * xformPt.y());
|
|
} else if (xformPt.x() < segment.fP0T.x()) {
|
|
result = (float)(xformPt.x() * xformPt.x() + xformPt.y() * xformPt.y());
|
|
} else {
|
|
result = (float)((xformPt.x() - segment.fP2T.x()) * (xformPt.x() - segment.fP2T.x())
|
|
+ xformPt.y() * xformPt.y());
|
|
}
|
|
|
|
if (between_closed_open(point.y(), segment.fBoundingBox.top(),
|
|
segment.fBoundingBox.bottom())) {
|
|
*side = (SegSide)(int)sign_of(xformPt.y());
|
|
} else {
|
|
*side = kNA_SegSide;
|
|
}
|
|
return result;
|
|
} else {
|
|
SkASSERT(segment.fType == PathSegment::kQuad);
|
|
|
|
const float nearestPoint = calculate_nearest_point_for_quad(segment, xformPt);
|
|
|
|
float dist;
|
|
|
|
if (between_closed(nearestPoint, segment.fP0T.x(), segment.fP2T.x())) {
|
|
DPoint x = DPoint::Make(nearestPoint, nearestPoint * nearestPoint);
|
|
dist = (float)xformPt.distanceToSqd(x);
|
|
} else {
|
|
const float distToB0T = (float)xformPt.distanceToSqd(segment.fP0T);
|
|
const float distToB2T = (float)xformPt.distanceToSqd(segment.fP2T);
|
|
|
|
if (distToB0T < distToB2T) {
|
|
dist = distToB0T;
|
|
} else {
|
|
dist = distToB2T;
|
|
}
|
|
}
|
|
|
|
if (between_closed_open(point.y(), segment.fBoundingBox.top(),
|
|
segment.fBoundingBox.bottom())) {
|
|
*side = calculate_side_of_quad(segment, point, xformPt, rowData);
|
|
} else {
|
|
*side = kNA_SegSide;
|
|
}
|
|
|
|
return (float)(dist * segment.fScalingFactorSqd);
|
|
}
|
|
}
|
|
|
|
static void calculate_distance_field_data(PathSegmentArray* segments,
|
|
DFData* dataPtr,
|
|
int width, int height) {
|
|
int count = segments->count();
|
|
for (int a = 0; a < count; ++a) {
|
|
PathSegment& segment = (*segments)[a];
|
|
const SkRect& segBB = segment.fBoundingBox.makeOutset(
|
|
SK_DistanceFieldPad, SK_DistanceFieldPad);
|
|
int startColumn = (int)segBB.left();
|
|
int endColumn = SkScalarCeilToInt(segBB.right());
|
|
|
|
int startRow = (int)segBB.top();
|
|
int endRow = SkScalarCeilToInt(segBB.bottom());
|
|
|
|
SkASSERT((startColumn >= 0) && "StartColumn < 0!");
|
|
SkASSERT((endColumn <= width) && "endColumn > width!");
|
|
SkASSERT((startRow >= 0) && "StartRow < 0!");
|
|
SkASSERT((endRow <= height) && "EndRow > height!");
|
|
|
|
// Clip inside the distance field to avoid overflow
|
|
startColumn = SkTMax(startColumn, 0);
|
|
endColumn = SkTMin(endColumn, width);
|
|
startRow = SkTMax(startRow, 0);
|
|
endRow = SkTMin(endRow, height);
|
|
|
|
for (int row = startRow; row < endRow; ++row) {
|
|
SegSide prevSide = kNA_SegSide;
|
|
const float pY = row + 0.5f;
|
|
RowData rowData;
|
|
|
|
const SkPoint pointLeft = SkPoint::Make((SkScalar)startColumn, pY);
|
|
const SkPoint pointRight = SkPoint::Make((SkScalar)endColumn, pY);
|
|
|
|
if (between_closed_open(pY, segment.fBoundingBox.top(),
|
|
segment.fBoundingBox.bottom())) {
|
|
precomputation_for_row(&rowData, segment, pointLeft, pointRight);
|
|
}
|
|
|
|
for (int col = startColumn; col < endColumn; ++col) {
|
|
int idx = (row * width) + col;
|
|
|
|
const float pX = col + 0.5f;
|
|
const SkPoint point = SkPoint::Make(pX, pY);
|
|
|
|
const float distSq = dataPtr[idx].fDistSq;
|
|
int dilation = distSq < 1.5 * 1.5 ? 1 :
|
|
distSq < 2.5 * 2.5 ? 2 :
|
|
distSq < 3.5 * 3.5 ? 3 : SK_DistanceFieldPad;
|
|
if (dilation > SK_DistanceFieldPad) {
|
|
dilation = SK_DistanceFieldPad;
|
|
}
|
|
|
|
// Optimisation for not calculating some points.
|
|
if (dilation != SK_DistanceFieldPad && !segment.fBoundingBox.roundOut()
|
|
.makeOutset(dilation, dilation).contains(col, row)) {
|
|
continue;
|
|
}
|
|
|
|
SegSide side = kNA_SegSide;
|
|
int deltaWindingScore = 0;
|
|
float currDistSq = distance_to_segment(point, segment, rowData, &side);
|
|
if (prevSide == kLeft_SegSide && side == kRight_SegSide) {
|
|
deltaWindingScore = -1;
|
|
} else if (prevSide == kRight_SegSide && side == kLeft_SegSide) {
|
|
deltaWindingScore = 1;
|
|
}
|
|
|
|
prevSide = side;
|
|
|
|
if (currDistSq < distSq) {
|
|
dataPtr[idx].fDistSq = currDistSq;
|
|
}
|
|
|
|
dataPtr[idx].fDeltaWindingScore += deltaWindingScore;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <int distanceMagnitude>
|
|
static unsigned char pack_distance_field_val(float dist) {
|
|
// The distance field is constructed as unsigned char values, so that the zero value is at 128,
|
|
// Beside 128, we have 128 values in range [0, 128), but only 127 values in range (128, 255].
|
|
// So we multiply distanceMagnitude by 127/128 at the latter range to avoid overflow.
|
|
dist = SkScalarPin(-dist, -distanceMagnitude, distanceMagnitude * 127.0f / 128.0f);
|
|
|
|
// Scale into the positive range for unsigned distance.
|
|
dist += distanceMagnitude;
|
|
|
|
// Scale into unsigned char range.
|
|
// Round to place negative and positive values as equally as possible around 128
|
|
// (which represents zero).
|
|
return (unsigned char)SkScalarRoundToInt(dist / (2 * distanceMagnitude) * 256.0f);
|
|
}
|
|
|
|
bool GrGenerateDistanceFieldFromPath(unsigned char* distanceField,
|
|
const SkPath& path, const SkMatrix& drawMatrix,
|
|
int width, int height, size_t rowBytes) {
|
|
SkASSERT(distanceField);
|
|
|
|
SkDEBUGCODE(SkPath xformPath;);
|
|
SkDEBUGCODE(path.transform(drawMatrix, &xformPath));
|
|
SkDEBUGCODE(SkIRect pathBounds = xformPath.getBounds().roundOut());
|
|
SkDEBUGCODE(SkIRect expectPathBounds = SkIRect::MakeWH(width - 2 * SK_DistanceFieldPad,
|
|
height - 2 * SK_DistanceFieldPad));
|
|
SkASSERT(expectPathBounds.isEmpty() ||
|
|
expectPathBounds.contains(pathBounds.x(), pathBounds.y()));
|
|
SkASSERT(expectPathBounds.isEmpty() || pathBounds.isEmpty() ||
|
|
expectPathBounds.contains(pathBounds));
|
|
|
|
SkPath simplifiedPath;
|
|
SkPath workingPath;
|
|
if (Simplify(path, &simplifiedPath)) {
|
|
workingPath = simplifiedPath;
|
|
} else {
|
|
workingPath = path;
|
|
}
|
|
|
|
if (!IsDistanceFieldSupportedFillType(workingPath.getFillType())) {
|
|
return false;
|
|
}
|
|
|
|
workingPath.transform(drawMatrix);
|
|
|
|
SkDEBUGCODE(pathBounds = workingPath.getBounds().roundOut());
|
|
SkASSERT(expectPathBounds.isEmpty() ||
|
|
expectPathBounds.contains(pathBounds.x(), pathBounds.y()));
|
|
SkASSERT(expectPathBounds.isEmpty() || pathBounds.isEmpty() ||
|
|
expectPathBounds.contains(pathBounds));
|
|
|
|
// translate path to offset (SK_DistanceFieldPad, SK_DistanceFieldPad)
|
|
SkMatrix dfMatrix;
|
|
dfMatrix.setTranslate(SK_DistanceFieldPad, SK_DistanceFieldPad);
|
|
workingPath.transform(dfMatrix);
|
|
|
|
// create temp data
|
|
size_t dataSize = width * height * sizeof(DFData);
|
|
SkAutoSMalloc<1024> dfStorage(dataSize);
|
|
DFData* dataPtr = (DFData*) dfStorage.get();
|
|
|
|
// create initial distance data
|
|
init_distances(dataPtr, width * height);
|
|
|
|
SkPath::Iter iter(workingPath, true);
|
|
SkSTArray<15, PathSegment, true> segments;
|
|
|
|
for (;;) {
|
|
SkPoint pts[4];
|
|
SkPath::Verb verb = iter.next(pts);
|
|
switch (verb) {
|
|
case SkPath::kMove_Verb:
|
|
break;
|
|
case SkPath::kLine_Verb: {
|
|
add_line_to_segment(pts, &segments);
|
|
break;
|
|
}
|
|
case SkPath::kQuad_Verb:
|
|
add_quad_segment(pts, &segments);
|
|
break;
|
|
case SkPath::kConic_Verb: {
|
|
SkScalar weight = iter.conicWeight();
|
|
SkAutoConicToQuads converter;
|
|
const SkPoint* quadPts = converter.computeQuads(pts, weight, kConicTolerance);
|
|
for (int i = 0; i < converter.countQuads(); ++i) {
|
|
add_quad_segment(quadPts + 2*i, &segments);
|
|
}
|
|
break;
|
|
}
|
|
case SkPath::kCubic_Verb: {
|
|
add_cubic_segments(pts, &segments);
|
|
break;
|
|
};
|
|
default:
|
|
break;
|
|
}
|
|
if (verb == SkPath::kDone_Verb) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
calculate_distance_field_data(&segments, dataPtr, width, height);
|
|
|
|
for (int row = 0; row < height; ++row) {
|
|
int windingNumber = 0; // Winding number start from zero for each scanline
|
|
for (int col = 0; col < width; ++col) {
|
|
int idx = (row * width) + col;
|
|
windingNumber += dataPtr[idx].fDeltaWindingScore;
|
|
|
|
enum DFSign {
|
|
kInside = -1,
|
|
kOutside = 1
|
|
} dfSign;
|
|
|
|
if (workingPath.getFillType() == SkPath::kWinding_FillType) {
|
|
dfSign = windingNumber ? kInside : kOutside;
|
|
} else if (workingPath.getFillType() == SkPath::kInverseWinding_FillType) {
|
|
dfSign = windingNumber ? kOutside : kInside;
|
|
} else if (workingPath.getFillType() == SkPath::kEvenOdd_FillType) {
|
|
dfSign = (windingNumber % 2) ? kInside : kOutside;
|
|
} else {
|
|
SkASSERT(workingPath.getFillType() == SkPath::kInverseEvenOdd_FillType);
|
|
dfSign = (windingNumber % 2) ? kOutside : kInside;
|
|
}
|
|
|
|
// The winding number at the end of a scanline should be zero.
|
|
SkASSERT(((col != width - 1) || (windingNumber == 0)) &&
|
|
"Winding number should be zero at the end of a scan line.");
|
|
// Fallback to use SkPath::contains to determine the sign of pixel in release build.
|
|
if (col == width - 1 && windingNumber != 0) {
|
|
for (int col = 0; col < width; ++col) {
|
|
int idx = (row * width) + col;
|
|
dfSign = workingPath.contains(col + 0.5, row + 0.5) ? kInside : kOutside;
|
|
const float miniDist = sqrt(dataPtr[idx].fDistSq);
|
|
const float dist = dfSign * miniDist;
|
|
|
|
unsigned char pixelVal = pack_distance_field_val<SK_DistanceFieldMagnitude>(dist);
|
|
|
|
distanceField[(row * rowBytes) + col] = pixelVal;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
const float miniDist = sqrt(dataPtr[idx].fDistSq);
|
|
const float dist = dfSign * miniDist;
|
|
|
|
unsigned char pixelVal = pack_distance_field_val<SK_DistanceFieldMagnitude>(dist);
|
|
|
|
distanceField[(row * rowBytes) + col] = pixelVal;
|
|
}
|
|
}
|
|
return true;
|
|
}
|