792c80f5a7
The PDF canvas is now just as threadsafe as any other Skia canvas. DM updated to thread PDF tests. SkDocument_PDF now owns SkPDFCanon, and pointers to that canon are passed around to all classes that need access to the canon. BUG=skia:2683 Review URL: https://codereview.chromium.org/944643002
707 lines
26 KiB
C++
707 lines
26 KiB
C++
/*
|
|
* Copyright 2010 The Android Open Source Project
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "SkPDFImage.h"
|
|
|
|
#include "SkBitmap.h"
|
|
#include "SkColor.h"
|
|
#include "SkColorPriv.h"
|
|
#include "SkData.h"
|
|
#include "SkFlate.h"
|
|
#include "SkPDFBitmap.h"
|
|
#include "SkPDFCatalog.h"
|
|
#include "SkPixelRef.h"
|
|
#include "SkRect.h"
|
|
#include "SkStream.h"
|
|
#include "SkString.h"
|
|
#include "SkUnPreMultiply.h"
|
|
|
|
static size_t get_uncompressed_size(const SkBitmap& bitmap,
|
|
const SkIRect& srcRect) {
|
|
switch (bitmap.colorType()) {
|
|
case kIndex_8_SkColorType:
|
|
return srcRect.width() * srcRect.height();
|
|
case kARGB_4444_SkColorType:
|
|
return ((srcRect.width() * 3 + 1) / 2) * srcRect.height();
|
|
case kRGB_565_SkColorType:
|
|
return srcRect.width() * 3 * srcRect.height();
|
|
case kRGBA_8888_SkColorType:
|
|
case kBGRA_8888_SkColorType:
|
|
return srcRect.width() * 3 * srcRect.height();
|
|
case kAlpha_8_SkColorType:
|
|
return 1;
|
|
default:
|
|
SkASSERT(false);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static SkStream* extract_index8_image(const SkBitmap& bitmap,
|
|
const SkIRect& srcRect) {
|
|
const int rowBytes = srcRect.width();
|
|
SkStream* stream = SkNEW_ARGS(SkMemoryStream,
|
|
(get_uncompressed_size(bitmap, srcRect)));
|
|
uint8_t* dst = (uint8_t*)stream->getMemoryBase();
|
|
|
|
for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
|
|
memcpy(dst, bitmap.getAddr8(srcRect.fLeft, y), rowBytes);
|
|
dst += rowBytes;
|
|
}
|
|
return stream;
|
|
}
|
|
|
|
static SkStream* extract_argb4444_data(const SkBitmap& bitmap,
|
|
const SkIRect& srcRect,
|
|
bool extractAlpha,
|
|
bool* isOpaque,
|
|
bool* isTransparent) {
|
|
SkStream* stream;
|
|
uint8_t* dst = NULL;
|
|
if (extractAlpha) {
|
|
const int alphaRowBytes = (srcRect.width() + 1) / 2;
|
|
stream = SkNEW_ARGS(SkMemoryStream,
|
|
(alphaRowBytes * srcRect.height()));
|
|
} else {
|
|
stream = SkNEW_ARGS(SkMemoryStream,
|
|
(get_uncompressed_size(bitmap, srcRect)));
|
|
}
|
|
dst = (uint8_t*)stream->getMemoryBase();
|
|
|
|
for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
|
|
uint16_t* src = bitmap.getAddr16(0, y);
|
|
int x;
|
|
for (x = srcRect.fLeft; x + 1 < srcRect.fRight; x += 2) {
|
|
if (extractAlpha) {
|
|
dst[0] = (SkGetPackedA4444(src[x]) << 4) |
|
|
SkGetPackedA4444(src[x + 1]);
|
|
*isOpaque &= dst[0] == SK_AlphaOPAQUE;
|
|
*isTransparent &= dst[0] == SK_AlphaTRANSPARENT;
|
|
dst++;
|
|
} else {
|
|
dst[0] = (SkGetPackedR4444(src[x]) << 4) |
|
|
SkGetPackedG4444(src[x]);
|
|
dst[1] = (SkGetPackedB4444(src[x]) << 4) |
|
|
SkGetPackedR4444(src[x + 1]);
|
|
dst[2] = (SkGetPackedG4444(src[x + 1]) << 4) |
|
|
SkGetPackedB4444(src[x + 1]);
|
|
dst += 3;
|
|
}
|
|
}
|
|
if (srcRect.width() & 1) {
|
|
if (extractAlpha) {
|
|
dst[0] = (SkGetPackedA4444(src[x]) << 4);
|
|
*isOpaque &= dst[0] == (SK_AlphaOPAQUE & 0xF0);
|
|
*isTransparent &= dst[0] == (SK_AlphaTRANSPARENT & 0xF0);
|
|
dst++;
|
|
|
|
} else {
|
|
dst[0] = (SkGetPackedR4444(src[x]) << 4) |
|
|
SkGetPackedG4444(src[x]);
|
|
dst[1] = (SkGetPackedB4444(src[x]) << 4);
|
|
dst += 2;
|
|
}
|
|
}
|
|
}
|
|
return stream;
|
|
}
|
|
|
|
static SkStream* extract_rgb565_image(const SkBitmap& bitmap,
|
|
const SkIRect& srcRect) {
|
|
SkStream* stream = SkNEW_ARGS(SkMemoryStream,
|
|
(get_uncompressed_size(bitmap,
|
|
srcRect)));
|
|
uint8_t* dst = (uint8_t*)stream->getMemoryBase();
|
|
for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
|
|
uint16_t* src = bitmap.getAddr16(0, y);
|
|
for (int x = srcRect.fLeft; x < srcRect.fRight; x++) {
|
|
dst[0] = SkGetPackedR16(src[x]);
|
|
dst[1] = SkGetPackedG16(src[x]);
|
|
dst[2] = SkGetPackedB16(src[x]);
|
|
dst += 3;
|
|
}
|
|
}
|
|
return stream;
|
|
}
|
|
|
|
static uint32_t get_argb8888_neighbor_avg_color(const SkBitmap& bitmap,
|
|
int xOrig,
|
|
int yOrig);
|
|
|
|
static SkStream* extract_argb8888_data(const SkBitmap& bitmap,
|
|
const SkIRect& srcRect,
|
|
bool extractAlpha,
|
|
bool* isOpaque,
|
|
bool* isTransparent) {
|
|
size_t streamSize = extractAlpha ? srcRect.width() * srcRect.height()
|
|
: get_uncompressed_size(bitmap, srcRect);
|
|
SkStream* stream = SkNEW_ARGS(SkMemoryStream, (streamSize));
|
|
uint8_t* dst = (uint8_t*)stream->getMemoryBase();
|
|
|
|
const SkUnPreMultiply::Scale* scaleTable = SkUnPreMultiply::GetScaleTable();
|
|
|
|
for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
|
|
uint32_t* src = bitmap.getAddr32(0, y);
|
|
for (int x = srcRect.fLeft; x < srcRect.fRight; x++) {
|
|
SkPMColor c = src[x];
|
|
U8CPU alpha = SkGetPackedA32(c);
|
|
if (extractAlpha) {
|
|
*isOpaque &= alpha == SK_AlphaOPAQUE;
|
|
*isTransparent &= alpha == SK_AlphaTRANSPARENT;
|
|
*dst++ = alpha;
|
|
} else {
|
|
if (SK_AlphaTRANSPARENT == alpha) {
|
|
// It is necessary to average the color component of
|
|
// transparent pixels with their surrounding neighbors
|
|
// since the PDF renderer may separately re-sample the
|
|
// alpha and color channels when the image is not
|
|
// displayed at its native resolution. Since an alpha of
|
|
// zero gives no information about the color component,
|
|
// the pathological case is a white image with sharp
|
|
// transparency bounds - the color channel goes to black,
|
|
// and the should-be-transparent pixels are rendered
|
|
// as grey because of the separate soft mask and color
|
|
// resizing.
|
|
c = get_argb8888_neighbor_avg_color(bitmap, x, y);
|
|
*dst++ = SkGetPackedR32(c);
|
|
*dst++ = SkGetPackedG32(c);
|
|
*dst++ = SkGetPackedB32(c);
|
|
} else {
|
|
SkUnPreMultiply::Scale s = scaleTable[alpha];
|
|
*dst++ = SkUnPreMultiply::ApplyScale(s, SkGetPackedR32(c));
|
|
*dst++ = SkUnPreMultiply::ApplyScale(s, SkGetPackedG32(c));
|
|
*dst++ = SkUnPreMultiply::ApplyScale(s, SkGetPackedB32(c));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
SkASSERT(dst == streamSize + (uint8_t*)stream->getMemoryBase());
|
|
return stream;
|
|
}
|
|
|
|
static SkStream* extract_a8_alpha(const SkBitmap& bitmap,
|
|
const SkIRect& srcRect,
|
|
bool* isOpaque,
|
|
bool* isTransparent) {
|
|
const int alphaRowBytes = srcRect.width();
|
|
SkStream* stream = SkNEW_ARGS(SkMemoryStream,
|
|
(alphaRowBytes * srcRect.height()));
|
|
uint8_t* alphaDst = (uint8_t*)stream->getMemoryBase();
|
|
|
|
for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
|
|
uint8_t* src = bitmap.getAddr8(0, y);
|
|
for (int x = srcRect.fLeft; x < srcRect.fRight; x++) {
|
|
alphaDst[0] = src[x];
|
|
*isOpaque &= alphaDst[0] == SK_AlphaOPAQUE;
|
|
*isTransparent &= alphaDst[0] == SK_AlphaTRANSPARENT;
|
|
alphaDst++;
|
|
}
|
|
}
|
|
return stream;
|
|
}
|
|
|
|
static SkStream* create_black_image() {
|
|
SkStream* stream = SkNEW_ARGS(SkMemoryStream, (1));
|
|
((uint8_t*)stream->getMemoryBase())[0] = 0;
|
|
return stream;
|
|
}
|
|
|
|
/**
|
|
* Extract either the color or image data from a SkBitmap into a SkStream.
|
|
* @param bitmap Bitmap to extract data from.
|
|
* @param srcRect Region in the bitmap to extract.
|
|
* @param extractAlpha Set to true to extract the alpha data or false to
|
|
* extract the color data.
|
|
* @param isTransparent Pointer to a bool to output whether the alpha is
|
|
* completely transparent. May be NULL. Only valid when
|
|
* extractAlpha == true.
|
|
* @return Unencoded image data, or NULL if either data was not
|
|
* available or alpha data was requested but the image was
|
|
* entirely transparent or opaque.
|
|
*/
|
|
static SkStream* extract_image_data(const SkBitmap& bitmap,
|
|
const SkIRect& srcRect,
|
|
bool extractAlpha, bool* isTransparent) {
|
|
SkColorType colorType = bitmap.colorType();
|
|
if (extractAlpha && (kIndex_8_SkColorType == colorType ||
|
|
kRGB_565_SkColorType == colorType)) {
|
|
if (isTransparent != NULL) {
|
|
*isTransparent = false;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
SkAutoLockPixels lock(bitmap);
|
|
if (NULL == bitmap.getPixels()) {
|
|
return NULL;
|
|
}
|
|
|
|
bool isOpaque = true;
|
|
bool transparent = extractAlpha;
|
|
SkAutoTDelete<SkStream> stream;
|
|
|
|
switch (colorType) {
|
|
case kIndex_8_SkColorType:
|
|
if (!extractAlpha) {
|
|
stream.reset(extract_index8_image(bitmap, srcRect));
|
|
}
|
|
break;
|
|
case kARGB_4444_SkColorType:
|
|
stream.reset(extract_argb4444_data(bitmap, srcRect, extractAlpha,
|
|
&isOpaque, &transparent));
|
|
break;
|
|
case kRGB_565_SkColorType:
|
|
if (!extractAlpha) {
|
|
stream.reset(extract_rgb565_image(bitmap, srcRect));
|
|
}
|
|
break;
|
|
case kN32_SkColorType:
|
|
stream.reset(extract_argb8888_data(bitmap, srcRect, extractAlpha,
|
|
&isOpaque, &transparent));
|
|
break;
|
|
case kAlpha_8_SkColorType:
|
|
if (!extractAlpha) {
|
|
stream.reset(create_black_image());
|
|
} else {
|
|
stream.reset(extract_a8_alpha(bitmap, srcRect,
|
|
&isOpaque, &transparent));
|
|
}
|
|
break;
|
|
default:
|
|
SkASSERT(false);
|
|
}
|
|
|
|
if (isTransparent != NULL) {
|
|
*isTransparent = transparent;
|
|
}
|
|
if (extractAlpha && (transparent || isOpaque)) {
|
|
return NULL;
|
|
}
|
|
return stream.detach();
|
|
}
|
|
|
|
static SkPDFArray* make_indexed_color_space(SkColorTable* table) {
|
|
SkPDFArray* result = new SkPDFArray();
|
|
result->reserve(4);
|
|
result->appendName("Indexed");
|
|
result->appendName("DeviceRGB");
|
|
result->appendInt(table->count() - 1);
|
|
|
|
// Potentially, this could be represented in fewer bytes with a stream.
|
|
// Max size as a string is 1.5k.
|
|
SkString index;
|
|
for (int i = 0; i < table->count(); i++) {
|
|
char buf[3];
|
|
SkColor color = SkUnPreMultiply::PMColorToColor((*table)[i]);
|
|
buf[0] = SkGetPackedR32(color);
|
|
buf[1] = SkGetPackedG32(color);
|
|
buf[2] = SkGetPackedB32(color);
|
|
index.append(buf, 3);
|
|
}
|
|
result->append(new SkPDFString(index))->unref();
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Removes the alpha component of an ARGB color (including unpremultiply) while
|
|
* keeping the output in the same format as the input.
|
|
*/
|
|
static uint32_t remove_alpha_argb8888(uint32_t pmColor) {
|
|
SkColor color = SkUnPreMultiply::PMColorToColor(pmColor);
|
|
return SkPackARGB32NoCheck(SK_AlphaOPAQUE,
|
|
SkColorGetR(color),
|
|
SkColorGetG(color),
|
|
SkColorGetB(color));
|
|
}
|
|
|
|
static uint16_t remove_alpha_argb4444(uint16_t pmColor) {
|
|
return SkPixel32ToPixel4444(
|
|
remove_alpha_argb8888(SkPixel4444ToPixel32(pmColor)));
|
|
}
|
|
|
|
static uint32_t get_argb8888_neighbor_avg_color(const SkBitmap& bitmap,
|
|
int xOrig, int yOrig) {
|
|
uint8_t count = 0;
|
|
uint16_t r = 0;
|
|
uint16_t g = 0;
|
|
uint16_t b = 0;
|
|
|
|
for (int y = yOrig - 1; y <= yOrig + 1; y++) {
|
|
if (y < 0 || y >= bitmap.height()) {
|
|
continue;
|
|
}
|
|
uint32_t* src = bitmap.getAddr32(0, y);
|
|
for (int x = xOrig - 1; x <= xOrig + 1; x++) {
|
|
if (x < 0 || x >= bitmap.width()) {
|
|
continue;
|
|
}
|
|
if (SkGetPackedA32(src[x]) != SK_AlphaTRANSPARENT) {
|
|
uint32_t color = remove_alpha_argb8888(src[x]);
|
|
r += SkGetPackedR32(color);
|
|
g += SkGetPackedG32(color);
|
|
b += SkGetPackedB32(color);
|
|
count++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (count == 0) {
|
|
return SkPackARGB32NoCheck(SK_AlphaOPAQUE, 0, 0, 0);
|
|
} else {
|
|
return SkPackARGB32NoCheck(SK_AlphaOPAQUE,
|
|
r / count, g / count, b / count);
|
|
}
|
|
}
|
|
|
|
static uint16_t get_argb4444_neighbor_avg_color(const SkBitmap& bitmap,
|
|
int xOrig, int yOrig) {
|
|
uint8_t count = 0;
|
|
uint8_t r = 0;
|
|
uint8_t g = 0;
|
|
uint8_t b = 0;
|
|
|
|
for (int y = yOrig - 1; y <= yOrig + 1; y++) {
|
|
if (y < 0 || y >= bitmap.height()) {
|
|
continue;
|
|
}
|
|
uint16_t* src = bitmap.getAddr16(0, y);
|
|
for (int x = xOrig - 1; x <= xOrig + 1; x++) {
|
|
if (x < 0 || x >= bitmap.width()) {
|
|
continue;
|
|
}
|
|
if ((SkGetPackedA4444(src[x]) & 0x0F) != SK_AlphaTRANSPARENT) {
|
|
uint16_t color = remove_alpha_argb4444(src[x]);
|
|
r += SkGetPackedR4444(color);
|
|
g += SkGetPackedG4444(color);
|
|
b += SkGetPackedB4444(color);
|
|
count++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (count == 0) {
|
|
return SkPackARGB4444(SK_AlphaOPAQUE & 0x0F, 0, 0, 0);
|
|
} else {
|
|
return SkPackARGB4444(SK_AlphaOPAQUE & 0x0F,
|
|
r / count, g / count, b / count);
|
|
}
|
|
}
|
|
|
|
static SkBitmap unpremultiply_bitmap(const SkBitmap& bitmap,
|
|
const SkIRect& srcRect) {
|
|
SkBitmap outBitmap;
|
|
outBitmap.allocPixels(bitmap.info().makeWH(srcRect.width(), srcRect.height()));
|
|
int dstRow = 0;
|
|
|
|
SkAutoLockPixels outBitmapPixelLock(outBitmap);
|
|
SkAutoLockPixels bitmapPixelLock(bitmap);
|
|
switch (bitmap.colorType()) {
|
|
case kARGB_4444_SkColorType: {
|
|
for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
|
|
uint16_t* dst = outBitmap.getAddr16(0, dstRow);
|
|
uint16_t* src = bitmap.getAddr16(0, y);
|
|
for (int x = srcRect.fLeft; x < srcRect.fRight; x++) {
|
|
uint8_t a = SkGetPackedA4444(src[x]);
|
|
// It is necessary to average the color component of
|
|
// transparent pixels with their surrounding neighbors
|
|
// since the PDF renderer may separately re-sample the
|
|
// alpha and color channels when the image is not
|
|
// displayed at its native resolution. Since an alpha of
|
|
// zero gives no information about the color component,
|
|
// the pathological case is a white image with sharp
|
|
// transparency bounds - the color channel goes to black,
|
|
// and the should-be-transparent pixels are rendered
|
|
// as grey because of the separate soft mask and color
|
|
// resizing.
|
|
if (a == (SK_AlphaTRANSPARENT & 0x0F)) {
|
|
*dst = get_argb4444_neighbor_avg_color(bitmap, x, y);
|
|
} else {
|
|
*dst = remove_alpha_argb4444(src[x]);
|
|
}
|
|
dst++;
|
|
}
|
|
dstRow++;
|
|
}
|
|
break;
|
|
}
|
|
case kN32_SkColorType: {
|
|
for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
|
|
uint32_t* dst = outBitmap.getAddr32(0, dstRow);
|
|
uint32_t* src = bitmap.getAddr32(0, y);
|
|
for (int x = srcRect.fLeft; x < srcRect.fRight; x++) {
|
|
uint8_t a = SkGetPackedA32(src[x]);
|
|
if (a == SK_AlphaTRANSPARENT) {
|
|
*dst = get_argb8888_neighbor_avg_color(bitmap, x, y);
|
|
} else {
|
|
*dst = remove_alpha_argb8888(src[x]);
|
|
}
|
|
dst++;
|
|
}
|
|
dstRow++;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
SkASSERT(false);
|
|
}
|
|
|
|
outBitmap.setImmutable();
|
|
|
|
return outBitmap;
|
|
}
|
|
|
|
// static
|
|
SkPDFImage* SkPDFImage::CreateImage(const SkBitmap& bitmap,
|
|
const SkIRect& srcRect) {
|
|
if (bitmap.colorType() == kUnknown_SkColorType) {
|
|
return NULL;
|
|
}
|
|
|
|
bool isTransparent = false;
|
|
SkAutoTDelete<SkStream> alphaData;
|
|
if (!bitmap.isOpaque()) {
|
|
// Note that isOpaque is not guaranteed to return false for bitmaps
|
|
// with alpha support but a completely opaque alpha channel,
|
|
// so alphaData may still be NULL if we have a completely opaque
|
|
// (or transparent) bitmap.
|
|
alphaData.reset(
|
|
extract_image_data(bitmap, srcRect, true, &isTransparent));
|
|
}
|
|
if (isTransparent) {
|
|
return NULL;
|
|
}
|
|
|
|
SkPDFImage* image;
|
|
SkColorType colorType = bitmap.colorType();
|
|
if (alphaData.get() != NULL && (kN32_SkColorType == colorType ||
|
|
kARGB_4444_SkColorType == colorType)) {
|
|
if (kN32_SkColorType == colorType) {
|
|
image = SkNEW_ARGS(SkPDFImage, (NULL, bitmap, false,
|
|
SkIRect::MakeWH(srcRect.width(),
|
|
srcRect.height())));
|
|
} else {
|
|
SkBitmap unpremulBitmap = unpremultiply_bitmap(bitmap, srcRect);
|
|
image = SkNEW_ARGS(SkPDFImage, (NULL, unpremulBitmap, false,
|
|
SkIRect::MakeWH(srcRect.width(),
|
|
srcRect.height())));
|
|
}
|
|
} else {
|
|
image = SkNEW_ARGS(SkPDFImage, (NULL, bitmap, false, srcRect));
|
|
}
|
|
if (alphaData.get() != NULL) {
|
|
SkAutoTUnref<SkPDFImage> mask(
|
|
SkNEW_ARGS(SkPDFImage, (alphaData.get(), bitmap, true, srcRect)));
|
|
image->insert("SMask", new SkPDFObjRef(mask))->unref();
|
|
}
|
|
return image;
|
|
}
|
|
|
|
SkPDFImage::~SkPDFImage() {}
|
|
|
|
SkPDFImage::SkPDFImage(SkStream* stream,
|
|
const SkBitmap& bitmap,
|
|
bool isAlpha,
|
|
const SkIRect& srcRect)
|
|
: fIsAlpha(isAlpha),
|
|
fSrcRect(srcRect) {
|
|
|
|
if (bitmap.isImmutable()) {
|
|
fBitmap = bitmap;
|
|
} else {
|
|
bitmap.deepCopyTo(&fBitmap);
|
|
fBitmap.setImmutable();
|
|
}
|
|
|
|
if (stream != NULL) {
|
|
this->setData(stream);
|
|
fStreamValid = true;
|
|
} else {
|
|
fStreamValid = false;
|
|
}
|
|
|
|
SkColorType colorType = fBitmap.colorType();
|
|
|
|
insertName("Type", "XObject");
|
|
insertName("Subtype", "Image");
|
|
|
|
bool alphaOnly = (kAlpha_8_SkColorType == colorType);
|
|
|
|
if (!isAlpha && alphaOnly) {
|
|
// For alpha only images, we stretch a single pixel of black for
|
|
// the color/shape part.
|
|
SkAutoTUnref<SkPDFInt> one(new SkPDFInt(1));
|
|
insert("Width", one.get());
|
|
insert("Height", one.get());
|
|
} else {
|
|
insertInt("Width", fSrcRect.width());
|
|
insertInt("Height", fSrcRect.height());
|
|
}
|
|
|
|
if (isAlpha || alphaOnly) {
|
|
insertName("ColorSpace", "DeviceGray");
|
|
} else if (kIndex_8_SkColorType == colorType) {
|
|
SkAutoLockPixels alp(fBitmap);
|
|
insert("ColorSpace",
|
|
make_indexed_color_space(fBitmap.getColorTable()))->unref();
|
|
} else {
|
|
insertName("ColorSpace", "DeviceRGB");
|
|
}
|
|
|
|
int bitsPerComp = 8;
|
|
if (kARGB_4444_SkColorType == colorType) {
|
|
bitsPerComp = 4;
|
|
}
|
|
insertInt("BitsPerComponent", bitsPerComp);
|
|
|
|
if (kRGB_565_SkColorType == colorType) {
|
|
SkASSERT(!isAlpha);
|
|
SkAutoTUnref<SkPDFInt> zeroVal(new SkPDFInt(0));
|
|
SkAutoTUnref<SkPDFScalar> scale5Val(
|
|
new SkPDFScalar(8.2258f)); // 255/2^5-1
|
|
SkAutoTUnref<SkPDFScalar> scale6Val(
|
|
new SkPDFScalar(4.0476f)); // 255/2^6-1
|
|
SkAutoTUnref<SkPDFArray> decodeValue(new SkPDFArray());
|
|
decodeValue->reserve(6);
|
|
decodeValue->append(zeroVal.get());
|
|
decodeValue->append(scale5Val.get());
|
|
decodeValue->append(zeroVal.get());
|
|
decodeValue->append(scale6Val.get());
|
|
decodeValue->append(zeroVal.get());
|
|
decodeValue->append(scale5Val.get());
|
|
insert("Decode", decodeValue.get());
|
|
}
|
|
}
|
|
|
|
SkPDFImage::SkPDFImage(SkPDFImage& pdfImage)
|
|
: SkPDFStream(pdfImage),
|
|
fBitmap(pdfImage.fBitmap),
|
|
fIsAlpha(pdfImage.fIsAlpha),
|
|
fSrcRect(pdfImage.fSrcRect),
|
|
fStreamValid(pdfImage.fStreamValid) {
|
|
// Nothing to do here - the image params are already copied in SkPDFStream's
|
|
// constructor, and the bitmap will be regenerated and encoded in
|
|
// populate.
|
|
}
|
|
|
|
bool SkPDFImage::populate(SkPDFCatalog* catalog) {
|
|
if (getState() == kUnused_State) {
|
|
// Initializing image data for the first time.
|
|
// Fallback method
|
|
if (!fStreamValid) {
|
|
SkAutoTDelete<SkStream> stream(
|
|
extract_image_data(fBitmap, fSrcRect, fIsAlpha, NULL));
|
|
this->setData(stream);
|
|
fStreamValid = true;
|
|
}
|
|
return INHERITED::populate(catalog);
|
|
}
|
|
#ifndef SK_NO_FLATE
|
|
else if (getState() == kNoCompression_State) {
|
|
// Compression has not been requested when the stream was first created,
|
|
// but the new catalog wants it compressed.
|
|
if (!getSubstitute()) {
|
|
SkPDFStream* substitute = SkNEW_ARGS(SkPDFImage, (*this));
|
|
setSubstitute(substitute);
|
|
catalog->setSubstitute(this, substitute);
|
|
}
|
|
return false;
|
|
}
|
|
#endif // SK_NO_FLATE
|
|
return true;
|
|
}
|
|
|
|
#if 0 // reenable when we can figure out the JPEG colorspace
|
|
namespace {
|
|
/**
|
|
* This PDFObject assumes that its constructor was handed
|
|
* Jpeg-encoded data that can be directly embedded into a PDF.
|
|
*/
|
|
class PDFJPEGImage : public SkPDFObject {
|
|
SkAutoTUnref<SkData> fData;
|
|
int fWidth;
|
|
int fHeight;
|
|
public:
|
|
PDFJPEGImage(SkData* data, int width, int height)
|
|
: fData(SkRef(data)), fWidth(width), fHeight(height) {}
|
|
virtual void emitObject(
|
|
SkWStream* stream,
|
|
SkPDFCatalog* catalog, bool indirect) SK_OVERRIDE {
|
|
if (indirect) {
|
|
this->emitIndirectObject(stream, catalog);
|
|
return;
|
|
}
|
|
SkASSERT(fData.get());
|
|
const char kPrefaceFormat[] =
|
|
"<<"
|
|
"/Type /XObject\n"
|
|
"/Subtype /Image\n"
|
|
"/Width %d\n"
|
|
"/Height %d\n"
|
|
"/ColorSpace /DeviceRGB\n" // or DeviceGray
|
|
"/BitsPerComponent 8\n"
|
|
"/Filter /DCTDecode\n"
|
|
"/ColorTransform 0\n"
|
|
"/Length " SK_SIZE_T_SPECIFIER "\n"
|
|
">> stream\n";
|
|
SkString preface(
|
|
SkStringPrintf(kPrefaceFormat, fWidth, fHeight, fData->size()));
|
|
const char kPostface[] = "\nendstream";
|
|
stream->write(preface.c_str(), preface.size());
|
|
stream->write(fData->data(), fData->size());
|
|
stream->write(kPostface, sizeof(kPostface));
|
|
}
|
|
};
|
|
|
|
/**
|
|
* If the bitmap is not subsetted, return its encoded data, if
|
|
* availible.
|
|
*/
|
|
static inline SkData* ref_encoded_data(const SkBitmap& bm) {
|
|
if ((NULL == bm.pixelRef())
|
|
|| !bm.pixelRefOrigin().isZero()
|
|
|| (bm.info().dimensions() != bm.pixelRef()->info().dimensions())) {
|
|
return NULL;
|
|
}
|
|
return bm.pixelRef()->refEncodedData();
|
|
}
|
|
|
|
/*
|
|
* This functions may give false negatives but no false positives.
|
|
*/
|
|
static bool is_jfif_jpeg(SkData* data) {
|
|
if (!data || (data->size() < 11)) {
|
|
return false;
|
|
}
|
|
const uint8_t bytesZeroToThree[] = {0xFF, 0xD8, 0xFF, 0xE0};
|
|
const uint8_t bytesSixToTen[] = {'J', 'F', 'I', 'F', 0};
|
|
// 0 1 2 3 4 5 6 7 8 9 10
|
|
// FF D8 FF E0 ?? ?? 'J' 'F' 'I' 'F' 00 ...
|
|
return ((0 == memcmp(data->bytes(), bytesZeroToThree,
|
|
sizeof(bytesZeroToThree)))
|
|
&& (0 == memcmp(data->bytes() + 6, bytesSixToTen,
|
|
sizeof(bytesSixToTen))));
|
|
}
|
|
} // namespace
|
|
#endif
|
|
|
|
SkPDFObject* SkPDFCreateImageObject(SkPDFCanon* canon,
|
|
const SkBitmap& bitmap,
|
|
const SkIRect& subset) {
|
|
if (SkPDFObject* pdfBitmap = SkPDFBitmap::Create(canon, bitmap, subset)) {
|
|
return pdfBitmap;
|
|
}
|
|
#if 0 // reenable when we can figure out the JPEG colorspace
|
|
if (SkIRect::MakeWH(bitmap.width(), bitmap.height()) == subset) {
|
|
SkAutoTUnref<SkData> encodedData(ref_encoded_data(bitmap));
|
|
if (is_jfif_jpeg(encodedData)) {
|
|
return SkNEW_ARGS(PDFJPEGImage,
|
|
(encodedData, bitmap.width(), bitmap.height()));
|
|
}
|
|
}
|
|
#endif
|
|
return SkPDFImage::CreateImage(bitmap, subset);
|
|
}
|