skia2/tests/ScalarTest.cpp
Mike Reed 92b33354dd more rect api simplifications
set --> setLTRB
set(pts, count) --> setBounds

Bug: skia:9328
Change-Id: I807c0598a8b23b2f721db118ec41c1607114205a
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/237038
Reviewed-by: Mike Reed <reed@google.com>
Commit-Queue: Mike Reed <reed@google.com>
Auto-Submit: Mike Reed <reed@google.com>
2019-08-25 10:12:57 +00:00

205 lines
5.8 KiB
C++

/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkMath.h"
#include "include/core/SkPoint.h"
#include "include/core/SkRect.h"
#include "include/private/SkFloatingPoint.h"
#include "include/utils/SkRandom.h"
#include "tests/Test.h"
static void test_roundtoint(skiatest::Reporter* reporter) {
SkScalar x = 0.49999997f;
int ix = SkScalarRoundToInt(x);
// We "should" get 0, since x < 0.5, but we don't due to float addition rounding up the low
// bit after adding 0.5.
REPORTER_ASSERT(reporter, 1 == ix);
// This version explicitly performs the +0.5 step using double, which should avoid losing the
// low bits.
ix = SkDScalarRoundToInt(x);
REPORTER_ASSERT(reporter, 0 == ix);
}
struct PointSet {
const SkPoint* fPts;
size_t fCount;
bool fIsFinite;
};
static void test_isRectFinite(skiatest::Reporter* reporter) {
static const SkPoint gF0[] = {
{ 0, 0 }, { 1, 1 }
};
static const SkPoint gF1[] = {
{ 0, 0 }, { 1, 1 }, { 99.234f, -42342 }
};
static const SkPoint gI0[] = {
{ 0, 0 }, { 1, 1 }, { 99.234f, -42342 }, { SK_ScalarNaN, 3 }, { 2, 3 },
};
static const SkPoint gI1[] = {
{ 0, 0 }, { 1, 1 }, { 99.234f, -42342 }, { 3, SK_ScalarNaN }, { 2, 3 },
};
static const SkPoint gI2[] = {
{ 0, 0 }, { 1, 1 }, { 99.234f, -42342 }, { SK_ScalarInfinity, 3 }, { 2, 3 },
};
static const SkPoint gI3[] = {
{ 0, 0 }, { 1, 1 }, { 99.234f, -42342 }, { 3, SK_ScalarInfinity }, { 2, 3 },
};
static const struct {
const SkPoint* fPts;
int fCount;
bool fIsFinite;
} gSets[] = {
{ gF0, SK_ARRAY_COUNT(gF0), true },
{ gF1, SK_ARRAY_COUNT(gF1), true },
{ gI0, SK_ARRAY_COUNT(gI0), false },
{ gI1, SK_ARRAY_COUNT(gI1), false },
{ gI2, SK_ARRAY_COUNT(gI2), false },
{ gI3, SK_ARRAY_COUNT(gI3), false },
};
for (size_t i = 0; i < SK_ARRAY_COUNT(gSets); ++i) {
SkRect r;
r.setBounds(gSets[i].fPts, gSets[i].fCount);
bool rectIsFinite = !r.isEmpty();
REPORTER_ASSERT(reporter, gSets[i].fIsFinite == rectIsFinite);
}
}
static bool isFinite_int(float x) {
uint32_t bits = SkFloat2Bits(x); // need unsigned for our shifts
int exponent = bits << 1 >> 24;
return exponent != 0xFF;
}
static bool isFinite_float(float x) {
return SkToBool(sk_float_isfinite(x));
}
static bool isFinite_mulzero(float x) {
float y = x * 0;
return y == y;
}
// return true if the float is finite
typedef bool (*IsFiniteProc1)(float);
static bool isFinite2_and(float x, float y, IsFiniteProc1 proc) {
return proc(x) && proc(y);
}
static bool isFinite2_mulzeroadd(float x, float y, IsFiniteProc1 proc) {
return proc(x * 0 + y * 0);
}
// return true if both floats are finite
typedef bool (*IsFiniteProc2)(float, float, IsFiniteProc1);
enum FloatClass {
kFinite,
kInfinite,
kNaN
};
static void test_floatclass(skiatest::Reporter* reporter, float value, FloatClass fc) {
// our sk_float_is... function may return int instead of bool,
// hence the double ! to turn it into a bool
REPORTER_ASSERT(reporter, !!sk_float_isfinite(value) == (fc == kFinite));
REPORTER_ASSERT(reporter, !!sk_float_isinf(value) == (fc == kInfinite));
REPORTER_ASSERT(reporter, !!sk_float_isnan(value) == (fc == kNaN));
}
#if defined _WIN32
#pragma warning ( push )
// we are intentionally causing an overflow here
// (warning C4756: overflow in constant arithmetic)
#pragma warning ( disable : 4756 )
#endif
static void test_isfinite(skiatest::Reporter* reporter) {
struct Rec {
float fValue;
bool fIsFinite;
};
float max = 3.402823466e+38f;
float inf = max * max;
float nan = inf * 0;
test_floatclass(reporter, 0, kFinite);
test_floatclass(reporter, max, kFinite);
test_floatclass(reporter, -max, kFinite);
test_floatclass(reporter, inf, kInfinite);
test_floatclass(reporter, -inf, kInfinite);
test_floatclass(reporter, nan, kNaN);
test_floatclass(reporter, -nan, kNaN);
const Rec data[] = {
{ 0, true },
{ 1, true },
{ -1, true },
{ max * 0.75f, true },
{ max, true },
{ -max * 0.75f, true },
{ -max, true },
{ inf, false },
{ -inf, false },
{ nan, false },
};
const IsFiniteProc1 gProc1[] = {
isFinite_int,
isFinite_float,
isFinite_mulzero
};
const IsFiniteProc2 gProc2[] = {
isFinite2_and,
isFinite2_mulzeroadd
};
size_t i, n = SK_ARRAY_COUNT(data);
for (i = 0; i < n; ++i) {
for (size_t k = 0; k < SK_ARRAY_COUNT(gProc1); ++k) {
const Rec& rec = data[i];
bool finite = gProc1[k](rec.fValue);
REPORTER_ASSERT(reporter, rec.fIsFinite == finite);
}
}
for (i = 0; i < n; ++i) {
const Rec& rec0 = data[i];
for (size_t j = 0; j < n; ++j) {
const Rec& rec1 = data[j];
for (size_t k = 0; k < SK_ARRAY_COUNT(gProc1); ++k) {
IsFiniteProc1 proc1 = gProc1[k];
for (size_t m = 0; m < SK_ARRAY_COUNT(gProc2); ++m) {
bool finite = gProc2[m](rec0.fValue, rec1.fValue, proc1);
bool finite2 = rec0.fIsFinite && rec1.fIsFinite;
REPORTER_ASSERT(reporter, finite2 == finite);
}
}
}
}
test_isRectFinite(reporter);
}
#if defined _WIN32
#pragma warning ( pop )
#endif
DEF_TEST(Scalar, reporter) {
test_isfinite(reporter);
test_roundtoint(reporter);
}