skia2/include/gpu/GrContext.h

1027 lines
39 KiB
C++

/*
* Copyright 2010 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrContext_DEFINED
#define GrContext_DEFINED
#include "GrColor.h"
#include "GrAARectRenderer.h"
#include "GrClipData.h"
#include "SkMatrix.h"
#include "GrPaint.h"
#include "GrPathRendererChain.h"
#include "GrPoint.h"
#include "GrRenderTarget.h"
#include "GrRefCnt.h"
#include "GrTexture.h"
class GrAutoScratchTexture;
class GrDrawState;
class GrDrawTarget;
class GrEffect;
class GrFontCache;
class GrGpu;
class GrIndexBuffer;
class GrIndexBufferAllocPool;
class GrInOrderDrawBuffer;
class GrOvalRenderer;
class GrPathRenderer;
class GrResourceEntry;
class GrResourceCache;
class GrStencilBuffer;
class GrTestTarget;
class GrTextureParams;
class GrVertexBuffer;
class GrVertexBufferAllocPool;
class GrSoftwarePathRenderer;
class SkStrokeRec;
class SK_API GrContext : public GrRefCnt {
public:
SK_DECLARE_INST_COUNT(GrContext)
/**
* Creates a GrContext for a backend context.
*/
static GrContext* Create(GrBackend, GrBackendContext);
/**
* Returns the number of GrContext instances for the current thread.
*/
static int GetThreadInstanceCount();
virtual ~GrContext();
/**
* The GrContext normally assumes that no outsider is setting state
* within the underlying 3D API's context/device/whatever. This call informs
* the context that the state was modified and it should resend. Shouldn't
* be called frequently for good performance.
* The flag bits, state, is dpendent on which backend is used by the
* context, either GL or D3D (possible in future).
*/
void resetContext(uint32_t state = kAll_GrBackendState);
/**
* Callback function to allow classes to cleanup on GrContext destruction.
* The 'info' field is filled in with the 'info' passed to addCleanUp.
*/
typedef void (*PFCleanUpFunc)(const GrContext* context, void* info);
/**
* Add a function to be called from within GrContext's destructor.
* This gives classes a chance to free resources held on a per context basis.
* The 'info' parameter will be stored and passed to the callback function.
*/
void addCleanUp(PFCleanUpFunc cleanUp, void* info) {
CleanUpData* entry = fCleanUpData.push();
entry->fFunc = cleanUp;
entry->fInfo = info;
}
/**
* Abandons all GPU resources, assumes 3D API state is unknown. Call this
* if you have lost the associated GPU context, and thus internal texture,
* buffer, etc. references/IDs are now invalid. Should be called even when
* GrContext is no longer going to be used for two reasons:
* 1) ~GrContext will not try to free the objects in the 3D API.
* 2) If you've created GrResources that outlive the GrContext they will
* be marked as invalid (GrResource::isValid()) and won't attempt to
* free their underlying resource in the 3D API.
* Content drawn since the last GrContext::flush() may be lost.
*/
void contextLost();
/**
* Similar to contextLost, but makes no attempt to reset state.
* Use this method when GrContext destruction is pending, but
* the graphics context is destroyed first.
*/
void contextDestroyed();
/**
* Frees GPU created by the context. Can be called to reduce GPU memory
* pressure.
*/
void freeGpuResources();
/**
* Returns the number of bytes of GPU memory hosted by the texture cache.
*/
size_t getGpuTextureCacheBytes() const;
///////////////////////////////////////////////////////////////////////////
// Textures
/**
* Creates a new entry, based on the specified key and texture and returns it. The caller owns a
* ref on the returned texture which must be balanced by a call to unref.
*
* @param params The texture params used to draw a texture may help determine
* the cache entry used. (e.g. different versions may exist
* for different wrap modes on GPUs with limited NPOT
* texture support). NULL implies clamp wrap modes.
* @param desc Description of the texture properties.
* @param cacheID Cache-specific properties (e.g., texture gen ID)
* @param srcData Pointer to the pixel values.
* @param rowBytes The number of bytes between rows of the texture. Zero
* implies tightly packed rows.
*/
GrTexture* createTexture(const GrTextureParams* params,
const GrTextureDesc& desc,
const GrCacheID& cacheID,
void* srcData, size_t rowBytes);
/**
* Search for an entry based on key and dimensions. If found, ref it and return it. The return
* value will be NULL if not found. The caller must balance with a call to unref.
*
* @param desc Description of the texture properties.
* @param cacheID Cache-specific properties (e.g., texture gen ID)
* @param params The texture params used to draw a texture may help determine
* the cache entry used. (e.g. different versions may exist
* for different wrap modes on GPUs with limited NPOT
* texture support). NULL implies clamp wrap modes.
*/
GrTexture* findAndRefTexture(const GrTextureDesc& desc,
const GrCacheID& cacheID,
const GrTextureParams* params);
/**
* Determines whether a texture is in the cache. If the texture is found it
* will not be locked or returned. This call does not affect the priority of
* the texture for deletion.
*/
bool isTextureInCache(const GrTextureDesc& desc,
const GrCacheID& cacheID,
const GrTextureParams* params) const;
/**
* Enum that determines how closely a returned scratch texture must match
* a provided GrTextureDesc.
*/
enum ScratchTexMatch {
/**
* Finds a texture that exactly matches the descriptor.
*/
kExact_ScratchTexMatch,
/**
* Finds a texture that approximately matches the descriptor. Will be
* at least as large in width and height as desc specifies. If desc
* specifies that texture is a render target then result will be a
* render target. If desc specifies a render target and doesn't set the
* no stencil flag then result will have a stencil. Format and aa level
* will always match.
*/
kApprox_ScratchTexMatch
};
/**
* Returns a texture matching the desc. It's contents are unknown. Subsequent
* requests with the same descriptor are not guaranteed to return the same
* texture. The same texture is guaranteed not be returned again until it is
* unlocked. Call must be balanced with an unlockTexture() call. The caller
* owns a ref on the returned texture and must balance with a call to unref.
*
* Textures created by createAndLockTexture() hide the complications of
* tiling non-power-of-two textures on APIs that don't support this (e.g.
* unextended GLES2). Tiling a NPOT texture created by lockScratchTexture on
* such an API will create gaps in the tiling pattern. This includes clamp
* mode. (This may be addressed in a future update.)
*/
GrTexture* lockAndRefScratchTexture(const GrTextureDesc&, ScratchTexMatch match);
/**
* When done with an entry, call unlockScratchTexture(entry) on it, which returns
* it to the cache, where it may be purged. This does not unref the texture.
*/
void unlockScratchTexture(GrTexture* texture);
/**
* This method should be called whenever a GrTexture is unreffed or
* switched from exclusive to non-exclusive. This
* gives the resource cache a chance to discard unneeded textures.
* Note: this entry point will be removed once totally ref-driven
* cache maintenance is implemented
*/
void purgeCache();
/**
* Creates a texture that is outside the cache. Does not count against
* cache's budget.
*/
GrTexture* createUncachedTexture(const GrTextureDesc& desc,
void* srcData,
size_t rowBytes);
/**
* Returns true if the specified use of an indexed texture is supported.
* Support may depend upon whether the texture params indicate that the
* texture will be tiled. Passing NULL for the texture params indicates
* clamp mode.
*/
bool supportsIndex8PixelConfig(const GrTextureParams*,
int width,
int height) const;
/**
* Return the current texture cache limits.
*
* @param maxTextures If non-null, returns maximum number of textures that
* can be held in the cache.
* @param maxTextureBytes If non-null, returns maximum number of bytes of
* texture memory that can be held in the cache.
*/
void getTextureCacheLimits(int* maxTextures, size_t* maxTextureBytes) const;
/**
* Specify the texture cache limits. If the current cache exceeds either
* of these, it will be purged (LRU) to keep the cache within these limits.
*
* @param maxTextures The maximum number of textures that can be held in
* the cache.
* @param maxTextureBytes The maximum number of bytes of texture memory
* that can be held in the cache.
*/
void setTextureCacheLimits(int maxTextures, size_t maxTextureBytes);
/**
* Return the max width or height of a texture supported by the current GPU.
*/
int getMaxTextureSize() const;
/**
* Temporarily override the true max texture size. Note: an override
* larger then the true max texture size will have no effect.
* This entry point is mainly meant for testing texture size dependent
* features and is only available if defined outside of Skia (see
* bleed GM.
*/
void setMaxTextureSizeOverride(int maxTextureSizeOverride);
///////////////////////////////////////////////////////////////////////////
// Render targets
/**
* Sets the render target.
* @param target the render target to set.
*/
void setRenderTarget(GrRenderTarget* target) {
fRenderTarget.reset(SkSafeRef(target));
}
/**
* Gets the current render target.
* @return the currently bound render target.
*/
const GrRenderTarget* getRenderTarget() const { return fRenderTarget.get(); }
GrRenderTarget* getRenderTarget() { return fRenderTarget.get(); }
GrAARectRenderer* getAARectRenderer() { return fAARectRenderer; }
/**
* Can the provided configuration act as a color render target?
*/
bool isConfigRenderable(GrPixelConfig config) const;
/**
* Return the max width or height of a render target supported by the
* current GPU.
*/
int getMaxRenderTargetSize() const;
/**
* Returns the max sample count for a render target. It will be 0 if MSAA
* is not supported.
*/
int getMaxSampleCount() const;
///////////////////////////////////////////////////////////////////////////
// Backend Surfaces
/**
* Wraps an existing texture with a GrTexture object.
*
* OpenGL: if the object is a texture Gr may change its GL texture params
* when it is drawn.
*
* @param desc description of the object to create.
*
* @return GrTexture object or NULL on failure.
*/
GrTexture* wrapBackendTexture(const GrBackendTextureDesc& desc);
/**
* Wraps an existing render target with a GrRenderTarget object. It is
* similar to wrapBackendTexture but can be used to draw into surfaces
* that are not also textures (e.g. FBO 0 in OpenGL, or an MSAA buffer that
* the client will resolve to a texture).
*
* @param desc description of the object to create.
*
* @return GrTexture object or NULL on failure.
*/
GrRenderTarget* wrapBackendRenderTarget(const GrBackendRenderTargetDesc& desc);
///////////////////////////////////////////////////////////////////////////
// Matrix state
/**
* Gets the current transformation matrix.
* @return the current matrix.
*/
const SkMatrix& getMatrix() const { return fViewMatrix; }
/**
* Sets the transformation matrix.
* @param m the matrix to set.
*/
void setMatrix(const SkMatrix& m) { fViewMatrix = m; }
/**
* Sets the current transformation matrix to identity.
*/
void setIdentityMatrix() { fViewMatrix.reset(); }
/**
* Concats the current matrix. The passed matrix is applied before the
* current matrix.
* @param m the matrix to concat.
*/
void concatMatrix(const SkMatrix& m) { fViewMatrix.preConcat(m); }
///////////////////////////////////////////////////////////////////////////
// Clip state
/**
* Gets the current clip.
* @return the current clip.
*/
const GrClipData* getClip() const { return fClip; }
/**
* Sets the clip.
* @param clipData the clip to set.
*/
void setClip(const GrClipData* clipData) { fClip = clipData; }
///////////////////////////////////////////////////////////////////////////
// Draws
/**
* Clear the entire or rect of the render target, ignoring any clips.
* @param rect the rect to clear or the whole thing if rect is NULL.
* @param color the color to clear to.
* @param target if non-NULL, the render target to clear otherwise clear
* the current render target
*/
void clear(const SkIRect* rect, GrColor color,
GrRenderTarget* target = NULL);
/**
* Draw everywhere (respecting the clip) with the paint.
*/
void drawPaint(const GrPaint& paint);
/**
* Draw the rect using a paint.
* @param paint describes how to color pixels.
* @param strokeWidth If strokeWidth < 0, then the rect is filled, else
* the rect is mitered stroked based on strokeWidth. If
* strokeWidth == 0, then the stroke is always a single
* pixel thick.
* @param matrix Optional matrix applied to the rect. Applied before
* context's matrix or the paint's matrix.
* The rects coords are used to access the paint (through texture matrix)
*/
void drawRect(const GrPaint& paint,
const SkRect&,
SkScalar strokeWidth = -1,
const SkMatrix* matrix = NULL);
/**
* Maps a rect of local coordinates onto the a rect of destination
* coordinates. Each rect can optionally be transformed. The localRect
* is stretched over the dstRect. The dstRect is transformed by the
* context's matrix. Additional optional matrices for both rects can be
* provided by parameters.
*
* @param paint describes how to color pixels.
* @param dstRect the destination rect to draw.
* @param localRect rect of local coordinates to be mapped onto dstRect
* @param dstMatrix Optional matrix to transform dstRect. Applied before context's matrix.
* @param localMatrix Optional matrix to transform localRect.
*/
void drawRectToRect(const GrPaint& paint,
const SkRect& dstRect,
const SkRect& localRect,
const SkMatrix* dstMatrix = NULL,
const SkMatrix* localMatrix = NULL);
/**
* Draw a roundrect using a paint.
*
* @param paint describes how to color pixels.
* @param rrect the roundrect to draw
* @param stroke the stroke information (width, join, cap)
*/
void drawRRect(const GrPaint& paint,
const SkRRect& rrect,
const SkStrokeRec& stroke);
/**
* Draws a path.
*
* @param paint describes how to color pixels.
* @param path the path to draw
* @param stroke the stroke information (width, join, cap)
*/
void drawPath(const GrPaint& paint, const SkPath& path, const SkStrokeRec& stroke);
/**
* Draws vertices with a paint.
*
* @param paint describes how to color pixels.
* @param primitiveType primitives type to draw.
* @param vertexCount number of vertices.
* @param positions array of vertex positions, required.
* @param texCoords optional array of texture coordinates used
* to access the paint.
* @param colors optional array of per-vertex colors, supercedes
* the paint's color field.
* @param indices optional array of indices. If NULL vertices
* are drawn non-indexed.
* @param indexCount if indices is non-null then this is the
* number of indices.
*/
void drawVertices(const GrPaint& paint,
GrPrimitiveType primitiveType,
int vertexCount,
const GrPoint positions[],
const GrPoint texs[],
const GrColor colors[],
const uint16_t indices[],
int indexCount);
/**
* Draws an oval.
*
* @param paint describes how to color pixels.
* @param oval the bounding rect of the oval.
* @param stroke the stroke information (width, style)
*/
void drawOval(const GrPaint& paint,
const SkRect& oval,
const SkStrokeRec& stroke);
///////////////////////////////////////////////////////////////////////////
// Misc.
/**
* Flags that affect flush() behavior.
*/
enum FlushBits {
/**
* A client may reach a point where it has partially rendered a frame
* through a GrContext that it knows the user will never see. This flag
* causes the flush to skip submission of deferred content to the 3D API
* during the flush.
*/
kDiscard_FlushBit = 0x2,
};
/**
* Call to ensure all drawing to the context has been issued to the
* underlying 3D API.
* @param flagsBitfield flags that control the flushing behavior. See
* FlushBits.
*/
void flush(int flagsBitfield = 0);
/**
* These flags can be used with the read/write pixels functions below.
*/
enum PixelOpsFlags {
/** The GrContext will not be flushed. This means that the read or write may occur before
previous draws have executed. */
kDontFlush_PixelOpsFlag = 0x1,
/** The src for write or dst read is unpremultiplied. This is only respected if both the
config src and dst configs are an RGBA/BGRA 8888 format. */
kUnpremul_PixelOpsFlag = 0x2,
};
/**
* Reads a rectangle of pixels from a render target.
* @param target the render target to read from. NULL means the current render target.
* @param left left edge of the rectangle to read (inclusive)
* @param top top edge of the rectangle to read (inclusive)
* @param width width of rectangle to read in pixels.
* @param height height of rectangle to read in pixels.
* @param config the pixel config of the destination buffer
* @param buffer memory to read the rectangle into.
* @param rowBytes number of bytes bewtween consecutive rows. Zero means rows are tightly
* packed.
* @param pixelOpsFlags see PixelOpsFlags enum above.
*
* @return true if the read succeeded, false if not. The read can fail because of an unsupported
* pixel config or because no render target is currently set and NULL was passed for
* target.
*/
bool readRenderTargetPixels(GrRenderTarget* target,
int left, int top, int width, int height,
GrPixelConfig config, void* buffer,
size_t rowBytes = 0,
uint32_t pixelOpsFlags = 0);
/**
* Copy the src pixels [buffer, row bytes, pixel config] into a render target at the specified
* rectangle.
* @param target the render target to write into. NULL means the current render target.
* @param left left edge of the rectangle to write (inclusive)
* @param top top edge of the rectangle to write (inclusive)
* @param width width of rectangle to write in pixels.
* @param height height of rectangle to write in pixels.
* @param config the pixel config of the source buffer
* @param buffer memory to read the rectangle from.
* @param rowBytes number of bytes between consecutive rows. Zero means rows are tightly
* packed.
* @param pixelOpsFlags see PixelOpsFlags enum above.
*
* @return true if the write succeeded, false if not. The write can fail because of an
* unsupported combination of target and pixel configs.
*/
bool writeRenderTargetPixels(GrRenderTarget* target,
int left, int top, int width, int height,
GrPixelConfig config, const void* buffer,
size_t rowBytes = 0,
uint32_t pixelOpsFlags = 0);
/**
* Reads a rectangle of pixels from a texture.
* @param texture the texture to read from.
* @param left left edge of the rectangle to read (inclusive)
* @param top top edge of the rectangle to read (inclusive)
* @param width width of rectangle to read in pixels.
* @param height height of rectangle to read in pixels.
* @param config the pixel config of the destination buffer
* @param buffer memory to read the rectangle into.
* @param rowBytes number of bytes between consecutive rows. Zero means rows are tightly
* packed.
* @param pixelOpsFlags see PixelOpsFlags enum above.
*
* @return true if the read succeeded, false if not. The read can fail because of an unsupported
* pixel config.
*/
bool readTexturePixels(GrTexture* texture,
int left, int top, int width, int height,
GrPixelConfig config, void* buffer,
size_t rowBytes = 0,
uint32_t pixelOpsFlags = 0);
/**
* Writes a rectangle of pixels to a texture.
* @param texture the render target to read from.
* @param left left edge of the rectangle to write (inclusive)
* @param top top edge of the rectangle to write (inclusive)
* @param width width of rectangle to write in pixels.
* @param height height of rectangle to write in pixels.
* @param config the pixel config of the source buffer
* @param buffer memory to read pixels from
* @param rowBytes number of bytes between consecutive rows. Zero
* means rows are tightly packed.
* @param pixelOpsFlags see PixelOpsFlags enum above.
* @return true if the write succeeded, false if not. The write can fail because of an
* unsupported combination of texture and pixel configs.
*/
bool writeTexturePixels(GrTexture* texture,
int left, int top, int width, int height,
GrPixelConfig config, const void* buffer,
size_t rowBytes,
uint32_t pixelOpsFlags = 0);
/**
* Copies a rectangle of texels from src to dst. The size of dst is the size of the rectangle
* copied and topLeft is the position of the rect in src. The rectangle is clipped to src's
* bounds.
* @param src the texture to copy from.
* @param dst the render target to copy to.
* @param topLeft the point in src that will be copied to the top-left of dst. If NULL,
* (0, 0) will be used.
*/
void copyTexture(GrTexture* src, GrRenderTarget* dst, const SkIPoint* topLeft = NULL);
/**
* Resolves a render target that has MSAA. The intermediate MSAA buffer is
* down-sampled to the associated GrTexture (accessible via
* GrRenderTarget::asTexture()). Any pending draws to the render target will
* be executed before the resolve.
*
* This is only necessary when a client wants to access the object directly
* using the backend API directly. GrContext will detect when it must
* perform a resolve to a GrTexture used as the source of a draw or before
* reading pixels back from a GrTexture or GrRenderTarget.
*/
void resolveRenderTarget(GrRenderTarget* target);
///////////////////////////////////////////////////////////////////////////
// Helpers
class AutoRenderTarget : public ::GrNoncopyable {
public:
AutoRenderTarget(GrContext* context, GrRenderTarget* target) {
fPrevTarget = context->getRenderTarget();
GrSafeRef(fPrevTarget);
context->setRenderTarget(target);
fContext = context;
}
AutoRenderTarget(GrContext* context) {
fPrevTarget = context->getRenderTarget();
GrSafeRef(fPrevTarget);
fContext = context;
}
~AutoRenderTarget() {
if (NULL != fContext) {
fContext->setRenderTarget(fPrevTarget);
}
GrSafeUnref(fPrevTarget);
}
private:
GrContext* fContext;
GrRenderTarget* fPrevTarget;
};
/**
* Save/restore the view-matrix in the context. It can optionally adjust a paint to account
* for a coordinate system change. Here is an example of how the paint param can be used:
*
* A GrPaint is setup with GrEffects. The stages will have access to the pre-matrix source
* geometry positions when the draw is executed. Later on a decision is made to transform the
* geometry to device space on the CPU. The effects now need to know that the space in which
* the geometry will be specified has changed.
*
* Note that when restore is called (or in the destructor) the context's matrix will be
* restored. However, the paint will not be restored. The caller must make a copy of the
* paint if necessary. Hint: use SkTCopyOnFirstWrite if the AutoMatrix is conditionally
* initialized.
*/
class AutoMatrix : GrNoncopyable {
public:
AutoMatrix() : fContext(NULL) {}
~AutoMatrix() { this->restore(); }
/**
* Initializes by pre-concat'ing the context's current matrix with the preConcat param.
*/
void setPreConcat(GrContext* context, const SkMatrix& preConcat, GrPaint* paint = NULL) {
SkASSERT(NULL != context);
this->restore();
fContext = context;
fMatrix = context->getMatrix();
this->preConcat(preConcat, paint);
}
/**
* Sets the context's matrix to identity. Returns false if the inverse matrix is required to
* update a paint but the matrix cannot be inverted.
*/
bool setIdentity(GrContext* context, GrPaint* paint = NULL) {
SkASSERT(NULL != context);
this->restore();
if (NULL != paint) {
if (!paint->localCoordChangeInverse(context->getMatrix())) {
return false;
}
}
fMatrix = context->getMatrix();
fContext = context;
context->setIdentityMatrix();
return true;
}
/**
* Replaces the context's matrix with a new matrix. Returns false if the inverse matrix is
* required to update a paint but the matrix cannot be inverted.
*/
bool set(GrContext* context, const SkMatrix& newMatrix, GrPaint* paint = NULL) {
if (NULL != paint) {
if (!this->setIdentity(context, paint)) {
return false;
}
this->preConcat(newMatrix, paint);
} else {
this->restore();
fContext = context;
fMatrix = context->getMatrix();
context->setMatrix(newMatrix);
}
return true;
}
/**
* If this has been initialized then the context's matrix will be further updated by
* pre-concat'ing the preConcat param. The matrix that will be restored remains unchanged.
* The paint is assumed to be relative to the context's matrix at the time this call is
* made, not the matrix at the time AutoMatrix was first initialized. In other words, this
* performs an incremental update of the paint.
*/
void preConcat(const SkMatrix& preConcat, GrPaint* paint = NULL) {
if (NULL != paint) {
paint->localCoordChange(preConcat);
}
fContext->concatMatrix(preConcat);
}
/**
* Returns false if never initialized or the inverse matrix was required to update a paint
* but the matrix could not be inverted.
*/
bool succeeded() const { return NULL != fContext; }
/**
* If this has been initialized then the context's original matrix is restored.
*/
void restore() {
if (NULL != fContext) {
fContext->setMatrix(fMatrix);
fContext = NULL;
}
}
private:
GrContext* fContext;
SkMatrix fMatrix;
};
class AutoClip : GrNoncopyable {
public:
// This enum exists to require a caller of the constructor to acknowledge that the clip will
// initially be wide open. It also could be extended if there are other desirable initial
// clip states.
enum InitialClip {
kWideOpen_InitialClip,
};
AutoClip(GrContext* context, InitialClip initialState)
: fContext(context) {
SkASSERT(kWideOpen_InitialClip == initialState);
fNewClipData.fClipStack = &fNewClipStack;
fOldClip = context->getClip();
context->setClip(&fNewClipData);
}
AutoClip(GrContext* context, const SkRect& newClipRect)
: fContext(context)
, fNewClipStack(newClipRect) {
fNewClipData.fClipStack = &fNewClipStack;
fOldClip = fContext->getClip();
fContext->setClip(&fNewClipData);
}
~AutoClip() {
if (NULL != fContext) {
fContext->setClip(fOldClip);
}
}
private:
GrContext* fContext;
const GrClipData* fOldClip;
SkClipStack fNewClipStack;
GrClipData fNewClipData;
};
class AutoWideOpenIdentityDraw {
public:
AutoWideOpenIdentityDraw(GrContext* ctx, GrRenderTarget* rt)
: fAutoClip(ctx, AutoClip::kWideOpen_InitialClip)
, fAutoRT(ctx, rt) {
fAutoMatrix.setIdentity(ctx);
// should never fail with no paint param.
SkASSERT(fAutoMatrix.succeeded());
}
private:
AutoClip fAutoClip;
AutoRenderTarget fAutoRT;
AutoMatrix fAutoMatrix;
};
///////////////////////////////////////////////////////////////////////////
// Functions intended for internal use only.
GrGpu* getGpu() { return fGpu; }
const GrGpu* getGpu() const { return fGpu; }
GrFontCache* getFontCache() { return fFontCache; }
GrDrawTarget* getTextTarget();
const GrIndexBuffer* getQuadIndexBuffer() const;
// Called by tests that draw directly to the context via GrDrawTarget
void getTestTarget(GrTestTarget*);
/**
* Stencil buffers add themselves to the cache using addStencilBuffer. findStencilBuffer is
* called to check the cache for a SB that matches an RT's criteria.
*/
void addStencilBuffer(GrStencilBuffer* sb);
GrStencilBuffer* findStencilBuffer(int width, int height, int sampleCnt);
GrPathRenderer* getPathRenderer(
const SkPath& path,
const SkStrokeRec& stroke,
const GrDrawTarget* target,
bool allowSW,
GrPathRendererChain::DrawType drawType = GrPathRendererChain::kColor_DrawType,
GrPathRendererChain::StencilSupport* stencilSupport = NULL);
#if GR_CACHE_STATS
void printCacheStats() const;
#endif
private:
// Used to indicate whether a draw should be performed immediately or queued in fDrawBuffer.
enum BufferedDraw {
kYes_BufferedDraw,
kNo_BufferedDraw,
};
BufferedDraw fLastDrawWasBuffered;
GrGpu* fGpu;
SkMatrix fViewMatrix;
SkAutoTUnref<GrRenderTarget> fRenderTarget;
const GrClipData* fClip; // TODO: make this ref counted
GrDrawState* fDrawState;
GrResourceCache* fTextureCache;
GrFontCache* fFontCache;
GrPathRendererChain* fPathRendererChain;
GrSoftwarePathRenderer* fSoftwarePathRenderer;
GrVertexBufferAllocPool* fDrawBufferVBAllocPool;
GrIndexBufferAllocPool* fDrawBufferIBAllocPool;
GrInOrderDrawBuffer* fDrawBuffer;
GrAARectRenderer* fAARectRenderer;
GrOvalRenderer* fOvalRenderer;
bool fDidTestPMConversions;
int fPMToUPMConversion;
int fUPMToPMConversion;
struct CleanUpData {
PFCleanUpFunc fFunc;
void* fInfo;
};
SkTDArray<CleanUpData> fCleanUpData;
int fMaxTextureSizeOverride;
GrContext(); // init must be called after the constructor.
bool init(GrBackend, GrBackendContext);
void setupDrawBuffer();
class AutoRestoreEffects;
/// Sets the paint and returns the target to draw into. The paint can be NULL in which case the
/// draw state is left unmodified.
GrDrawTarget* prepareToDraw(const GrPaint*, BufferedDraw, AutoRestoreEffects*);
void internalDrawPath(GrDrawTarget* target, bool useAA, const SkPath& path,
const SkStrokeRec& stroke);
GrTexture* createResizedTexture(const GrTextureDesc& desc,
const GrCacheID& cacheID,
void* srcData,
size_t rowBytes,
bool filter);
// Needed so GrTexture's returnToCache helper function can call
// addExistingTextureToCache
friend class GrTexture;
// Add an existing texture to the texture cache. This is intended solely
// for use with textures released from an GrAutoScratchTexture.
void addExistingTextureToCache(GrTexture* texture);
/**
* These functions create premul <-> unpremul effects if it is possible to generate a pair
* of effects that make a readToUPM->writeToPM->readToUPM cycle invariant. Otherwise, they
* return NULL.
*/
const GrEffectRef* createPMToUPMEffect(GrTexture* texture,
bool swapRAndB,
const SkMatrix& matrix);
const GrEffectRef* createUPMToPMEffect(GrTexture* texture,
bool swapRAndB,
const SkMatrix& matrix);
/**
* This callback allows the resource cache to callback into the GrContext
* when the cache is still overbudget after a purge.
*/
static bool OverbudgetCB(void* data);
typedef GrRefCnt INHERITED;
};
/**
* Gets and locks a scratch texture from a descriptor using either exact or approximate criteria.
* Unlocks texture in the destructor.
*/
class GrAutoScratchTexture : ::GrNoncopyable {
public:
GrAutoScratchTexture()
: fContext(NULL)
, fTexture(NULL) {
}
GrAutoScratchTexture(GrContext* context,
const GrTextureDesc& desc,
GrContext::ScratchTexMatch match = GrContext::kApprox_ScratchTexMatch)
: fContext(NULL)
, fTexture(NULL) {
this->set(context, desc, match);
}
~GrAutoScratchTexture() {
this->reset();
}
void reset() {
if (NULL != fContext && NULL != fTexture) {
fContext->unlockScratchTexture(fTexture);
fTexture->unref();
fTexture = NULL;
}
}
/*
* When detaching a texture we do not unlock it in the texture cache but
* we do set the returnToCache flag. In this way the texture remains
* "locked" in the texture cache until it is freed and recycled in
* GrTexture::internal_dispose. In reality, the texture has been removed
* from the cache (because this is in AutoScratchTexture) and by not
* calling unlockScratchTexture we simply don't re-add it. It will be
* reattached in GrTexture::internal_dispose.
*
* Note that the caller is assumed to accept and manage the ref to the
* returned texture.
*/
GrTexture* detach() {
if (NULL == fTexture) {
return NULL;
}
GrTexture* texture = fTexture;
fTexture = NULL;
// This GrAutoScratchTexture has a ref from lockAndRefScratchTexture, which we give up now.
// The cache also has a ref which we are lending to the caller of detach(). When the caller
// lets go of the ref and the ref count goes to 0 internal_dispose will see this flag is
// set and re-ref the texture, thereby restoring the cache's ref.
SkASSERT(texture->getRefCnt() > 1);
texture->setFlag((GrTextureFlags) GrTexture::kReturnToCache_FlagBit);
texture->unref();
SkASSERT(NULL != texture->getCacheEntry());
return texture;
}
GrTexture* set(GrContext* context,
const GrTextureDesc& desc,
GrContext::ScratchTexMatch match = GrContext::kApprox_ScratchTexMatch) {
this->reset();
fContext = context;
if (NULL != fContext) {
fTexture = fContext->lockAndRefScratchTexture(desc, match);
if (NULL == fTexture) {
fContext = NULL;
}
return fTexture;
} else {
return NULL;
}
}
GrTexture* texture() { return fTexture; }
private:
GrContext* fContext;
GrTexture* fTexture;
};
#endif