skia2/tests/ClipStackTest.cpp
Robert Phillips eee4d6e4e8 Make instantiate return a Boolean
From an off-line conversation:
The longer term idea will be to create a helper class isolates the
ability to instantiate proxies until flush time. The peek* methods
could then be moved to GrSurfaceProxy.

Change-Id: I8e8c02c098475b77d515791c0d6b81f7e4a327dd
Reviewed-on: https://skia-review.googlesource.com/18076
Commit-Queue: Robert Phillips <robertphillips@google.com>
Reviewed-by: Brian Salomon <bsalomon@google.com>
2017-06-05 14:03:10 +00:00

1493 lines
55 KiB
C++

/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Test.h"
#include "SkClipStack.h"
#include "SkPath.h"
#include "SkRandom.h"
#include "SkRect.h"
#include "SkRegion.h"
#if SK_SUPPORT_GPU
#include "GrClipStackClip.h"
#include "GrReducedClip.h"
#include "GrResourceCache.h"
#include "GrSurfaceProxyPriv.h"
#include "GrTextureProxy.h"
typedef GrReducedClip::ElementList ElementList;
typedef GrReducedClip::InitialState InitialState;
#endif
static void test_assign_and_comparison(skiatest::Reporter* reporter) {
SkClipStack s;
bool doAA = false;
REPORTER_ASSERT(reporter, 0 == s.getSaveCount());
// Build up a clip stack with a path, an empty clip, and a rect.
s.save();
REPORTER_ASSERT(reporter, 1 == s.getSaveCount());
SkPath p;
p.moveTo(5, 6);
p.lineTo(7, 8);
p.lineTo(5, 9);
p.close();
s.clipPath(p, SkMatrix::I(), kIntersect_SkClipOp, doAA);
s.save();
REPORTER_ASSERT(reporter, 2 == s.getSaveCount());
SkRect r = SkRect::MakeLTRB(1, 2, 3, 4);
s.clipRect(r, SkMatrix::I(), kIntersect_SkClipOp, doAA);
r = SkRect::MakeLTRB(10, 11, 12, 13);
s.clipRect(r, SkMatrix::I(), kIntersect_SkClipOp, doAA);
s.save();
REPORTER_ASSERT(reporter, 3 == s.getSaveCount());
r = SkRect::MakeLTRB(14, 15, 16, 17);
s.clipRect(r, SkMatrix::I(), kUnion_SkClipOp, doAA);
// Test that assignment works.
SkClipStack copy = s;
REPORTER_ASSERT(reporter, s == copy);
// Test that different save levels triggers not equal.
s.restore();
REPORTER_ASSERT(reporter, 2 == s.getSaveCount());
REPORTER_ASSERT(reporter, s != copy);
// Test that an equal, but not copied version is equal.
s.save();
REPORTER_ASSERT(reporter, 3 == s.getSaveCount());
r = SkRect::MakeLTRB(14, 15, 16, 17);
s.clipRect(r, SkMatrix::I(), kUnion_SkClipOp, doAA);
REPORTER_ASSERT(reporter, s == copy);
// Test that a different op on one level triggers not equal.
s.restore();
REPORTER_ASSERT(reporter, 2 == s.getSaveCount());
s.save();
REPORTER_ASSERT(reporter, 3 == s.getSaveCount());
r = SkRect::MakeLTRB(14, 15, 16, 17);
s.clipRect(r, SkMatrix::I(), kIntersect_SkClipOp, doAA);
REPORTER_ASSERT(reporter, s != copy);
// Test that version constructed with rect-path rather than a rect is still considered equal.
s.restore();
s.save();
SkPath rp;
rp.addRect(r);
s.clipPath(rp, SkMatrix::I(), kUnion_SkClipOp, doAA);
REPORTER_ASSERT(reporter, s == copy);
// Test that different rects triggers not equal.
s.restore();
REPORTER_ASSERT(reporter, 2 == s.getSaveCount());
s.save();
REPORTER_ASSERT(reporter, 3 == s.getSaveCount());
r = SkRect::MakeLTRB(24, 25, 26, 27);
s.clipRect(r, SkMatrix::I(), kUnion_SkClipOp, doAA);
REPORTER_ASSERT(reporter, s != copy);
// Sanity check
s.restore();
REPORTER_ASSERT(reporter, 2 == s.getSaveCount());
copy.restore();
REPORTER_ASSERT(reporter, 2 == copy.getSaveCount());
REPORTER_ASSERT(reporter, s == copy);
s.restore();
REPORTER_ASSERT(reporter, 1 == s.getSaveCount());
copy.restore();
REPORTER_ASSERT(reporter, 1 == copy.getSaveCount());
REPORTER_ASSERT(reporter, s == copy);
// Test that different paths triggers not equal.
s.restore();
REPORTER_ASSERT(reporter, 0 == s.getSaveCount());
s.save();
REPORTER_ASSERT(reporter, 1 == s.getSaveCount());
p.addRect(r);
s.clipPath(p, SkMatrix::I(), kIntersect_SkClipOp, doAA);
REPORTER_ASSERT(reporter, s != copy);
}
static void assert_count(skiatest::Reporter* reporter, const SkClipStack& stack,
int count) {
SkClipStack::B2TIter iter(stack);
int counter = 0;
while (iter.next()) {
counter += 1;
}
REPORTER_ASSERT(reporter, count == counter);
}
// Exercise the SkClipStack's bottom to top and bidirectional iterators
// (including the skipToTopmost functionality)
static void test_iterators(skiatest::Reporter* reporter) {
SkClipStack stack;
static const SkRect gRects[] = {
{ 0, 0, 40, 40 },
{ 60, 0, 100, 40 },
{ 0, 60, 40, 100 },
{ 60, 60, 100, 100 }
};
for (size_t i = 0; i < SK_ARRAY_COUNT(gRects); i++) {
// the union op will prevent these from being fused together
stack.clipRect(gRects[i], SkMatrix::I(), kUnion_SkClipOp, false);
}
assert_count(reporter, stack, 4);
// bottom to top iteration
{
const SkClipStack::Element* element = nullptr;
SkClipStack::B2TIter iter(stack);
int i;
for (i = 0, element = iter.next(); element; ++i, element = iter.next()) {
REPORTER_ASSERT(reporter, SkClipStack::Element::kRect_Type == element->getType());
REPORTER_ASSERT(reporter, element->getRect() == gRects[i]);
}
SkASSERT(i == 4);
}
// top to bottom iteration
{
const SkClipStack::Element* element = nullptr;
SkClipStack::Iter iter(stack, SkClipStack::Iter::kTop_IterStart);
int i;
for (i = 3, element = iter.prev(); element; --i, element = iter.prev()) {
REPORTER_ASSERT(reporter, SkClipStack::Element::kRect_Type == element->getType());
REPORTER_ASSERT(reporter, element->getRect() == gRects[i]);
}
SkASSERT(i == -1);
}
// skipToTopmost
{
const SkClipStack::Element* element = nullptr;
SkClipStack::Iter iter(stack, SkClipStack::Iter::kBottom_IterStart);
element = iter.skipToTopmost(kUnion_SkClipOp);
REPORTER_ASSERT(reporter, SkClipStack::Element::kRect_Type == element->getType());
REPORTER_ASSERT(reporter, element->getRect() == gRects[3]);
}
}
// Exercise the SkClipStack's getConservativeBounds computation
static void test_bounds(skiatest::Reporter* reporter, SkClipStack::Element::Type primType) {
static const int gNumCases = 20;
static const SkRect gAnswerRectsBW[gNumCases] = {
// A op B
{ 40, 40, 50, 50 },
{ 10, 10, 50, 50 },
{ 10, 10, 80, 80 },
{ 10, 10, 80, 80 },
{ 40, 40, 80, 80 },
// invA op B
{ 40, 40, 80, 80 },
{ 0, 0, 100, 100 },
{ 0, 0, 100, 100 },
{ 0, 0, 100, 100 },
{ 40, 40, 50, 50 },
// A op invB
{ 10, 10, 50, 50 },
{ 40, 40, 50, 50 },
{ 0, 0, 100, 100 },
{ 0, 0, 100, 100 },
{ 0, 0, 100, 100 },
// invA op invB
{ 0, 0, 100, 100 },
{ 40, 40, 80, 80 },
{ 0, 0, 100, 100 },
{ 10, 10, 80, 80 },
{ 10, 10, 50, 50 },
};
static const SkClipOp gOps[] = {
kIntersect_SkClipOp,
kDifference_SkClipOp,
kUnion_SkClipOp,
kXOR_SkClipOp,
kReverseDifference_SkClipOp
};
SkRect rectA, rectB;
rectA.iset(10, 10, 50, 50);
rectB.iset(40, 40, 80, 80);
SkRRect rrectA, rrectB;
rrectA.setOval(rectA);
rrectB.setRectXY(rectB, SkIntToScalar(1), SkIntToScalar(2));
SkPath pathA, pathB;
pathA.addRoundRect(rectA, SkIntToScalar(5), SkIntToScalar(5));
pathB.addRoundRect(rectB, SkIntToScalar(5), SkIntToScalar(5));
SkClipStack stack;
SkRect devClipBound;
bool isIntersectionOfRects = false;
int testCase = 0;
int numBitTests = SkClipStack::Element::kPath_Type == primType ? 4 : 1;
for (int invBits = 0; invBits < numBitTests; ++invBits) {
for (size_t op = 0; op < SK_ARRAY_COUNT(gOps); ++op) {
stack.save();
bool doInvA = SkToBool(invBits & 1);
bool doInvB = SkToBool(invBits & 2);
pathA.setFillType(doInvA ? SkPath::kInverseEvenOdd_FillType :
SkPath::kEvenOdd_FillType);
pathB.setFillType(doInvB ? SkPath::kInverseEvenOdd_FillType :
SkPath::kEvenOdd_FillType);
switch (primType) {
case SkClipStack::Element::kEmpty_Type:
SkDEBUGFAIL("Don't call this with kEmpty.");
break;
case SkClipStack::Element::kRect_Type:
stack.clipRect(rectA, SkMatrix::I(), kIntersect_SkClipOp, false);
stack.clipRect(rectB, SkMatrix::I(), gOps[op], false);
break;
case SkClipStack::Element::kRRect_Type:
stack.clipRRect(rrectA, SkMatrix::I(), kIntersect_SkClipOp, false);
stack.clipRRect(rrectB, SkMatrix::I(), gOps[op], false);
break;
case SkClipStack::Element::kPath_Type:
stack.clipPath(pathA, SkMatrix::I(), kIntersect_SkClipOp, false);
stack.clipPath(pathB, SkMatrix::I(), gOps[op], false);
break;
}
REPORTER_ASSERT(reporter, !stack.isWideOpen());
REPORTER_ASSERT(reporter, SkClipStack::kWideOpenGenID != stack.getTopmostGenID());
stack.getConservativeBounds(0, 0, 100, 100, &devClipBound,
&isIntersectionOfRects);
if (SkClipStack::Element::kRect_Type == primType) {
REPORTER_ASSERT(reporter, isIntersectionOfRects ==
(gOps[op] == kIntersect_SkClipOp));
} else {
REPORTER_ASSERT(reporter, !isIntersectionOfRects);
}
SkASSERT(testCase < gNumCases);
REPORTER_ASSERT(reporter, devClipBound == gAnswerRectsBW[testCase]);
++testCase;
stack.restore();
}
}
}
// Test out 'isWideOpen' entry point
static void test_isWideOpen(skiatest::Reporter* reporter) {
{
// Empty stack is wide open. Wide open stack means that gen id is wide open.
SkClipStack stack;
REPORTER_ASSERT(reporter, stack.isWideOpen());
REPORTER_ASSERT(reporter, SkClipStack::kWideOpenGenID == stack.getTopmostGenID());
}
SkRect rectA, rectB;
rectA.iset(10, 10, 40, 40);
rectB.iset(50, 50, 80, 80);
// Stack should initially be wide open
{
SkClipStack stack;
REPORTER_ASSERT(reporter, stack.isWideOpen());
REPORTER_ASSERT(reporter, SkClipStack::kWideOpenGenID == stack.getTopmostGenID());
}
// Test out case where the user specifies a union that includes everything
{
SkClipStack stack;
SkPath clipA, clipB;
clipA.addRoundRect(rectA, SkIntToScalar(5), SkIntToScalar(5));
clipA.setFillType(SkPath::kInverseEvenOdd_FillType);
clipB.addRoundRect(rectB, SkIntToScalar(5), SkIntToScalar(5));
clipB.setFillType(SkPath::kInverseEvenOdd_FillType);
stack.clipPath(clipA, SkMatrix::I(), kReplace_SkClipOp, false);
stack.clipPath(clipB, SkMatrix::I(), kUnion_SkClipOp, false);
REPORTER_ASSERT(reporter, stack.isWideOpen());
REPORTER_ASSERT(reporter, SkClipStack::kWideOpenGenID == stack.getTopmostGenID());
}
// Test out union w/ a wide open clip
{
SkClipStack stack;
stack.clipRect(rectA, SkMatrix::I(), kUnion_SkClipOp, false);
REPORTER_ASSERT(reporter, stack.isWideOpen());
REPORTER_ASSERT(reporter, SkClipStack::kWideOpenGenID == stack.getTopmostGenID());
}
// Test out empty difference from a wide open clip
{
SkClipStack stack;
SkRect emptyRect;
emptyRect.setEmpty();
stack.clipRect(emptyRect, SkMatrix::I(), kDifference_SkClipOp, false);
REPORTER_ASSERT(reporter, stack.isWideOpen());
REPORTER_ASSERT(reporter, SkClipStack::kWideOpenGenID == stack.getTopmostGenID());
}
// Test out return to wide open
{
SkClipStack stack;
stack.save();
stack.clipRect(rectA, SkMatrix::I(), kReplace_SkClipOp, false);
REPORTER_ASSERT(reporter, !stack.isWideOpen());
REPORTER_ASSERT(reporter, SkClipStack::kWideOpenGenID != stack.getTopmostGenID());
stack.restore();
REPORTER_ASSERT(reporter, stack.isWideOpen());
REPORTER_ASSERT(reporter, SkClipStack::kWideOpenGenID == stack.getTopmostGenID());
}
}
static int count(const SkClipStack& stack) {
SkClipStack::Iter iter(stack, SkClipStack::Iter::kTop_IterStart);
const SkClipStack::Element* element = nullptr;
int count = 0;
for (element = iter.prev(); element; element = iter.prev(), ++count) {
;
}
return count;
}
static void test_rect_inverse_fill(skiatest::Reporter* reporter) {
// non-intersecting rectangles
SkRect rect = SkRect::MakeLTRB(0, 0, 10, 10);
SkPath path;
path.addRect(rect);
path.toggleInverseFillType();
SkClipStack stack;
stack.clipPath(path, SkMatrix::I(), kIntersect_SkClipOp, false);
SkRect bounds;
SkClipStack::BoundsType boundsType;
stack.getBounds(&bounds, &boundsType);
REPORTER_ASSERT(reporter, SkClipStack::kInsideOut_BoundsType == boundsType);
REPORTER_ASSERT(reporter, bounds == rect);
}
static void test_rect_replace(skiatest::Reporter* reporter) {
SkRect rect = SkRect::MakeWH(100, 100);
SkRect rect2 = SkRect::MakeXYWH(50, 50, 100, 100);
SkRect bound;
SkClipStack::BoundsType type;
bool isIntersectionOfRects;
// Adding a new rect with the replace operator should not increase
// the stack depth. BW replacing BW.
{
SkClipStack stack;
REPORTER_ASSERT(reporter, 0 == count(stack));
stack.clipRect(rect, SkMatrix::I(), kReplace_SkClipOp, false);
REPORTER_ASSERT(reporter, 1 == count(stack));
stack.clipRect(rect, SkMatrix::I(), kReplace_SkClipOp, false);
REPORTER_ASSERT(reporter, 1 == count(stack));
}
// Adding a new rect with the replace operator should not increase
// the stack depth. AA replacing AA.
{
SkClipStack stack;
REPORTER_ASSERT(reporter, 0 == count(stack));
stack.clipRect(rect, SkMatrix::I(), kReplace_SkClipOp, true);
REPORTER_ASSERT(reporter, 1 == count(stack));
stack.clipRect(rect, SkMatrix::I(), kReplace_SkClipOp, true);
REPORTER_ASSERT(reporter, 1 == count(stack));
}
// Adding a new rect with the replace operator should not increase
// the stack depth. BW replacing AA replacing BW.
{
SkClipStack stack;
REPORTER_ASSERT(reporter, 0 == count(stack));
stack.clipRect(rect, SkMatrix::I(), kReplace_SkClipOp, false);
REPORTER_ASSERT(reporter, 1 == count(stack));
stack.clipRect(rect, SkMatrix::I(), kReplace_SkClipOp, true);
REPORTER_ASSERT(reporter, 1 == count(stack));
stack.clipRect(rect, SkMatrix::I(), kReplace_SkClipOp, false);
REPORTER_ASSERT(reporter, 1 == count(stack));
}
// Make sure replace clip rects don't collapse too much.
{
SkClipStack stack;
stack.clipRect(rect, SkMatrix::I(), kReplace_SkClipOp, false);
stack.clipRect(rect2, SkMatrix::I(), kIntersect_SkClipOp, false);
REPORTER_ASSERT(reporter, 1 == count(stack));
stack.save();
stack.clipRect(rect, SkMatrix::I(), kReplace_SkClipOp, false);
REPORTER_ASSERT(reporter, 2 == count(stack));
stack.getBounds(&bound, &type, &isIntersectionOfRects);
REPORTER_ASSERT(reporter, bound == rect);
stack.restore();
REPORTER_ASSERT(reporter, 1 == count(stack));
stack.save();
stack.clipRect(rect, SkMatrix::I(), kReplace_SkClipOp, false);
stack.clipRect(rect, SkMatrix::I(), kReplace_SkClipOp, false);
REPORTER_ASSERT(reporter, 2 == count(stack));
stack.restore();
REPORTER_ASSERT(reporter, 1 == count(stack));
stack.save();
stack.clipRect(rect, SkMatrix::I(), kReplace_SkClipOp, false);
stack.clipRect(rect2, SkMatrix::I(), kIntersect_SkClipOp, false);
stack.clipRect(rect, SkMatrix::I(), kReplace_SkClipOp, false);
REPORTER_ASSERT(reporter, 2 == count(stack));
stack.restore();
REPORTER_ASSERT(reporter, 1 == count(stack));
}
}
// Simplified path-based version of test_rect_replace.
static void test_path_replace(skiatest::Reporter* reporter) {
SkRect rect = SkRect::MakeWH(100, 100);
SkPath path;
path.addCircle(50, 50, 50);
// Replace operation doesn't grow the stack.
{
SkClipStack stack;
REPORTER_ASSERT(reporter, 0 == count(stack));
stack.clipPath(path, SkMatrix::I(), kReplace_SkClipOp, false);
REPORTER_ASSERT(reporter, 1 == count(stack));
stack.clipPath(path, SkMatrix::I(), kReplace_SkClipOp, false);
REPORTER_ASSERT(reporter, 1 == count(stack));
}
// Replacing rect with path.
{
SkClipStack stack;
stack.clipRect(rect, SkMatrix::I(), kReplace_SkClipOp, true);
REPORTER_ASSERT(reporter, 1 == count(stack));
stack.clipPath(path, SkMatrix::I(), kReplace_SkClipOp, true);
REPORTER_ASSERT(reporter, 1 == count(stack));
}
}
// Test out SkClipStack's merging of rect clips. In particular exercise
// merging of aa vs. bw rects.
static void test_rect_merging(skiatest::Reporter* reporter) {
SkRect overlapLeft = SkRect::MakeLTRB(10, 10, 50, 50);
SkRect overlapRight = SkRect::MakeLTRB(40, 40, 80, 80);
SkRect nestedParent = SkRect::MakeLTRB(10, 10, 90, 90);
SkRect nestedChild = SkRect::MakeLTRB(40, 40, 60, 60);
SkRect bound;
SkClipStack::BoundsType type;
bool isIntersectionOfRects;
// all bw overlapping - should merge
{
SkClipStack stack;
stack.clipRect(overlapLeft, SkMatrix::I(), kReplace_SkClipOp, false);
stack.clipRect(overlapRight, SkMatrix::I(), kIntersect_SkClipOp, false);
REPORTER_ASSERT(reporter, 1 == count(stack));
stack.getBounds(&bound, &type, &isIntersectionOfRects);
REPORTER_ASSERT(reporter, isIntersectionOfRects);
}
// all aa overlapping - should merge
{
SkClipStack stack;
stack.clipRect(overlapLeft, SkMatrix::I(), kReplace_SkClipOp, true);
stack.clipRect(overlapRight, SkMatrix::I(), kIntersect_SkClipOp, true);
REPORTER_ASSERT(reporter, 1 == count(stack));
stack.getBounds(&bound, &type, &isIntersectionOfRects);
REPORTER_ASSERT(reporter, isIntersectionOfRects);
}
// mixed overlapping - should _not_ merge
{
SkClipStack stack;
stack.clipRect(overlapLeft, SkMatrix::I(), kReplace_SkClipOp, true);
stack.clipRect(overlapRight, SkMatrix::I(), kIntersect_SkClipOp, false);
REPORTER_ASSERT(reporter, 2 == count(stack));
stack.getBounds(&bound, &type, &isIntersectionOfRects);
REPORTER_ASSERT(reporter, !isIntersectionOfRects);
}
// mixed nested (bw inside aa) - should merge
{
SkClipStack stack;
stack.clipRect(nestedParent, SkMatrix::I(), kReplace_SkClipOp, true);
stack.clipRect(nestedChild, SkMatrix::I(), kIntersect_SkClipOp, false);
REPORTER_ASSERT(reporter, 1 == count(stack));
stack.getBounds(&bound, &type, &isIntersectionOfRects);
REPORTER_ASSERT(reporter, isIntersectionOfRects);
}
// mixed nested (aa inside bw) - should merge
{
SkClipStack stack;
stack.clipRect(nestedParent, SkMatrix::I(), kReplace_SkClipOp, false);
stack.clipRect(nestedChild, SkMatrix::I(), kIntersect_SkClipOp, true);
REPORTER_ASSERT(reporter, 1 == count(stack));
stack.getBounds(&bound, &type, &isIntersectionOfRects);
REPORTER_ASSERT(reporter, isIntersectionOfRects);
}
// reverse nested (aa inside bw) - should _not_ merge
{
SkClipStack stack;
stack.clipRect(nestedChild, SkMatrix::I(), kReplace_SkClipOp, false);
stack.clipRect(nestedParent, SkMatrix::I(), kIntersect_SkClipOp, true);
REPORTER_ASSERT(reporter, 2 == count(stack));
stack.getBounds(&bound, &type, &isIntersectionOfRects);
REPORTER_ASSERT(reporter, !isIntersectionOfRects);
}
}
static void test_quickContains(skiatest::Reporter* reporter) {
SkRect testRect = SkRect::MakeLTRB(10, 10, 40, 40);
SkRect insideRect = SkRect::MakeLTRB(20, 20, 30, 30);
SkRect intersectingRect = SkRect::MakeLTRB(25, 25, 50, 50);
SkRect outsideRect = SkRect::MakeLTRB(0, 0, 50, 50);
SkRect nonIntersectingRect = SkRect::MakeLTRB(100, 100, 110, 110);
SkPath insideCircle;
insideCircle.addCircle(25, 25, 5);
SkPath intersectingCircle;
intersectingCircle.addCircle(25, 40, 10);
SkPath outsideCircle;
outsideCircle.addCircle(25, 25, 50);
SkPath nonIntersectingCircle;
nonIntersectingCircle.addCircle(100, 100, 5);
{
SkClipStack stack;
stack.clipRect(outsideRect, SkMatrix::I(), kDifference_SkClipOp, false);
// return false because quickContains currently does not care for kDifference_SkClipOp
REPORTER_ASSERT(reporter, false == stack.quickContains(testRect));
}
// Replace Op tests
{
SkClipStack stack;
stack.clipRect(outsideRect, SkMatrix::I(), kReplace_SkClipOp, false);
REPORTER_ASSERT(reporter, true == stack.quickContains(testRect));
}
{
SkClipStack stack;
stack.clipRect(insideRect, SkMatrix::I(), kIntersect_SkClipOp, false);
stack.save(); // To prevent in-place substitution by replace OP
stack.clipRect(outsideRect, SkMatrix::I(), kReplace_SkClipOp, false);
REPORTER_ASSERT(reporter, true == stack.quickContains(testRect));
stack.restore();
}
{
SkClipStack stack;
stack.clipRect(outsideRect, SkMatrix::I(), kIntersect_SkClipOp, false);
stack.save(); // To prevent in-place substitution by replace OP
stack.clipRect(insideRect, SkMatrix::I(), kReplace_SkClipOp, false);
REPORTER_ASSERT(reporter, false == stack.quickContains(testRect));
stack.restore();
}
// Verify proper traversal of multi-element clip
{
SkClipStack stack;
stack.clipRect(insideRect, SkMatrix::I(), kIntersect_SkClipOp, false);
// Use a path for second clip to prevent in-place intersection
stack.clipPath(outsideCircle, SkMatrix::I(), kIntersect_SkClipOp, false);
REPORTER_ASSERT(reporter, false == stack.quickContains(testRect));
}
// Intersect Op tests with rectangles
{
SkClipStack stack;
stack.clipRect(outsideRect, SkMatrix::I(), kIntersect_SkClipOp, false);
REPORTER_ASSERT(reporter, true == stack.quickContains(testRect));
}
{
SkClipStack stack;
stack.clipRect(insideRect, SkMatrix::I(), kIntersect_SkClipOp, false);
REPORTER_ASSERT(reporter, false == stack.quickContains(testRect));
}
{
SkClipStack stack;
stack.clipRect(intersectingRect, SkMatrix::I(), kIntersect_SkClipOp, false);
REPORTER_ASSERT(reporter, false == stack.quickContains(testRect));
}
{
SkClipStack stack;
stack.clipRect(nonIntersectingRect, SkMatrix::I(), kIntersect_SkClipOp, false);
REPORTER_ASSERT(reporter, false == stack.quickContains(testRect));
}
// Intersect Op tests with circle paths
{
SkClipStack stack;
stack.clipPath(outsideCircle, SkMatrix::I(), kIntersect_SkClipOp, false);
REPORTER_ASSERT(reporter, true == stack.quickContains(testRect));
}
{
SkClipStack stack;
stack.clipPath(insideCircle, SkMatrix::I(), kIntersect_SkClipOp, false);
REPORTER_ASSERT(reporter, false == stack.quickContains(testRect));
}
{
SkClipStack stack;
stack.clipPath(intersectingCircle, SkMatrix::I(), kIntersect_SkClipOp, false);
REPORTER_ASSERT(reporter, false == stack.quickContains(testRect));
}
{
SkClipStack stack;
stack.clipPath(nonIntersectingCircle, SkMatrix::I(), kIntersect_SkClipOp, false);
REPORTER_ASSERT(reporter, false == stack.quickContains(testRect));
}
// Intersect Op tests with inverse filled rectangles
{
SkClipStack stack;
SkPath path;
path.addRect(outsideRect);
path.toggleInverseFillType();
stack.clipPath(path, SkMatrix::I(), kIntersect_SkClipOp, false);
REPORTER_ASSERT(reporter, false == stack.quickContains(testRect));
}
{
SkClipStack stack;
SkPath path;
path.addRect(insideRect);
path.toggleInverseFillType();
stack.clipPath(path, SkMatrix::I(), kIntersect_SkClipOp, false);
REPORTER_ASSERT(reporter, false == stack.quickContains(testRect));
}
{
SkClipStack stack;
SkPath path;
path.addRect(intersectingRect);
path.toggleInverseFillType();
stack.clipPath(path, SkMatrix::I(), kIntersect_SkClipOp, false);
REPORTER_ASSERT(reporter, false == stack.quickContains(testRect));
}
{
SkClipStack stack;
SkPath path;
path.addRect(nonIntersectingRect);
path.toggleInverseFillType();
stack.clipPath(path, SkMatrix::I(), kIntersect_SkClipOp, false);
REPORTER_ASSERT(reporter, true == stack.quickContains(testRect));
}
// Intersect Op tests with inverse filled circles
{
SkClipStack stack;
SkPath path = outsideCircle;
path.toggleInverseFillType();
stack.clipPath(path, SkMatrix::I(), kIntersect_SkClipOp, false);
REPORTER_ASSERT(reporter, false == stack.quickContains(testRect));
}
{
SkClipStack stack;
SkPath path = insideCircle;
path.toggleInverseFillType();
stack.clipPath(path, SkMatrix::I(), kIntersect_SkClipOp, false);
REPORTER_ASSERT(reporter, false == stack.quickContains(testRect));
}
{
SkClipStack stack;
SkPath path = intersectingCircle;
path.toggleInverseFillType();
stack.clipPath(path, SkMatrix::I(), kIntersect_SkClipOp, false);
REPORTER_ASSERT(reporter, false == stack.quickContains(testRect));
}
{
SkClipStack stack;
SkPath path = nonIntersectingCircle;
path.toggleInverseFillType();
stack.clipPath(path, SkMatrix::I(), kIntersect_SkClipOp, false);
REPORTER_ASSERT(reporter, true == stack.quickContains(testRect));
}
}
static void set_region_to_stack(const SkClipStack& stack, const SkIRect& bounds, SkRegion* region) {
region->setRect(bounds);
SkClipStack::Iter iter(stack, SkClipStack::Iter::kBottom_IterStart);
while (const SkClipStack::Element *element = iter.next()) {
SkRegion elemRegion;
SkRegion boundsRgn(bounds);
SkPath path;
switch (element->getType()) {
case SkClipStack::Element::kEmpty_Type:
elemRegion.setEmpty();
break;
default:
element->asPath(&path);
elemRegion.setPath(path, boundsRgn);
break;
}
region->op(elemRegion, (SkRegion::Op)element->getOp());
}
}
static void test_invfill_diff_bug(skiatest::Reporter* reporter) {
SkClipStack stack;
stack.clipRect({10, 10, 20, 20}, SkMatrix::I(), kIntersect_SkClipOp, false);
SkPath path;
path.addRect({30, 10, 40, 20});
path.setFillType(SkPath::kInverseWinding_FillType);
stack.clipPath(path, SkMatrix::I(), kDifference_SkClipOp, false);
REPORTER_ASSERT(reporter, SkClipStack::kEmptyGenID == stack.getTopmostGenID());
SkRect stackBounds;
SkClipStack::BoundsType stackBoundsType;
stack.getBounds(&stackBounds, &stackBoundsType);
REPORTER_ASSERT(reporter, stackBounds.isEmpty());
REPORTER_ASSERT(reporter, SkClipStack::kNormal_BoundsType == stackBoundsType);
SkRegion region;
set_region_to_stack(stack, {0, 0, 50, 30}, &region);
REPORTER_ASSERT(reporter, region.isEmpty());
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#if SK_SUPPORT_GPU
// Functions that add a shape to the clip stack. The shape is computed from a rectangle.
// AA is always disabled since the clip stack reducer can cause changes in aa rasterization of the
// stack. A fractional edge repeated in different elements may be rasterized fewer times using the
// reduced stack.
typedef void (*AddElementFunc) (const SkRect& rect,
bool invert,
SkClipOp op,
SkClipStack* stack,
bool doAA);
static void add_round_rect(const SkRect& rect, bool invert, SkClipOp op, SkClipStack* stack,
bool doAA) {
SkScalar rx = rect.width() / 10;
SkScalar ry = rect.height() / 20;
if (invert) {
SkPath path;
path.addRoundRect(rect, rx, ry);
path.setFillType(SkPath::kInverseWinding_FillType);
stack->clipPath(path, SkMatrix::I(), op, doAA);
} else {
SkRRect rrect;
rrect.setRectXY(rect, rx, ry);
stack->clipRRect(rrect, SkMatrix::I(), op, doAA);
}
};
static void add_rect(const SkRect& rect, bool invert, SkClipOp op, SkClipStack* stack,
bool doAA) {
if (invert) {
SkPath path;
path.addRect(rect);
path.setFillType(SkPath::kInverseWinding_FillType);
stack->clipPath(path, SkMatrix::I(), op, doAA);
} else {
stack->clipRect(rect, SkMatrix::I(), op, doAA);
}
};
static void add_oval(const SkRect& rect, bool invert, SkClipOp op, SkClipStack* stack,
bool doAA) {
SkPath path;
path.addOval(rect);
if (invert) {
path.setFillType(SkPath::kInverseWinding_FillType);
}
stack->clipPath(path, SkMatrix::I(), op, doAA);
};
static void add_elem_to_stack(const SkClipStack::Element& element, SkClipStack* stack) {
switch (element.getType()) {
case SkClipStack::Element::kRect_Type:
stack->clipRect(element.getRect(), SkMatrix::I(), element.getOp(), element.isAA());
break;
case SkClipStack::Element::kRRect_Type:
stack->clipRRect(element.getRRect(), SkMatrix::I(), element.getOp(), element.isAA());
break;
case SkClipStack::Element::kPath_Type:
stack->clipPath(element.getPath(), SkMatrix::I(), element.getOp(), element.isAA());
break;
case SkClipStack::Element::kEmpty_Type:
SkDEBUGFAIL("Why did the reducer produce an explicit empty.");
stack->clipEmpty();
break;
}
}
static void test_reduced_clip_stack(skiatest::Reporter* reporter) {
// We construct random clip stacks, reduce them, and then rasterize both versions to verify that
// they are equal.
// All the clip elements will be contained within these bounds.
static const SkIRect kIBounds = SkIRect::MakeWH(100, 100);
static const SkRect kBounds = SkRect::Make(kIBounds);
enum {
kNumTests = 250,
kMinElemsPerTest = 1,
kMaxElemsPerTest = 50,
};
// min/max size of a clip element as a fraction of kBounds.
static const SkScalar kMinElemSizeFrac = SK_Scalar1 / 5;
static const SkScalar kMaxElemSizeFrac = SK_Scalar1;
static const SkClipOp kOps[] = {
kDifference_SkClipOp,
kIntersect_SkClipOp,
kUnion_SkClipOp,
kXOR_SkClipOp,
kReverseDifference_SkClipOp,
kReplace_SkClipOp,
};
// Replace operations short-circuit the optimizer. We want to make sure that we test this code
// path a little bit but we don't want it to prevent us from testing many longer traversals in
// the optimizer.
static const int kReplaceDiv = 4 * kMaxElemsPerTest;
// We want to test inverse fills. However, they are quite rare in practice so don't over do it.
static const SkScalar kFractionInverted = SK_Scalar1 / kMaxElemsPerTest;
static const SkScalar kFractionAntialiased = 0.25;
static const AddElementFunc kElementFuncs[] = {
add_rect,
add_round_rect,
add_oval,
};
SkRandom r;
for (int i = 0; i < kNumTests; ++i) {
SkString testCase;
testCase.printf("Iteration %d", i);
// Randomly generate a clip stack.
SkClipStack stack;
int numElems = r.nextRangeU(kMinElemsPerTest, kMaxElemsPerTest);
bool doAA = r.nextBiasedBool(kFractionAntialiased);
for (int e = 0; e < numElems; ++e) {
SkClipOp op = kOps[r.nextULessThan(SK_ARRAY_COUNT(kOps))];
if (op == kReplace_SkClipOp) {
if (r.nextU() % kReplaceDiv) {
--e;
continue;
}
}
// saves can change the clip stack behavior when an element is added.
bool doSave = r.nextBool();
SkSize size = SkSize::Make(
kBounds.width() * r.nextRangeScalar(kMinElemSizeFrac, kMaxElemSizeFrac),
kBounds.height() * r.nextRangeScalar(kMinElemSizeFrac, kMaxElemSizeFrac));
SkPoint xy = {r.nextRangeScalar(kBounds.fLeft, kBounds.fRight - size.fWidth),
r.nextRangeScalar(kBounds.fTop, kBounds.fBottom - size.fHeight)};
SkRect rect;
if (doAA) {
rect.setXYWH(xy.fX, xy.fY, size.fWidth, size.fHeight);
if (GrClip::IsPixelAligned(rect)) {
// Don't create an element that may accidentally become not antialiased.
rect.outset(0.5f, 0.5f);
}
SkASSERT(!GrClip::IsPixelAligned(rect));
} else {
rect.setXYWH(SkScalarFloorToScalar(xy.fX),
SkScalarFloorToScalar(xy.fY),
SkScalarCeilToScalar(size.fWidth),
SkScalarCeilToScalar(size.fHeight));
}
bool invert = r.nextBiasedBool(kFractionInverted);
kElementFuncs[r.nextULessThan(SK_ARRAY_COUNT(kElementFuncs))](rect, invert, op, &stack,
doAA);
if (doSave) {
stack.save();
}
}
// Zero the memory we will new the GrReducedClip into. This ensures the elements gen ID
// will be kInvalidGenID if left uninitialized.
SkAlignedSTStorage<1, GrReducedClip> storage;
memset(storage.get(), 0, sizeof(GrReducedClip));
GR_STATIC_ASSERT(0 == SkClipStack::kInvalidGenID);
// Get the reduced version of the stack.
SkRect queryBounds = kBounds;
queryBounds.outset(kBounds.width() / 2, kBounds.height() / 2);
const GrReducedClip* reduced = new (storage.get()) GrReducedClip(stack, queryBounds);
REPORTER_ASSERT_MESSAGE(reporter,
reduced->elements().isEmpty() ||
SkClipStack::kInvalidGenID != reduced->elementsGenID(),
testCase.c_str());
if (!reduced->elements().isEmpty()) {
REPORTER_ASSERT_MESSAGE(reporter, reduced->hasIBounds(), testCase.c_str());
SkRect stackBounds;
SkClipStack::BoundsType stackBoundsType;
stack.getBounds(&stackBounds, &stackBoundsType);
if (SkClipStack::kNormal_BoundsType == stackBoundsType) {
// Unless GrReducedClip starts doing some heroic tightening of the clip bounds, this
// will be true since the stack bounds are completely contained inside the query.
REPORTER_ASSERT_MESSAGE(reporter,
GrClip::IsInsideClip(reduced->ibounds(), stackBounds),
testCase.c_str());
}
REPORTER_ASSERT_MESSAGE(reporter, reduced->requiresAA() == doAA, testCase.c_str());
}
// Build a new clip stack based on the reduced clip elements
SkClipStack reducedStack;
if (GrReducedClip::InitialState::kAllOut == reduced->initialState()) {
// whether the result is bounded or not, the whole plane should start outside the clip.
reducedStack.clipEmpty();
}
for (ElementList::Iter iter(reduced->elements()); iter.get(); iter.next()) {
add_elem_to_stack(*iter.get(), &reducedStack);
}
SkIRect ibounds = reduced->hasIBounds() ? reduced->ibounds() : kIBounds;
// GrReducedClipStack assumes that the final result is clipped to the returned bounds
reducedStack.clipDevRect(ibounds, kIntersect_SkClipOp);
stack.clipDevRect(ibounds, kIntersect_SkClipOp);
// convert both the original stack and reduced stack to SkRegions and see if they're equal
SkRegion region;
set_region_to_stack(stack, ibounds, &region);
SkRegion reducedRegion;
set_region_to_stack(reducedStack, ibounds, &reducedRegion);
REPORTER_ASSERT_MESSAGE(reporter, region == reducedRegion, testCase.c_str());
reduced->~GrReducedClip();
}
}
#ifdef SK_BUILD_FOR_WIN
#define SUPPRESS_VISIBILITY_WARNING
#else
#define SUPPRESS_VISIBILITY_WARNING __attribute__((visibility("hidden")))
#endif
static void test_reduced_clip_stack_genid(skiatest::Reporter* reporter) {
{
SkClipStack stack;
stack.clipRect(SkRect::MakeXYWH(0, 0, 100, 100), SkMatrix::I(), kReplace_SkClipOp,
true);
stack.clipRect(SkRect::MakeXYWH(0, 0, SkScalar(50.3), SkScalar(50.3)), SkMatrix::I(),
kReplace_SkClipOp, true);
SkRect bounds = SkRect::MakeXYWH(0, 0, 100, 100);
SkAlignedSTStorage<1, GrReducedClip> storage;
memset(storage.get(), 0, sizeof(GrReducedClip));
GR_STATIC_ASSERT(0 == SkClipStack::kInvalidGenID);
const GrReducedClip* reduced = new (storage.get()) GrReducedClip(stack, bounds);
REPORTER_ASSERT(reporter, reduced->elements().count() == 1);
// Clips will be cached based on the generation id. Make sure the gen id is valid.
REPORTER_ASSERT(reporter, SkClipStack::kInvalidGenID != reduced->elementsGenID());
reduced->~GrReducedClip();
}
{
SkClipStack stack;
// Create a clip with following 25.3, 25.3 boxes which are 25 apart:
// A B
// C D
stack.clipRect(SkRect::MakeXYWH(0, 0, SkScalar(25.3), SkScalar(25.3)), SkMatrix::I(),
kReplace_SkClipOp, true);
int32_t genIDA = stack.getTopmostGenID();
stack.clipRect(SkRect::MakeXYWH(50, 0, SkScalar(25.3), SkScalar(25.3)), SkMatrix::I(),
kUnion_SkClipOp, true);
int32_t genIDB = stack.getTopmostGenID();
stack.clipRect(SkRect::MakeXYWH(0, 50, SkScalar(25.3), SkScalar(25.3)), SkMatrix::I(),
kUnion_SkClipOp, true);
int32_t genIDC = stack.getTopmostGenID();
stack.clipRect(SkRect::MakeXYWH(50, 50, SkScalar(25.3), SkScalar(25.3)), SkMatrix::I(),
kUnion_SkClipOp, true);
int32_t genIDD = stack.getTopmostGenID();
#define IXYWH SkIRect::MakeXYWH
#define XYWH SkRect::MakeXYWH
SkIRect stackBounds = IXYWH(0, 0, 76, 76);
// The base test is to test each rect in two ways:
// 1) The box dimensions. (Should reduce to "all in", no elements).
// 2) A bit over the box dimensions.
// In the case 2, test that the generation id is what is expected.
// The rects are of fractional size so that case 2 never gets optimized to an empty element
// list.
// Not passing in tighter bounds is tested for consistency.
static const struct SUPPRESS_VISIBILITY_WARNING {
SkRect testBounds;
int reducedClipCount;
int32_t reducedGenID;
InitialState initialState;
SkIRect clipIRect;
// parameter.
} testCases[] = {
// Rect A.
{ XYWH(0, 0, 25, 25), 0, SkClipStack::kInvalidGenID, GrReducedClip::InitialState::kAllIn, IXYWH(0, 0, 25, 25) },
{ XYWH(0.1f, 0.1f, 25.1f, 25.1f), 0, SkClipStack::kInvalidGenID, GrReducedClip::InitialState::kAllIn, IXYWH(0, 0, 26, 26) },
{ XYWH(0, 0, 27, 27), 1, genIDA, GrReducedClip::InitialState::kAllOut, IXYWH(0, 0, 27, 27)},
// Rect B.
{ XYWH(50, 0, 25, 25), 0, SkClipStack::kInvalidGenID, GrReducedClip::InitialState::kAllIn, IXYWH(50, 0, 25, 25) },
{ XYWH(50, 0, 25.3f, 25.3f), 0, SkClipStack::kInvalidGenID, GrReducedClip::InitialState::kAllIn, IXYWH(50, 0, 26, 26) },
{ XYWH(50, 0, 27, 27), 1, genIDB, GrReducedClip::InitialState::kAllOut, IXYWH(50, 0, 26, 27) },
// Rect C.
{ XYWH(0, 50, 25, 25), 0, SkClipStack::kInvalidGenID, GrReducedClip::InitialState::kAllIn, IXYWH(0, 50, 25, 25) },
{ XYWH(0.2f, 50.1f, 25.1f, 25.2f), 0, SkClipStack::kInvalidGenID, GrReducedClip::InitialState::kAllIn, IXYWH(0, 50, 26, 26) },
{ XYWH(0, 50, 27, 27), 1, genIDC, GrReducedClip::InitialState::kAllOut, IXYWH(0, 50, 27, 26) },
// Rect D.
{ XYWH(50, 50, 25, 25), 0, SkClipStack::kInvalidGenID, GrReducedClip::InitialState::kAllIn, IXYWH(50, 50, 25, 25)},
{ XYWH(50.3f, 50.3f, 25, 25), 0, SkClipStack::kInvalidGenID, GrReducedClip::InitialState::kAllIn, IXYWH(50, 50, 26, 26)},
{ XYWH(50, 50, 27, 27), 1, genIDD, GrReducedClip::InitialState::kAllOut, IXYWH(50, 50, 26, 26)},
// Other tests:
{ XYWH(0, 0, 100, 100), 4, genIDD, GrReducedClip::InitialState::kAllOut, stackBounds },
// Rect in the middle, touches none.
{ XYWH(26, 26, 24, 24), 0, SkClipStack::kInvalidGenID, GrReducedClip::InitialState::kAllOut, IXYWH(26, 26, 24, 24) },
// Rect in the middle, touches all the rects. GenID is the last rect.
{ XYWH(24, 24, 27, 27), 4, genIDD, GrReducedClip::InitialState::kAllOut, IXYWH(24, 24, 27, 27) },
};
#undef XYWH
#undef IXYWH
for (size_t i = 0; i < SK_ARRAY_COUNT(testCases); ++i) {
const GrReducedClip reduced(stack, testCases[i].testBounds);
REPORTER_ASSERT(reporter, reduced.elements().count() == testCases[i].reducedClipCount);
SkASSERT(reduced.elements().count() == testCases[i].reducedClipCount);
if (reduced.elements().count()) {
REPORTER_ASSERT(reporter, reduced.elementsGenID() == testCases[i].reducedGenID);
SkASSERT(reduced.elementsGenID() == testCases[i].reducedGenID);
}
REPORTER_ASSERT(reporter, reduced.initialState() == testCases[i].initialState);
SkASSERT(reduced.initialState() == testCases[i].initialState);
REPORTER_ASSERT(reporter, reduced.hasIBounds());
SkASSERT(reduced.hasIBounds());
REPORTER_ASSERT(reporter, reduced.ibounds() == testCases[i].clipIRect);
SkASSERT(reduced.ibounds() == testCases[i].clipIRect);
}
}
}
static void test_reduced_clip_stack_no_aa_crash(skiatest::Reporter* reporter) {
SkClipStack stack;
stack.clipDevRect(SkIRect::MakeXYWH(0, 0, 100, 100), kReplace_SkClipOp);
stack.clipDevRect(SkIRect::MakeXYWH(0, 0, 50, 50), kReplace_SkClipOp);
SkRect bounds = SkRect::MakeXYWH(0, 0, 100, 100);
// At the time, this would crash.
const GrReducedClip reduced(stack, bounds);
REPORTER_ASSERT(reporter, reduced.elements().isEmpty());
}
enum class ClipMethod {
kSkipDraw,
kIgnoreClip,
kScissor,
kAAElements
};
static void test_aa_query(skiatest::Reporter* reporter, const SkString& testName,
const SkClipStack& stack, const SkMatrix& queryXform,
const SkRect& preXformQuery, ClipMethod expectedMethod,
int numExpectedElems = 0) {
SkRect queryBounds;
queryXform.mapRect(&queryBounds, preXformQuery);
const GrReducedClip reduced(stack, queryBounds);
SkClipStack::BoundsType stackBoundsType;
SkRect stackBounds;
stack.getBounds(&stackBounds, &stackBoundsType);
switch (expectedMethod) {
case ClipMethod::kSkipDraw:
SkASSERT(0 == numExpectedElems);
REPORTER_ASSERT_MESSAGE(reporter, reduced.elements().isEmpty(), testName.c_str());
REPORTER_ASSERT_MESSAGE(reporter,
GrReducedClip::InitialState::kAllOut == reduced.initialState(),
testName.c_str());
return;
case ClipMethod::kIgnoreClip:
SkASSERT(0 == numExpectedElems);
REPORTER_ASSERT_MESSAGE(reporter,
!reduced.hasIBounds() ||
GrClip::IsInsideClip(reduced.ibounds(), queryBounds),
testName.c_str());
REPORTER_ASSERT_MESSAGE(reporter, reduced.elements().isEmpty(), testName.c_str());
REPORTER_ASSERT_MESSAGE(reporter,
GrReducedClip::InitialState::kAllIn == reduced.initialState(),
testName.c_str());
return;
case ClipMethod::kScissor: {
SkASSERT(SkClipStack::kNormal_BoundsType == stackBoundsType);
SkASSERT(0 == numExpectedElems);
SkIRect expectedScissor;
stackBounds.round(&expectedScissor);
REPORTER_ASSERT_MESSAGE(reporter, reduced.elements().isEmpty(), testName.c_str());
REPORTER_ASSERT_MESSAGE(reporter, reduced.hasIBounds(), testName.c_str());
REPORTER_ASSERT_MESSAGE(reporter, expectedScissor == reduced.ibounds(),
testName.c_str());
REPORTER_ASSERT_MESSAGE(reporter,
GrReducedClip::InitialState::kAllIn == reduced.initialState(),
testName.c_str());
return;
}
case ClipMethod::kAAElements: {
SkIRect expectedClipIBounds = GrClip::GetPixelIBounds(queryBounds);
if (SkClipStack::kNormal_BoundsType == stackBoundsType) {
SkAssertResult(expectedClipIBounds.intersect(GrClip::GetPixelIBounds(stackBounds)));
}
REPORTER_ASSERT_MESSAGE(reporter, numExpectedElems == reduced.elements().count(),
testName.c_str());
REPORTER_ASSERT_MESSAGE(reporter, reduced.hasIBounds(), testName.c_str());
REPORTER_ASSERT_MESSAGE(reporter, expectedClipIBounds == reduced.ibounds(),
testName.c_str());
REPORTER_ASSERT_MESSAGE(reporter, reduced.requiresAA() == !reduced.elements().isEmpty(),
testName.c_str());
break;
}
}
}
static void test_reduced_clip_stack_aa(skiatest::Reporter* reporter) {
constexpr SkScalar IL = 2, IT = 1, IR = 6, IB = 7; // Pixel aligned rect.
constexpr SkScalar L = 2.2f, T = 1.7f, R = 5.8f, B = 7.3f; // Generic rect.
constexpr SkScalar l = 3.3f, t = 2.8f, r = 4.7f, b = 6.2f; // Small rect contained in R.
SkRect alignedRect = {IL, IT, IR, IB};
SkRect rect = {L, T, R, B};
SkRect innerRect = {l, t, r, b};
SkMatrix m;
m.setIdentity();
constexpr SkScalar kMinScale = 2.0001f;
constexpr SkScalar kMaxScale = 3;
constexpr int kNumIters = 8;
SkString name;
SkRandom rand;
for (int i = 0; i < kNumIters; ++i) {
// Pixel-aligned rect (iior=true).
name.printf("Pixel-aligned rect test, iter %i", i);
SkClipStack stack;
stack.clipRect(alignedRect, SkMatrix::I(), kIntersect_SkClipOp, true);
test_aa_query(reporter, name, stack, m, {IL, IT, IR, IB}, ClipMethod::kIgnoreClip);
test_aa_query(reporter, name, stack, m, {IL, IT-1, IR, IT}, ClipMethod::kSkipDraw);
test_aa_query(reporter, name, stack, m, {IL, IT-2, IR, IB}, ClipMethod::kScissor);
// Rect (iior=true).
name.printf("Rect test, iter %i", i);
stack.reset();
stack.clipRect(rect, SkMatrix::I(), kIntersect_SkClipOp, true);
test_aa_query(reporter, name, stack, m, {L, T, R, B}, ClipMethod::kIgnoreClip);
test_aa_query(reporter, name, stack, m, {L-.1f, T, L, B}, ClipMethod::kSkipDraw);
test_aa_query(reporter, name, stack, m, {L-.1f, T, L+.1f, B}, ClipMethod::kAAElements, 1);
// Difference rect (iior=false, inside-out bounds).
name.printf("Difference rect test, iter %i", i);
stack.reset();
stack.clipRect(rect, SkMatrix::I(), kDifference_SkClipOp, true);
test_aa_query(reporter, name, stack, m, {L, T, R, B}, ClipMethod::kSkipDraw);
test_aa_query(reporter, name, stack, m, {L, T-.1f, R, T}, ClipMethod::kIgnoreClip);
test_aa_query(reporter, name, stack, m, {L, T-.1f, R, T+.1f}, ClipMethod::kAAElements, 1);
// Complex clip (iior=false, normal bounds).
name.printf("Complex clip test, iter %i", i);
stack.reset();
stack.clipRect(rect, SkMatrix::I(), kIntersect_SkClipOp, true);
stack.clipRect(innerRect, SkMatrix::I(), kXOR_SkClipOp, true);
test_aa_query(reporter, name, stack, m, {l, t, r, b}, ClipMethod::kSkipDraw);
test_aa_query(reporter, name, stack, m, {r-.1f, t, R, b}, ClipMethod::kAAElements, 1);
test_aa_query(reporter, name, stack, m, {r-.1f, t, R+.1f, b}, ClipMethod::kAAElements, 2);
test_aa_query(reporter, name, stack, m, {r, t, R+.1f, b}, ClipMethod::kAAElements, 1);
test_aa_query(reporter, name, stack, m, {r, t, R, b}, ClipMethod::kIgnoreClip);
test_aa_query(reporter, name, stack, m, {R, T, R+.1f, B}, ClipMethod::kSkipDraw);
// Complex clip where outer rect is pixel aligned (iior=false, normal bounds).
name.printf("Aligned Complex clip test, iter %i", i);
stack.reset();
stack.clipRect(alignedRect, SkMatrix::I(), kIntersect_SkClipOp, true);
stack.clipRect(innerRect, SkMatrix::I(), kXOR_SkClipOp, true);
test_aa_query(reporter, name, stack, m, {l, t, r, b}, ClipMethod::kSkipDraw);
test_aa_query(reporter, name, stack, m, {l, b-.1f, r, IB}, ClipMethod::kAAElements, 1);
test_aa_query(reporter, name, stack, m, {l, b-.1f, r, IB+.1f}, ClipMethod::kAAElements, 1);
test_aa_query(reporter, name, stack, m, {l, b, r, IB+.1f}, ClipMethod::kAAElements, 0);
test_aa_query(reporter, name, stack, m, {l, b, r, IB}, ClipMethod::kIgnoreClip);
test_aa_query(reporter, name, stack, m, {IL, IB, IR, IB+.1f}, ClipMethod::kSkipDraw);
// Apply random transforms and try again. This ensures the clip stack reduction is hardened
// against FP rounding error.
SkScalar sx = rand.nextRangeScalar(kMinScale, kMaxScale);
sx = SkScalarFloorToScalar(sx * alignedRect.width()) / alignedRect.width();
SkScalar sy = rand.nextRangeScalar(kMinScale, kMaxScale);
sy = SkScalarFloorToScalar(sy * alignedRect.height()) / alignedRect.height();
SkScalar tx = SkScalarRoundToScalar(sx * alignedRect.x()) - sx * alignedRect.x();
SkScalar ty = SkScalarRoundToScalar(sy * alignedRect.y()) - sy * alignedRect.y();
SkMatrix xform = SkMatrix::MakeScale(sx, sy);
xform.postTranslate(tx, ty);
xform.mapRect(&alignedRect);
xform.mapRect(&rect);
xform.mapRect(&innerRect);
m.postConcat(xform);
}
}
#endif
DEF_TEST(ClipStack, reporter) {
SkClipStack stack;
REPORTER_ASSERT(reporter, 0 == stack.getSaveCount());
assert_count(reporter, stack, 0);
static const SkIRect gRects[] = {
{ 0, 0, 100, 100 },
{ 25, 25, 125, 125 },
{ 0, 0, 1000, 1000 },
{ 0, 0, 75, 75 }
};
for (size_t i = 0; i < SK_ARRAY_COUNT(gRects); i++) {
stack.clipDevRect(gRects[i], kIntersect_SkClipOp);
}
// all of the above rects should have been intersected, leaving only 1 rect
SkClipStack::B2TIter iter(stack);
const SkClipStack::Element* element = iter.next();
SkRect answer;
answer.iset(25, 25, 75, 75);
REPORTER_ASSERT(reporter, element);
REPORTER_ASSERT(reporter, SkClipStack::Element::kRect_Type == element->getType());
REPORTER_ASSERT(reporter, kIntersect_SkClipOp == element->getOp());
REPORTER_ASSERT(reporter, element->getRect() == answer);
// now check that we only had one in our iterator
REPORTER_ASSERT(reporter, !iter.next());
stack.reset();
REPORTER_ASSERT(reporter, 0 == stack.getSaveCount());
assert_count(reporter, stack, 0);
test_assign_and_comparison(reporter);
test_iterators(reporter);
test_bounds(reporter, SkClipStack::Element::kRect_Type);
test_bounds(reporter, SkClipStack::Element::kRRect_Type);
test_bounds(reporter, SkClipStack::Element::kPath_Type);
test_isWideOpen(reporter);
test_rect_merging(reporter);
test_rect_replace(reporter);
test_rect_inverse_fill(reporter);
test_path_replace(reporter);
test_quickContains(reporter);
test_invfill_diff_bug(reporter);
#if SK_SUPPORT_GPU
test_reduced_clip_stack(reporter);
test_reduced_clip_stack_genid(reporter);
test_reduced_clip_stack_no_aa_crash(reporter);
test_reduced_clip_stack_aa(reporter);
#endif
}
//////////////////////////////////////////////////////////////////////////////
#if SK_SUPPORT_GPU
sk_sp<GrTextureProxy> GrClipStackClip::testingOnly_createClipMask(GrContext* context) const {
const GrReducedClip reducedClip(*fStack, SkRect::MakeWH(512, 512), 0);
return this->createSoftwareClipMask(context, reducedClip);
}
// Verify that clip masks are freed up when the clip state that generated them goes away.
DEF_GPUTEST_FOR_ALL_CONTEXTS(ClipMaskCache, reporter, ctxInfo) {
// This test uses resource key tags which only function in debug builds.
#ifdef SK_DEBUG
GrContext* context = ctxInfo.grContext();
SkClipStack stack;
SkPath path;
path.addCircle(10, 10, 8);
path.addCircle(15, 15, 8);
path.setFillType(SkPath::kEvenOdd_FillType);
static const char* kTag = GrClipStackClip::kMaskTestTag;
GrResourceCache* cache = context->getResourceCache();
static constexpr int kN = 5;
for (int i = 0; i < kN; ++i) {
SkMatrix m;
m.setTranslate(0.5, 0.5);
stack.save();
stack.clipPath(path, m, SkClipOp::kIntersect, true);
sk_sp<GrTextureProxy> mask = GrClipStackClip(&stack).testingOnly_createClipMask(context);
mask->instantiate(context->resourceProvider());
GrTexture* tex = mask->priv().peekTexture();
REPORTER_ASSERT(reporter, 0 == strcmp(tex->getUniqueKey().tag(), kTag));
// Make sure mask isn't pinned in cache.
mask.reset(nullptr);
context->flush();
REPORTER_ASSERT(reporter, i + 1 == cache->countUniqueKeysWithTag(kTag));
}
for (int i = 0; i < kN; ++i) {
stack.restore();
cache->purgeAsNeeded();
REPORTER_ASSERT(reporter, kN - (i + 1) == cache->countUniqueKeysWithTag(kTag));
}
#endif
}
#include "SkSurface.h"
DEF_GPUTEST_FOR_ALL_CONTEXTS(canvas_private_clipRgn, reporter, ctxInfo) {
GrContext* context = ctxInfo.grContext();
const int w = 10;
const int h = 10;
SkImageInfo info = SkImageInfo::MakeN32Premul(w, h);
sk_sp<SkSurface> surf = SkSurface::MakeRenderTarget(context, SkBudgeted::kNo, info);
SkCanvas* canvas = surf->getCanvas();
SkRegion rgn;
canvas->temporary_internal_getRgnClip(&rgn);
REPORTER_ASSERT(reporter, rgn.isRect());
REPORTER_ASSERT(reporter, rgn.getBounds() == SkIRect::MakeWH(w, h));
canvas->save();
canvas->clipRect(SkRect::MakeWH(5, 5), kDifference_SkClipOp);
canvas->temporary_internal_getRgnClip(&rgn);
REPORTER_ASSERT(reporter, rgn.isComplex());
REPORTER_ASSERT(reporter, rgn.getBounds() == SkIRect::MakeWH(w, h));
canvas->restore();
canvas->save();
canvas->clipRRect(SkRRect::MakeOval(SkRect::MakeLTRB(3, 3, 7, 7)));
canvas->temporary_internal_getRgnClip(&rgn);
REPORTER_ASSERT(reporter, rgn.isComplex());
REPORTER_ASSERT(reporter, rgn.getBounds() == SkIRect::MakeLTRB(3, 3, 7, 7));
canvas->restore();
}
#endif