skia2/tools/skiaserve/Request.cpp
Hal Canary db6830162e SkImageEncoder: simplify API
(re-land 248ff02 & 2cb6cb7, with changes)

  - Hide SkImageEncoder class in private header.
  - SkImageEncoder::Type becomes SkEncodedImageFormat
  - SkEncodedFormat becomes SkEncodedImageFormat
  - SkImageEncoder static functions replaced with
    single function EncodeImage()
  - utility wrappers for EncodeImage() are in
    sk_tool_utils.h

TODO: remove link-time registration mechanism.
TODO: clean up clients use of API and flip the flag.
TODO: implement EncodeImage() in chromeium/skia/ext

Change-Id: I47d451e50be4d5c6c130869c7fa7c2857243d9f0
Reviewed-on: https://skia-review.googlesource.com/4909
Reviewed-by: Mike Reed <reed@google.com>
Reviewed-by: Leon Scroggins <scroggo@google.com>
Reviewed-on: https://skia-review.googlesource.com/5186
Commit-Queue: Hal Canary <halcanary@google.com>
Reviewed-by: Hal Canary <halcanary@google.com>
2016-11-23 16:40:32 +00:00

317 lines
9.7 KiB
C++

/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Request.h"
#include "SkPictureRecorder.h"
#include "SkPixelSerializer.h"
#include "SkPM4fPriv.h"
#include "picture_utils.h"
#include "sk_tool_utils.h"
using namespace sk_gpu_test;
static int kDefaultWidth = 1920;
static int kDefaultHeight = 1080;
static int kMaxWidth = 8192;
static int kMaxHeight = 8192;
Request::Request(SkString rootUrl)
: fUploadContext(nullptr)
, fUrlDataManager(rootUrl)
, fGPUEnabled(false)
, fOverdraw(false)
, fColorMode(0) {
// create surface
#if SK_SUPPORT_GPU
GrContextOptions grContextOpts;
fContextFactory = new GrContextFactory(grContextOpts);
#else
fContextFactory = nullptr;
#endif
}
Request::~Request() {
#if SK_SUPPORT_GPU
if (fContextFactory) {
delete fContextFactory;
}
#endif
}
SkBitmap* Request::getBitmapFromCanvas(SkCanvas* canvas) {
SkBitmap* bmp = new SkBitmap();
bmp->setInfo(canvas->imageInfo());
if (!canvas->readPixels(bmp, 0, 0)) {
fprintf(stderr, "Can't read pixels\n");
return nullptr;
}
return bmp;
}
sk_sp<SkData> Request::writeCanvasToPng(SkCanvas* canvas) {
// capture pixels
std::unique_ptr<SkBitmap> bmp(this->getBitmapFromCanvas(canvas));
SkASSERT(bmp);
// Convert to format suitable for PNG output
sk_sp<SkData> encodedBitmap = sk_tools::encode_bitmap_for_png(*bmp);
SkASSERT(encodedBitmap.get());
// write to an opaque png (black background)
SkDynamicMemoryWStream buffer;
SkDrawCommand::WritePNG(encodedBitmap->bytes(), bmp->width(), bmp->height(),
buffer, true);
return buffer.detachAsData();
}
SkCanvas* Request::getCanvas() {
#if SK_SUPPORT_GPU
GrContextFactory* factory = fContextFactory;
GLTestContext* gl = factory->getContextInfo(GrContextFactory::kNativeGL_ContextType,
GrContextFactory::ContextOptions::kNone).glContext();
if (!gl) {
gl = factory->getContextInfo(GrContextFactory::kMESA_ContextType,
GrContextFactory::ContextOptions::kNone).glContext();
}
if (gl) {
gl->makeCurrent();
}
#endif
SkASSERT(fDebugCanvas);
// create the appropriate surface if necessary
if (!fSurface) {
this->enableGPU(fGPUEnabled);
}
SkCanvas* target = fSurface->getCanvas();
return target;
}
void Request::drawToCanvas(int n, int m) {
SkCanvas* target = this->getCanvas();
fDebugCanvas->drawTo(target, n, m);
}
sk_sp<SkData> Request::drawToPng(int n, int m) {
//fDebugCanvas->setOverdrawViz(true);
this->drawToCanvas(n, m);
//fDebugCanvas->setOverdrawViz(false);
return writeCanvasToPng(this->getCanvas());
}
sk_sp<SkData> Request::writeOutSkp() {
// Playback into picture recorder
SkIRect bounds = this->getBounds();
SkPictureRecorder recorder;
SkCanvas* canvas = recorder.beginRecording(SkIntToScalar(bounds.width()),
SkIntToScalar(bounds.height()));
fDebugCanvas->draw(canvas);
sk_sp<SkPicture> picture(recorder.finishRecordingAsPicture());
SkDynamicMemoryWStream outStream;
sk_sp<SkPixelSerializer> serializer = sk_tool_utils::MakePixelSerializer();
picture->serialize(&outStream, serializer.get());
return outStream.detachAsData();
}
GrContext* Request::getContext() {
#if SK_SUPPORT_GPU
GrContext* result = fContextFactory->get(GrContextFactory::kNativeGL_ContextType,
GrContextFactory::ContextOptions::kNone);
if (!result) {
result = fContextFactory->get(GrContextFactory::kMESA_ContextType,
GrContextFactory::ContextOptions::kNone);
}
return result;
#else
return nullptr;
#endif
}
SkIRect Request::getBounds() {
SkIRect bounds;
if (fPicture) {
bounds = fPicture->cullRect().roundOut();
if (fGPUEnabled) {
#if SK_SUPPORT_GPU
int maxRTSize = this->getContext()->caps()->maxRenderTargetSize();
bounds = SkIRect::MakeWH(SkTMin(bounds.width(), maxRTSize),
SkTMin(bounds.height(), maxRTSize));
#endif
}
} else {
bounds = SkIRect::MakeWH(kDefaultWidth, kDefaultHeight);
}
// We clip to kMaxWidth / kMaxHeight for performance reasons.
// TODO make this configurable
bounds = SkIRect::MakeWH(SkTMin(bounds.width(), kMaxWidth),
SkTMin(bounds.height(), kMaxHeight));
return bounds;
}
namespace {
struct ColorAndProfile {
SkColorType fColorType;
bool fSRGB;
};
ColorAndProfile ColorModes[] = {
{ kN32_SkColorType, false },
{ kN32_SkColorType, true },
{ kRGBA_F16_SkColorType, true },
};
}
SkSurface* Request::createCPUSurface() {
SkIRect bounds = this->getBounds();
ColorAndProfile cap = ColorModes[fColorMode];
auto colorSpace = kRGBA_F16_SkColorType == cap.fColorType
? SkColorSpace::MakeNamed(SkColorSpace::kSRGBLinear_Named)
: SkColorSpace::MakeNamed(SkColorSpace::kSRGB_Named);
SkImageInfo info = SkImageInfo::Make(bounds.width(), bounds.height(), cap.fColorType,
kPremul_SkAlphaType, cap.fSRGB ? colorSpace : nullptr);
return SkSurface::MakeRaster(info).release();
}
SkSurface* Request::createGPUSurface() {
GrContext* context = this->getContext();
SkIRect bounds = this->getBounds();
ColorAndProfile cap = ColorModes[fColorMode];
auto colorSpace = kRGBA_F16_SkColorType == cap.fColorType
? SkColorSpace::MakeNamed(SkColorSpace::kSRGBLinear_Named)
: SkColorSpace::MakeNamed(SkColorSpace::kSRGB_Named);
SkImageInfo info = SkImageInfo::Make(bounds.width(), bounds.height(), cap.fColorType,
kPremul_SkAlphaType, cap.fSRGB ? colorSpace: nullptr);
SkSurface* surface = SkSurface::MakeRenderTarget(context, SkBudgeted::kNo, info).release();
return surface;
}
bool Request::setOverdraw(bool enable) {
fOverdraw = enable;
return true;
}
bool Request::setColorMode(int mode) {
fColorMode = mode;
return enableGPU(fGPUEnabled);
}
bool Request::enableGPU(bool enable) {
if (enable) {
SkSurface* surface = this->createGPUSurface();
if (surface) {
fSurface.reset(surface);
fGPUEnabled = true;
// When we switch to GPU, there seems to be some mystery draws in the canvas. So we
// draw once to flush the pipe
// TODO understand what is actually happening here
if (fDebugCanvas) {
fDebugCanvas->drawTo(this->getCanvas(), this->getLastOp());
this->getCanvas()->flush();
}
return true;
}
return false;
}
fSurface.reset(this->createCPUSurface());
fGPUEnabled = false;
return true;
}
bool Request::initPictureFromStream(SkStream* stream) {
// parse picture from stream
fPicture = SkPicture::MakeFromStream(stream);
if (!fPicture) {
fprintf(stderr, "Could not create picture from stream.\n");
return false;
}
// reinitialize canvas with the new picture dimensions
this->enableGPU(fGPUEnabled);
// pour picture into debug canvas
SkIRect bounds = this->getBounds();
fDebugCanvas.reset(new SkDebugCanvas(bounds.width(), bounds.height()));
fDebugCanvas->drawPicture(fPicture);
// for some reason we need to 'flush' the debug canvas by drawing all of the ops
fDebugCanvas->drawTo(this->getCanvas(), this->getLastOp());
this->getCanvas()->flush();
return true;
}
sk_sp<SkData> Request::getJsonOps(int n) {
SkCanvas* canvas = this->getCanvas();
Json::Value root = fDebugCanvas->toJSON(fUrlDataManager, n, canvas);
root["mode"] = Json::Value(fGPUEnabled ? "gpu" : "cpu");
root["drawGpuBatchBounds"] = Json::Value(fDebugCanvas->getDrawGpuBatchBounds());
root["colorMode"] = Json::Value(fColorMode);
SkDynamicMemoryWStream stream;
stream.writeText(Json::FastWriter().write(root).c_str());
return stream.detachAsData();
}
sk_sp<SkData> Request::getJsonBatchList(int n) {
SkCanvas* canvas = this->getCanvas();
SkASSERT(fGPUEnabled);
Json::Value result = fDebugCanvas->toJSONBatchList(n, canvas);
SkDynamicMemoryWStream stream;
stream.writeText(Json::FastWriter().write(result).c_str());
return stream.detachAsData();
}
sk_sp<SkData> Request::getJsonInfo(int n) {
// drawTo
sk_sp<SkSurface> surface(this->createCPUSurface());
SkCanvas* canvas = surface->getCanvas();
// TODO this is really slow and we should cache the matrix and clip
fDebugCanvas->drawTo(canvas, n);
// make some json
SkMatrix vm = fDebugCanvas->getCurrentMatrix();
SkIRect clip = fDebugCanvas->getCurrentClip();
Json::Value info(Json::objectValue);
info["ViewMatrix"] = SkDrawCommand::MakeJsonMatrix(vm);
info["ClipRect"] = SkDrawCommand::MakeJsonIRect(clip);
std::string json = Json::FastWriter().write(info);
// We don't want the null terminator so strlen is correct
return SkData::MakeWithCopy(json.c_str(), strlen(json.c_str()));
}
SkColor Request::getPixel(int x, int y) {
SkCanvas* canvas = this->getCanvas();
canvas->flush();
std::unique_ptr<SkBitmap> bitmap(this->getBitmapFromCanvas(canvas));
SkASSERT(bitmap);
// Convert to format suitable for inspection
sk_sp<SkData> encodedBitmap = sk_tools::encode_bitmap_for_png(*bitmap);
SkASSERT(encodedBitmap);
const uint8_t* start = encodedBitmap->bytes() + ((y * bitmap->width() + x) * 4);
SkColor result = SkColorSetARGB(start[3], start[0], start[1], start[2]);
return result;
}