skia2/tests/TArrayTest.cpp
Ben Wagner f08d1d0ce1 Stop using SkTSwap.
Use std::swap instead. It does not appear that any external user
specializes SkTSwap, but some may still use it. This removes all use in
Skia so that SkTSwap can later be removed in a smaller CL. After that
the <utility> include can be removed from SkTypes.h.

Change-Id: If03d4ee07dbecda961aa9f0dc34d171ef5168753
Reviewed-on: https://skia-review.googlesource.com/135578
Reviewed-by: Hal Canary <halcanary@google.com>
Reviewed-by: Mike Klein <mtklein@google.com>
Commit-Queue: Ben Wagner <bungeman@google.com>
2018-06-19 02:06:31 +00:00

367 lines
12 KiB
C++

/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkRandom.h"
#include "SkRefCnt.h"
#include "SkTArray.h"
#include "Test.h"
// Tests the SkTArray<T> class template.
template <bool MEM_MOVE>
static void TestTSet_basic(skiatest::Reporter* reporter) {
SkTArray<int, MEM_MOVE> a;
// Starts empty.
REPORTER_ASSERT(reporter, a.empty());
REPORTER_ASSERT(reporter, a.count() == 0);
// { }, add a default constructed element
a.push_back() = 0;
REPORTER_ASSERT(reporter, !a.empty());
REPORTER_ASSERT(reporter, a.count() == 1);
// { 0 }, removeShuffle the only element.
a.removeShuffle(0);
REPORTER_ASSERT(reporter, a.empty());
REPORTER_ASSERT(reporter, a.count() == 0);
// { }, add a default, add a 1, remove first
a.push_back() = 0;
REPORTER_ASSERT(reporter, a.push_back() = 1);
a.removeShuffle(0);
REPORTER_ASSERT(reporter, !a.empty());
REPORTER_ASSERT(reporter, a.count() == 1);
REPORTER_ASSERT(reporter, a[0] == 1);
// { 1 }, replace with new array
int b[5] = { 0, 1, 2, 3, 4 };
a.reset(b, SK_ARRAY_COUNT(b));
REPORTER_ASSERT(reporter, a.count() == SK_ARRAY_COUNT(b));
REPORTER_ASSERT(reporter, a[2] == 2);
REPORTER_ASSERT(reporter, a[4] == 4);
// { 0, 1, 2, 3, 4 }, removeShuffle the last
a.removeShuffle(4);
REPORTER_ASSERT(reporter, a.count() == SK_ARRAY_COUNT(b) - 1);
REPORTER_ASSERT(reporter, a[3] == 3);
// { 0, 1, 2, 3 }, remove a middle, note shuffle
a.removeShuffle(1);
REPORTER_ASSERT(reporter, a.count() == SK_ARRAY_COUNT(b) - 2);
REPORTER_ASSERT(reporter, a[0] == 0);
REPORTER_ASSERT(reporter, a[1] == 3);
REPORTER_ASSERT(reporter, a[2] == 2);
// {0, 3, 2 }
}
template <typename T> static void test_swap(skiatest::Reporter* reporter,
SkTArray<T>* (&arrays)[4],
int (&sizes)[7])
{
for (auto a : arrays) {
for (auto b : arrays) {
if (a == b) {
continue;
}
for (auto sizeA : sizes) {
for (auto sizeB : sizes) {
a->reset();
b->reset();
int curr = 0;
for (int i = 0; i < sizeA; i++) { a->push_back(curr++); }
for (int i = 0; i < sizeB; i++) { b->push_back(curr++); }
a->swap(*b);
REPORTER_ASSERT(reporter, b->count() == sizeA);
REPORTER_ASSERT(reporter, a->count() == sizeB);
curr = 0;
for (auto&& x : *b) { REPORTER_ASSERT(reporter, x == curr++); }
for (auto&& x : *a) { REPORTER_ASSERT(reporter, x == curr++); }
a->swap(*a);
curr = sizeA;
for (auto&& x : *a) { REPORTER_ASSERT(reporter, x == curr++); }
}}
}}
}
static void test_swap(skiatest::Reporter* reporter) {
int sizes[] = {0, 1, 5, 10, 15, 20, 25};
SkTArray<int> arr;
SkSTArray< 5, int> arr5;
SkSTArray<10, int> arr10;
SkSTArray<20, int> arr20;
SkTArray<int>* arrays[] = { &arr, &arr5, &arr10, &arr20 };
test_swap(reporter, arrays, sizes);
struct MoveOnlyInt {
MoveOnlyInt(int i) : fInt(i) {}
MoveOnlyInt(MoveOnlyInt&& that) : fInt(that.fInt) {}
bool operator==(int i) { return fInt == i; }
int fInt;
};
SkTArray<MoveOnlyInt> moi;
SkSTArray< 5, MoveOnlyInt> moi5;
SkSTArray<10, MoveOnlyInt> moi10;
SkSTArray<20, MoveOnlyInt> moi20;
SkTArray<MoveOnlyInt>* arraysMoi[] = { &moi, &moi5, &moi10, &moi20 };
test_swap(reporter, arraysMoi, sizes);
}
template <typename T, bool MEM_MOVE>
void test_copy_ctor(skiatest::Reporter* reporter, SkTArray<T, MEM_MOVE>&& array) {
SkASSERT(array.empty());
for (int i = 0; i < 5; ++i) {
array.emplace_back(new SkRefCnt);
REPORTER_ASSERT(reporter, array.back()->unique());
}
{
SkTArray<T, MEM_MOVE> copy(array);
for (const auto& ref : array)
REPORTER_ASSERT(reporter, !ref->unique());
for (const auto& ref : copy)
REPORTER_ASSERT(reporter, !ref->unique());
}
for (const auto& ref : array)
REPORTER_ASSERT(reporter, ref->unique());
}
static void test_move(skiatest::Reporter* reporter) {
#define TEST_MOVE do { \
SRC_T src; \
src.emplace_back(sk_make_sp<SkRefCnt>()); \
{ \
/* copy ctor */ \
DST_T copy(src); \
REPORTER_ASSERT(reporter, !copy[0]->unique()); \
} \
{ \
/* move ctor */ \
DST_T move(std::move(src)); \
REPORTER_ASSERT(reporter, move[0]->unique()); \
} \
REPORTER_ASSERT(reporter, src.empty()); \
src.emplace_back(sk_make_sp<SkRefCnt>()); \
{ \
/* copy assignment */ \
DST_T copy; \
copy = src; \
REPORTER_ASSERT(reporter, !copy[0]->unique()); \
} \
{ \
/* move assignment */ \
DST_T move; \
move = std::move(src); \
REPORTER_ASSERT(reporter, move[0]->unique()); \
} \
REPORTER_ASSERT(reporter, src.empty()); \
} while (false)
{
using SRC_T = SkTArray<sk_sp<SkRefCnt>, false>;
using DST_T = SkTArray<sk_sp<SkRefCnt>, false>;
TEST_MOVE;
}
{
using SRC_T = SkTArray<sk_sp<SkRefCnt>, true>;
using DST_T = SkTArray<sk_sp<SkRefCnt>, true>;
TEST_MOVE;
}
{
using SRC_T = SkSTArray<1, sk_sp<SkRefCnt>, false>;
using DST_T = SkSTArray<1, sk_sp<SkRefCnt>, false>;
TEST_MOVE;
}
{
using SRC_T = SkSTArray<1, sk_sp<SkRefCnt>, true>;
using DST_T = SkSTArray<1, sk_sp<SkRefCnt>, true>;
TEST_MOVE;
}
{
using SRC_T = SkTArray<sk_sp<SkRefCnt>, false>;
using DST_T = SkSTArray<1, sk_sp<SkRefCnt>, false>;
TEST_MOVE;
}
{
using SRC_T = SkTArray<sk_sp<SkRefCnt>, true>;
using DST_T = SkSTArray<1, sk_sp<SkRefCnt>, true>;
TEST_MOVE;
}
{
using SRC_T = SkSTArray<1, sk_sp<SkRefCnt>, false>;
using DST_T = SkTArray<sk_sp<SkRefCnt>, false>;
TEST_MOVE;
}
{
using SRC_T = SkSTArray<1, sk_sp<SkRefCnt>, true>;
using DST_T = SkTArray<sk_sp<SkRefCnt>, true>;
TEST_MOVE;
}
#undef TEST_MOVE
}
template <typename T, bool MEM_MOVE> int SkTArray<T, MEM_MOVE>::allocCntForTest() const {
return fAllocCount;
}
void test_unnecessary_alloc(skiatest::Reporter* reporter) {
{
SkTArray<int> a;
REPORTER_ASSERT(reporter, a.allocCntForTest() == 0);
}
{
SkSTArray<10, int> a;
REPORTER_ASSERT(reporter, a.allocCntForTest() == 10);
}
{
SkTArray<int> a(1);
REPORTER_ASSERT(reporter, a.allocCntForTest() >= 1);
}
{
SkTArray<int> a, b;
b = a;
REPORTER_ASSERT(reporter, b.allocCntForTest() == 0);
}
{
SkSTArray<10, int> a;
SkTArray<int> b;
b = a;
REPORTER_ASSERT(reporter, b.allocCntForTest() == 0);
}
{
SkTArray<int> a;
SkTArray<int> b(a);
REPORTER_ASSERT(reporter, b.allocCntForTest() == 0);
}
{
SkSTArray<10, int> a;
SkTArray<int> b(a);
REPORTER_ASSERT(reporter, b.allocCntForTest() == 0);
}
{
SkTArray<int> a;
SkTArray<int> b(std::move(a));
REPORTER_ASSERT(reporter, b.allocCntForTest() == 0);
}
{
SkSTArray<10, int> a;
SkTArray<int> b(std::move(a));
REPORTER_ASSERT(reporter, b.allocCntForTest() == 0);
}
{
SkTArray<int> a;
SkTArray<int> b;
b = std::move(a);
REPORTER_ASSERT(reporter, b.allocCntForTest() == 0);
}
{
SkSTArray<10, int> a;
SkTArray<int> b;
b = std::move(a);
REPORTER_ASSERT(reporter, b.allocCntForTest() == 0);
}
}
static void test_self_assignment(skiatest::Reporter* reporter) {
SkTArray<int> a;
a.push_back(1);
REPORTER_ASSERT(reporter, !a.empty());
REPORTER_ASSERT(reporter, a.count() == 1);
REPORTER_ASSERT(reporter, a[0] == 1);
a = static_cast<decltype(a)&>(a);
REPORTER_ASSERT(reporter, !a.empty());
REPORTER_ASSERT(reporter, a.count() == 1);
REPORTER_ASSERT(reporter, a[0] == 1);
}
template <typename Array> static void test_array_reserve(skiatest::Reporter* reporter,
Array* array, int reserveCount) {
SkRandom random;
REPORTER_ASSERT(reporter, array->allocCntForTest() >= reserveCount);
array->push_back();
REPORTER_ASSERT(reporter, array->allocCntForTest() >= reserveCount);
array->pop_back();
REPORTER_ASSERT(reporter, array->allocCntForTest() >= reserveCount);
while (array->count() < reserveCount) {
// Two steps forward, one step back
if (random.nextULessThan(3) < 2) {
array->push_back();
} else if (array->count() > 0) {
array->pop_back();
}
REPORTER_ASSERT(reporter, array->allocCntForTest() >= reserveCount);
}
}
template<typename Array> static void test_reserve(skiatest::Reporter* reporter) {
// Test that our allocated space stays >= to the reserve count until the array is filled to
// the reserve count
for (int reserveCount : {1, 2, 10, 100}) {
// Test setting reserve in constructor.
Array array1(reserveCount);
test_array_reserve(reporter, &array1, reserveCount);
// Test setting reserve after constructor.
Array array2;
array2.reserve(reserveCount);
test_array_reserve(reporter, &array2, reserveCount);
// Test increasing reserve after constructor.
Array array3(reserveCount/2);
array3.reserve(reserveCount);
test_array_reserve(reporter, &array3, reserveCount);
// Test setting reserve on non-empty array.
Array array4;
array4.push_back_n(reserveCount);
array4.reserve(reserveCount);
array4.pop_back_n(reserveCount);
test_array_reserve(reporter, &array4, 2 * reserveCount);
}
}
DEF_TEST(TArray, reporter) {
TestTSet_basic<true>(reporter);
TestTSet_basic<false>(reporter);
test_swap(reporter);
test_copy_ctor(reporter, SkTArray<sk_sp<SkRefCnt>, false>());
test_copy_ctor(reporter, SkTArray<sk_sp<SkRefCnt>, true>());
test_copy_ctor(reporter, SkSTArray< 1, sk_sp<SkRefCnt>, false>());
test_copy_ctor(reporter, SkSTArray< 1, sk_sp<SkRefCnt>, true>());
test_copy_ctor(reporter, SkSTArray<10, sk_sp<SkRefCnt>, false>());
test_copy_ctor(reporter, SkSTArray<10, sk_sp<SkRefCnt>, true>());
test_move(reporter);
test_unnecessary_alloc(reporter);
test_self_assignment(reporter);
test_reserve<SkTArray<int>>(reporter);
test_reserve<SkSTArray<1, int>>(reporter);
test_reserve<SkSTArray<2, int>>(reporter);
test_reserve<SkSTArray<16, int>>(reporter);
}