skia2/tests/DeferredDisplayListTest.cpp
Robert Phillips 8e49a69ef9 Loosen up checks in DDLSkSurfaceFlush
Some platforms (e.g., ANGLE & CommandBuffer) don't return GrSemaphoresSubmitted::kYes from flush

Change-Id: I0810e2ecb7f9ad1088c9450ceb5669fe690e8298
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/212505
Reviewed-by: Brian Osman <brianosman@google.com>
Commit-Queue: Robert Phillips <robertphillips@google.com>
2019-05-07 20:49:11 +00:00

953 lines
33 KiB
C++

/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkBitmap.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkColor.h"
#include "include/core/SkColorSpace.h"
#include "include/core/SkDeferredDisplayListRecorder.h"
#include "include/core/SkImage.h"
#include "include/core/SkImageInfo.h"
#include "include/core/SkPaint.h"
#include "include/core/SkPromiseImageTexture.h"
#include "include/core/SkRect.h"
#include "include/core/SkRefCnt.h"
#include "include/core/SkSurface.h"
#include "include/core/SkSurfaceCharacterization.h"
#include "include/core/SkSurfaceProps.h"
#include "include/core/SkTypes.h"
#include "include/gpu/GrBackendSurface.h"
#include "include/gpu/GrContext.h"
#include "include/gpu/GrContextThreadSafeProxy.h"
#include "include/gpu/GrTypes.h"
#include "include/gpu/gl/GrGLTypes.h"
#include "include/private/GrRenderTargetProxy.h"
#include "include/private/GrTextureProxy.h"
#include "include/private/GrTypesPriv.h"
#include "include/private/SkDeferredDisplayList.h"
#include "src/core/SkDeferredDisplayListPriv.h"
#include "src/gpu/GrCaps.h"
#include "src/gpu/GrContextPriv.h"
#include "src/gpu/GrGpu.h"
#include "src/gpu/GrRenderTargetContext.h"
#include "src/gpu/SkGpuDevice.h"
#include "src/gpu/gl/GrGLDefines.h"
#include "src/image/SkImage_GpuBase.h"
#include "src/image/SkSurface_Gpu.h"
#include "tests/Test.h"
#include "tests/TestUtils.h"
#include "tools/gpu/GrContextFactory.h"
#include <initializer_list>
#include <memory>
#include <utility>
class SurfaceParameters {
public:
static const int kNumParams = 11;
static const int kSampleCount = 5;
static const int kMipMipCount = 8;
static const int kFBO0Count = 9;
SurfaceParameters(GrBackendApi backend)
: fBackend(backend)
, fWidth(64)
, fHeight(64)
, fOrigin(kTopLeft_GrSurfaceOrigin)
, fColorType(kRGBA_8888_SkColorType)
, fColorSpace(SkColorSpace::MakeSRGB())
, fSampleCount(1)
, fSurfaceProps(0x0, kUnknown_SkPixelGeometry)
, fShouldCreateMipMaps(true)
, fUsesGLFBO0(false)
, fIsTextureable(true) {
}
int sampleCount() const { return fSampleCount; }
void setColorType(SkColorType ct) { fColorType = ct; }
void setColorSpace(sk_sp<SkColorSpace> cs) { fColorSpace = std::move(cs); }
void setTextureable(bool isTextureable) { fIsTextureable = isTextureable; }
// Modify the SurfaceParameters in just one way
void modify(int i) {
switch (i) {
case 0:
fWidth = 63;
break;
case 1:
fHeight = 63;
break;
case 2:
fOrigin = kBottomLeft_GrSurfaceOrigin;
break;
case 3:
fColorType = kRGBA_F16_SkColorType;
break;
case 4:
// This just needs to be a colorSpace different from that returned by MakeSRGB().
// In this case we just change the gamut.
fColorSpace = SkColorSpace::MakeRGB(SkNamedTransferFn::kSRGB, SkNamedGamut::kAdobeRGB);
break;
case kSampleCount:
fSampleCount = 4;
break;
case 6:
fSurfaceProps = SkSurfaceProps(0x0, kRGB_H_SkPixelGeometry);
break;
case 7:
fSurfaceProps = SkSurfaceProps(SkSurfaceProps::kUseDeviceIndependentFonts_Flag,
kUnknown_SkPixelGeometry);
break;
case 8:
fShouldCreateMipMaps = false;
break;
case 9:
if (GrBackendApi::kOpenGL == fBackend) {
fUsesGLFBO0 = true;
fIsTextureable = false;
}
break;
case 10:
fIsTextureable = false;
break;
}
}
SkSurfaceCharacterization createCharacterization(GrContext* context) const {
int maxResourceCount;
size_t maxResourceBytes;
context->getResourceCacheLimits(&maxResourceCount, &maxResourceBytes);
// Note that Ganesh doesn't make use of the SkImageInfo's alphaType
SkImageInfo ii = SkImageInfo::Make(fWidth, fHeight, fColorType,
kPremul_SkAlphaType, fColorSpace);
const GrCaps* caps = context->priv().caps();
GrBackendFormat backendFormat = caps->getBackendFormatFromColorType(fColorType);
if (!backendFormat.isValid()) {
return SkSurfaceCharacterization();
}
SkSurfaceCharacterization c = context->threadSafeProxy()->createCharacterization(
maxResourceBytes, ii, backendFormat, fSampleCount,
fOrigin, fSurfaceProps, fShouldCreateMipMaps,
fUsesGLFBO0, fIsTextureable);
return c;
}
// Create a DDL whose characterization captures the current settings
std::unique_ptr<SkDeferredDisplayList> createDDL(GrContext* context) const {
SkSurfaceCharacterization c = this->createCharacterization(context);
SkAssertResult(c.isValid());
SkDeferredDisplayListRecorder r(c);
SkCanvas* canvas = r.getCanvas();
if (!canvas) {
return nullptr;
}
canvas->drawRect(SkRect::MakeXYWH(10, 10, 10, 10), SkPaint());
return r.detach();
}
// Create the surface with the current set of parameters
sk_sp<SkSurface> make(GrContext* context, GrBackendTexture* backend) const {
GrGpu* gpu = context->priv().getGpu();
GrMipMapped mipmapped = !fIsTextureable
? GrMipMapped::kNo
: GrMipMapped(fShouldCreateMipMaps);
if (fUsesGLFBO0) {
if (GrBackendApi::kOpenGL != context->backend()) {
return nullptr;
}
GrGLFramebufferInfo fboInfo;
fboInfo.fFBOID = 0;
fboInfo.fFormat = GR_GL_RGBA8;
static constexpr int kStencilBits = 8;
GrBackendRenderTarget backendRT(fWidth, fHeight, 1, kStencilBits, fboInfo);
if (!backendRT.isValid()) {
return nullptr;
}
return SkSurface::MakeFromBackendRenderTarget(context, backendRT, fOrigin,
fColorType, fColorSpace, &fSurfaceProps);
}
*backend = gpu->createTestingOnlyBackendTexture(nullptr, fWidth, fHeight,
fColorType, true, mipmapped);
if (!backend->isValid() || !gpu->isTestingOnlyBackendTexture(*backend)) {
return nullptr;
}
sk_sp<SkSurface> surface;
if (!fIsTextureable) {
// Create a surface w/ the current parameters but make it non-textureable
surface = SkSurface::MakeFromBackendTextureAsRenderTarget(
context, *backend, fOrigin, fSampleCount, fColorType,
fColorSpace, &fSurfaceProps);
} else {
surface = SkSurface::MakeFromBackendTexture(
context, *backend, fOrigin, fSampleCount, fColorType,
fColorSpace, &fSurfaceProps);
}
if (!surface) {
gpu->deleteTestingOnlyBackendTexture(*backend);
return nullptr;
}
return surface;
}
void cleanUpBackEnd(GrContext* context, const GrBackendTexture& backend) const {
if (!backend.isValid()) {
return;
}
GrGpu* gpu = context->priv().getGpu();
gpu->deleteTestingOnlyBackendTexture(backend);
}
private:
GrBackendApi fBackend;
int fWidth;
int fHeight;
GrSurfaceOrigin fOrigin;
SkColorType fColorType;
sk_sp<SkColorSpace> fColorSpace;
int fSampleCount;
SkSurfaceProps fSurfaceProps;
bool fShouldCreateMipMaps;
bool fUsesGLFBO0;
bool fIsTextureable;
};
// Test out operator== && operator!=
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(DDLOperatorEqTest, reporter, ctxInfo) {
GrContext* context = ctxInfo.grContext();
for (int i = 0; i < SurfaceParameters::kNumParams; ++i) {
SurfaceParameters params1(context->backend());
params1.modify(i);
SkSurfaceCharacterization char1 = params1.createCharacterization(context);
if (!char1.isValid()) {
continue; // can happen on some platforms (ChromeOS)
}
for (int j = 0; j < SurfaceParameters::kNumParams; ++j) {
SurfaceParameters params2(context->backend());
params2.modify(j);
SkSurfaceCharacterization char2 = params2.createCharacterization(context);
if (!char2.isValid()) {
continue; // can happen on some platforms (ChromeOS)
}
if (i == j) {
REPORTER_ASSERT(reporter, char1 == char2);
} else {
REPORTER_ASSERT(reporter, char1 != char2);
}
}
}
{
SurfaceParameters params(context->backend());
SkSurfaceCharacterization valid = params.createCharacterization(context);
SkASSERT(valid.isValid());
SkSurfaceCharacterization inval1, inval2;
SkASSERT(!inval1.isValid() && !inval2.isValid());
REPORTER_ASSERT(reporter, inval1 != inval2);
REPORTER_ASSERT(reporter, valid != inval1);
REPORTER_ASSERT(reporter, inval1 != valid);
}
}
////////////////////////////////////////////////////////////////////////////////
// This tests SkSurfaceCharacterization/SkSurface compatibility
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(DDLSurfaceCharacterizationTest, reporter, ctxInfo) {
GrContext* context = ctxInfo.grContext();
GrGpu* gpu = context->priv().getGpu();
// Create a bitmap that we can readback into
SkImageInfo imageInfo = SkImageInfo::Make(64, 64, kRGBA_8888_SkColorType,
kPremul_SkAlphaType);
SkBitmap bitmap;
bitmap.allocPixels(imageInfo);
std::unique_ptr<SkDeferredDisplayList> ddl;
// First, create a DDL using the stock SkSurface parameters
{
SurfaceParameters params(context->backend());
ddl = params.createDDL(context);
SkAssertResult(ddl);
// The DDL should draw into an SkSurface created with the same parameters
GrBackendTexture backend;
sk_sp<SkSurface> s = params.make(context, &backend);
if (!s) {
return;
}
REPORTER_ASSERT(reporter, s->draw(ddl.get()));
s->readPixels(imageInfo, bitmap.getPixels(), bitmap.rowBytes(), 0, 0);
context->flush();
gpu->testingOnly_flushGpuAndSync();
s = nullptr;
params.cleanUpBackEnd(context, backend);
}
// Then, alter each parameter in turn and check that the DDL & surface are incompatible
for (int i = 0; i < SurfaceParameters::kNumParams; ++i) {
SurfaceParameters params(context->backend());
params.modify(i);
GrBackendTexture backend;
sk_sp<SkSurface> s = params.make(context, &backend);
if (!s) {
continue;
}
if (SurfaceParameters::kSampleCount == i) {
SkSurface_Gpu* gpuSurf = static_cast<SkSurface_Gpu*>(s.get());
int supportedSampleCount = context->priv().caps()->getRenderTargetSampleCount(
params.sampleCount(),
gpuSurf->getDevice()
->accessRenderTargetContext()
->asRenderTargetProxy()
->config());
if (1 == supportedSampleCount) {
// If changing the sample count won't result in a different
// surface characterization, skip this step
s = nullptr;
params.cleanUpBackEnd(context, backend);
continue;
}
}
if (SurfaceParameters::kMipMipCount == i &&
!context->priv().caps()->mipMapSupport()) {
// If changing the mipmap setting won't result in a different surface characterization,
// skip this step
s = nullptr;
params.cleanUpBackEnd(context, backend);
continue;
}
if (SurfaceParameters::kFBO0Count == i && context->backend() != GrBackendApi::kOpenGL) {
// FBO0 only affects the surface characterization when using OpenGL
s = nullptr;
params.cleanUpBackEnd(context, backend);
continue;
}
REPORTER_ASSERT(reporter, !s->draw(ddl.get()),
"DDLSurfaceCharacterizationTest failed on parameter: %d\n", i);
context->flush();
gpu->testingOnly_flushGpuAndSync();
s = nullptr;
params.cleanUpBackEnd(context, backend);
}
// Next test the compatibility of resource cache parameters
{
const SurfaceParameters params(context->backend());
GrBackendTexture backend;
sk_sp<SkSurface> s = params.make(context, &backend);
int maxResourceCount;
size_t maxResourceBytes;
context->getResourceCacheLimits(&maxResourceCount, &maxResourceBytes);
context->setResourceCacheLimits(maxResourceCount, maxResourceBytes/2);
REPORTER_ASSERT(reporter, !s->draw(ddl.get()));
// DDL TODO: once proxies/ops can be de-instantiated we can re-enable these tests.
// For now, DDLs are drawn once.
#if 0
// resource limits >= those at characterization time are accepted
context->setResourceCacheLimits(2*maxResourceCount, maxResourceBytes);
REPORTER_ASSERT(reporter, s->draw(ddl.get()));
s->readPixels(imageInfo, bitmap.getPixels(), bitmap.rowBytes(), 0, 0);
context->setResourceCacheLimits(maxResourceCount, 2*maxResourceBytes);
REPORTER_ASSERT(reporter, s->draw(ddl.get()));
s->readPixels(imageInfo, bitmap.getPixels(), bitmap.rowBytes(), 0, 0);
context->setResourceCacheLimits(maxResourceCount, maxResourceBytes);
REPORTER_ASSERT(reporter, s->draw(ddl.get()));
s->readPixels(imageInfo, bitmap.getPixels(), bitmap.rowBytes(), 0, 0);
#endif
context->flush();
gpu->testingOnly_flushGpuAndSync();
s = nullptr;
params.cleanUpBackEnd(context, backend);
}
// Test that the textureability of the DDL characterization can block a DDL draw
{
GrBackendTexture backend;
SurfaceParameters params(context->backend());
params.setTextureable(false);
sk_sp<SkSurface> s = params.make(context, &backend);
if (s) {
REPORTER_ASSERT(reporter, !s->draw(ddl.get())); // bc the DDL was made w/ textureability
context->flush();
gpu->testingOnly_flushGpuAndSync();
s = nullptr;
params.cleanUpBackEnd(context, backend);
}
}
// Make sure non-GPU-backed surfaces fail characterization
{
SkImageInfo ii = SkImageInfo::MakeN32(64, 64, kOpaque_SkAlphaType);
sk_sp<SkSurface> rasterSurface = SkSurface::MakeRaster(ii);
SkSurfaceCharacterization c;
REPORTER_ASSERT(reporter, !rasterSurface->characterize(&c));
}
// Exercise the createResized method
{
SurfaceParameters params(context->backend());
GrBackendTexture backend;
sk_sp<SkSurface> s = params.make(context, &backend);
if (!s) {
return;
}
SkSurfaceCharacterization char0;
SkAssertResult(s->characterize(&char0));
// Too small
SkSurfaceCharacterization char1 = char0.createResized(-1, -1);
REPORTER_ASSERT(reporter, !char1.isValid());
// Too large
SkSurfaceCharacterization char2 = char0.createResized(1000000, 32);
REPORTER_ASSERT(reporter, !char2.isValid());
// Just right
SkSurfaceCharacterization char3 = char0.createResized(32, 32);
REPORTER_ASSERT(reporter, char3.isValid());
REPORTER_ASSERT(reporter, 32 == char3.width());
REPORTER_ASSERT(reporter, 32 == char3.height());
s = nullptr;
params.cleanUpBackEnd(context, backend);
}
}
// Test that a DDL created w/o textureability can be replayed into both a textureable and
// non-textureable destination. Note that DDLSurfaceCharacterizationTest tests that a
// textureable DDL cannot be played into a non-textureable destination but can be replayed
// into a textureable destination.
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(DDLNonTextureabilityTest, reporter, ctxInfo) {
GrContext* context = ctxInfo.grContext();
GrGpu* gpu = context->priv().getGpu();
// Create a bitmap that we can readback into
SkImageInfo imageInfo = SkImageInfo::Make(64, 64, kRGBA_8888_SkColorType,
kPremul_SkAlphaType);
SkBitmap bitmap;
bitmap.allocPixels(imageInfo);
for (bool textureability : { true, false }) {
std::unique_ptr<SkDeferredDisplayList> ddl;
// First, create a DDL w/o textureability. TODO: once we have reusable DDLs, move this
// outside of the loop.
{
SurfaceParameters params(context->backend());
params.setTextureable(false);
ddl = params.createDDL(context);
SkAssertResult(ddl);
}
// Then verify it can draw into either flavor of destination
SurfaceParameters params(context->backend());
params.setTextureable(textureability);
GrBackendTexture backend;
sk_sp<SkSurface> s = params.make(context, &backend);
if (!s) {
continue;
}
REPORTER_ASSERT(reporter, s->draw(ddl.get()));
s->readPixels(imageInfo, bitmap.getPixels(), bitmap.rowBytes(), 0, 0);
context->flush();
gpu->testingOnly_flushGpuAndSync();
s = nullptr;
params.cleanUpBackEnd(context, backend);
}
}
////////////////////////////////////////////////////////////////////////////////
// This tests the SkSurface::MakeRenderTarget variant that takes an SkSurfaceCharacterization.
// In particular, the SkSurface and the SkSurfaceCharacterization should always be compatible.
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(DDLMakeRenderTargetTest, reporter, ctxInfo) {
GrContext* context = ctxInfo.grContext();
for (int i = 0; i < SurfaceParameters::kNumParams; ++i) {
SurfaceParameters params(context->backend());
params.modify(i);
SkSurfaceCharacterization c = params.createCharacterization(context);
GrBackendTexture backend;
if (!c.isValid()) {
sk_sp<SkSurface> tmp = params.make(context, &backend);
// If we couldn't characterize the surface we shouldn't be able to create it either
REPORTER_ASSERT(reporter, !tmp);
if (tmp) {
tmp = nullptr;
params.cleanUpBackEnd(context, backend);
}
continue;
}
sk_sp<SkSurface> s = params.make(context, &backend);
if (!s) {
REPORTER_ASSERT(reporter, !c.isValid());
continue;
}
REPORTER_ASSERT(reporter, c.isValid());
if (SurfaceParameters::kFBO0Count == i) {
// MakeRenderTarget doesn't support FBO0
params.cleanUpBackEnd(context, backend);
continue;
}
s = SkSurface::MakeRenderTarget(context, c, SkBudgeted::kYes);
REPORTER_ASSERT(reporter, s);
SkSurface_Gpu* g = static_cast<SkSurface_Gpu*>(s.get());
REPORTER_ASSERT(reporter, g->isCompatible(c));
s = nullptr;
params.cleanUpBackEnd(context, backend);
}
}
////////////////////////////////////////////////////////////////////////////////
static constexpr int kSize = 8;
struct TextureReleaseChecker {
TextureReleaseChecker() : fReleaseCount(0) {}
int fReleaseCount;
static void Release(void* self) {
static_cast<TextureReleaseChecker*>(self)->fReleaseCount++;
}
};
enum class DDLStage { kMakeImage, kDrawImage, kDetach, kDrawDDL };
// This tests the ability to create and use wrapped textures in a DDL world
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(DDLWrapBackendTest, reporter, ctxInfo) {
GrContext* context = ctxInfo.grContext();
GrGpu* gpu = context->priv().getGpu();
GrBackendTexture backendTex = gpu->createTestingOnlyBackendTexture(
nullptr, kSize, kSize, GrColorType::kRGBA_8888, false, GrMipMapped::kNo);
if (!backendTex.isValid()) {
return;
}
SurfaceParameters params(context->backend());
GrBackendTexture backend;
sk_sp<SkSurface> s = params.make(context, &backend);
if (!s) {
gpu->deleteTestingOnlyBackendTexture(backendTex);
return;
}
SkSurfaceCharacterization c;
SkAssertResult(s->characterize(&c));
std::unique_ptr<SkDeferredDisplayListRecorder> recorder(new SkDeferredDisplayListRecorder(c));
SkCanvas* canvas = recorder->getCanvas();
if (!canvas) {
s = nullptr;
params.cleanUpBackEnd(context, backend);
gpu->deleteTestingOnlyBackendTexture(backendTex);
return;
}
GrContext* deferredContext = canvas->getGrContext();
if (!deferredContext) {
s = nullptr;
params.cleanUpBackEnd(context, backend);
gpu->deleteTestingOnlyBackendTexture(backendTex);
return;
}
// Wrapped Backend Textures are not supported in DDL
sk_sp<SkImage> image =
SkImage::MakeFromAdoptedTexture(deferredContext, backendTex, kTopLeft_GrSurfaceOrigin,
kRGBA_8888_SkColorType, kPremul_SkAlphaType, nullptr);
REPORTER_ASSERT(reporter, !image);
TextureReleaseChecker releaseChecker;
image = SkImage::MakeFromTexture(deferredContext, backendTex, kTopLeft_GrSurfaceOrigin,
kRGBA_8888_SkColorType, kPremul_SkAlphaType, nullptr,
TextureReleaseChecker::Release, &releaseChecker);
REPORTER_ASSERT(reporter, !image);
gpu->deleteTestingOnlyBackendTexture(backendTex);
s = nullptr;
params.cleanUpBackEnd(context, backend);
}
static sk_sp<SkPromiseImageTexture> dummy_fulfill_proc(void*) {
SkASSERT(0);
return nullptr;
}
static void dummy_release_proc(void*) { SkASSERT(0); }
static void dummy_done_proc(void*) {}
////////////////////////////////////////////////////////////////////////////////
// Test out the behavior of an invalid DDLRecorder
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(DDLInvalidRecorder, reporter, ctxInfo) {
GrContext* context = ctxInfo.grContext();
{
SkImageInfo ii = SkImageInfo::MakeN32Premul(32, 32);
sk_sp<SkSurface> s = SkSurface::MakeRenderTarget(context, SkBudgeted::kNo, ii);
SkSurfaceCharacterization characterization;
SkAssertResult(s->characterize(&characterization));
// never calling getCanvas means the backing surface is never allocated
SkDeferredDisplayListRecorder recorder(characterization);
}
{
SkSurfaceCharacterization invalid;
SkDeferredDisplayListRecorder recorder(invalid);
const SkSurfaceCharacterization c = recorder.characterization();
REPORTER_ASSERT(reporter, !c.isValid());
REPORTER_ASSERT(reporter, !recorder.getCanvas());
REPORTER_ASSERT(reporter, !recorder.detach());
const GrCaps* caps = context->priv().caps();
GrBackendFormat format = caps->getBackendFormatFromColorType(kRGBA_8888_SkColorType);
sk_sp<SkImage> image = recorder.makePromiseTexture(
format, 32, 32, GrMipMapped::kNo,
kTopLeft_GrSurfaceOrigin,
kRGBA_8888_SkColorType,
kPremul_SkAlphaType, nullptr,
dummy_fulfill_proc,
dummy_release_proc,
dummy_done_proc,
nullptr,
SkDeferredDisplayListRecorder::PromiseImageApiVersion::kNew);
REPORTER_ASSERT(reporter, !image);
}
}
////////////////////////////////////////////////////////////////////////////////
// Ensure that flushing while DDL recording doesn't cause a crash
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(DDLFlushWhileRecording, reporter, ctxInfo) {
GrContext* context = ctxInfo.grContext();
SkImageInfo ii = SkImageInfo::MakeN32Premul(32, 32);
sk_sp<SkSurface> s = SkSurface::MakeRenderTarget(context, SkBudgeted::kNo, ii);
SkSurfaceCharacterization characterization;
SkAssertResult(s->characterize(&characterization));
SkDeferredDisplayListRecorder recorder(characterization);
SkCanvas* canvas = recorder.getCanvas();
canvas->getGrContext()->flush();
}
////////////////////////////////////////////////////////////////////////////////
// Test that flushing a DDL via SkSurface::flush works
struct FulfillInfo {
sk_sp<SkPromiseImageTexture> fTex;
bool fFulfilled = false;
bool fReleased = false;
bool fDone = false;
};
static sk_sp<SkPromiseImageTexture> tracking_fulfill_proc(void* context) {
FulfillInfo* info = (FulfillInfo*) context;
info->fFulfilled = true;
return info->fTex;
}
static void tracking_release_proc(void* context) {
FulfillInfo* info = (FulfillInfo*) context;
info->fReleased = true;
}
static void tracking_done_proc(void* context) {
FulfillInfo* info = (FulfillInfo*) context;
info->fDone = true;
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(DDLSkSurfaceFlush, reporter, ctxInfo) {
GrContext* context = ctxInfo.grContext();
SkImageInfo ii = SkImageInfo::Make(32, 32, kRGBA_8888_SkColorType, kPremul_SkAlphaType);
sk_sp<SkSurface> s = SkSurface::MakeRenderTarget(context, SkBudgeted::kNo, ii);
SkSurfaceCharacterization characterization;
SkAssertResult(s->characterize(&characterization));
GrBackendTexture backendTexture;
if (!create_backend_texture(context, &backendTexture, ii, GrMipMapped::kNo, SK_ColorCYAN,
Renderable::kNo)) {
REPORTER_ASSERT(reporter, false);
return;
}
FulfillInfo fulfillInfo;
fulfillInfo.fTex = SkPromiseImageTexture::Make(backendTexture);
std::unique_ptr<SkDeferredDisplayList> ddl;
{
SkDeferredDisplayListRecorder recorder(characterization);
const GrCaps* caps = context->priv().caps();
GrBackendFormat format = caps->getBackendFormatFromColorType(kRGBA_8888_SkColorType);
sk_sp<SkImage> promiseImage = recorder.makePromiseTexture(
format, 32, 32, GrMipMapped::kNo,
kTopLeft_GrSurfaceOrigin,
kRGBA_8888_SkColorType,
kPremul_SkAlphaType, nullptr,
tracking_fulfill_proc,
tracking_release_proc,
tracking_done_proc,
&fulfillInfo,
SkDeferredDisplayListRecorder::PromiseImageApiVersion::kNew);
SkCanvas* canvas = recorder.getCanvas();
canvas->clear(SK_ColorRED);
canvas->drawImage(promiseImage, 0, 0);
ddl = recorder.detach();
}
s->draw(ddl.get());
GrFlushInfo flushInfo;
s->flush(SkSurface::BackendSurfaceAccess::kPresent, flushInfo);
REPORTER_ASSERT(reporter, fulfillInfo.fFulfilled);
REPORTER_ASSERT(reporter, fulfillInfo.fReleased);
if (GrBackendApi::kVulkan == context->backend() ||
GrBackendApi::kMetal == context->backend()) {
// In order to recieve the done callback with Vulkan we need to perform the equivalent
// of a glFinish
GrFlushInfo flushInfoSyncCpu;
flushInfoSyncCpu.fFlags = kSyncCpu_GrFlushFlag;
s->flush(SkSurface::BackendSurfaceAccess::kPresent, flushInfoSyncCpu);
}
REPORTER_ASSERT(reporter, fulfillInfo.fDone);
REPORTER_ASSERT(reporter, fulfillInfo.fTex->unique());
fulfillInfo.fTex.reset();
delete_backend_texture(context, backendTexture);
}
////////////////////////////////////////////////////////////////////////////////
// Ensure that reusing a single DDLRecorder to create multiple DDLs works cleanly
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(DDLMultipleDDLs, reporter, ctxInfo) {
GrContext* context = ctxInfo.grContext();
SkImageInfo ii = SkImageInfo::MakeN32Premul(32, 32);
sk_sp<SkSurface> s = SkSurface::MakeRenderTarget(context, SkBudgeted::kNo, ii);
SkBitmap bitmap;
bitmap.allocPixels(ii);
SkSurfaceCharacterization characterization;
SkAssertResult(s->characterize(&characterization));
SkDeferredDisplayListRecorder recorder(characterization);
SkCanvas* canvas1 = recorder.getCanvas();
canvas1->clear(SK_ColorRED);
canvas1->save();
canvas1->clipRect(SkRect::MakeXYWH(8, 8, 16, 16));
std::unique_ptr<SkDeferredDisplayList> ddl1 = recorder.detach();
SkCanvas* canvas2 = recorder.getCanvas();
SkPaint p;
p.setColor(SK_ColorGREEN);
canvas2->drawRect(SkRect::MakeWH(32, 32), p);
std::unique_ptr<SkDeferredDisplayList> ddl2 = recorder.detach();
REPORTER_ASSERT(reporter, ddl1->priv().lazyProxyData());
REPORTER_ASSERT(reporter, ddl2->priv().lazyProxyData());
// The lazy proxy data being different ensures that the SkSurface, SkCanvas and backing-
// lazy proxy are all different between the two DDLs
REPORTER_ASSERT(reporter, ddl1->priv().lazyProxyData() != ddl2->priv().lazyProxyData());
s->draw(ddl1.get());
s->draw(ddl2.get());
// Make sure the clipRect from DDL1 didn't percolate into DDL2
s->readPixels(ii, bitmap.getPixels(), bitmap.rowBytes(), 0, 0);
for (int y = 0; y < 32; ++y) {
for (int x = 0; x < 32; ++x) {
REPORTER_ASSERT(reporter, bitmap.getColor(x, y) == SK_ColorGREEN);
if (bitmap.getColor(x, y) != SK_ColorGREEN) {
return; // we only really need to report the error once
}
}
}
}
////////////////////////////////////////////////////////////////////////////////
// Check that the texture-specific flags (i.e., for external & rectangle textures) work
// for promise images. As such, this is a GL-only test.
DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(DDLTextureFlagsTest, reporter, ctxInfo) {
GrContext* context = ctxInfo.grContext();
SkImageInfo ii = SkImageInfo::MakeN32Premul(32, 32);
sk_sp<SkSurface> s = SkSurface::MakeRenderTarget(context, SkBudgeted::kNo, ii);
SkSurfaceCharacterization characterization;
SkAssertResult(s->characterize(&characterization));
SkDeferredDisplayListRecorder recorder(characterization);
for (GrGLenum target : { GR_GL_TEXTURE_EXTERNAL, GR_GL_TEXTURE_RECTANGLE, GR_GL_TEXTURE_2D } ) {
for (auto mipMapped : { GrMipMapped::kNo, GrMipMapped::kYes }) {
GrBackendFormat format = GrBackendFormat::MakeGL(GR_GL_RGBA8, target);
sk_sp<SkImage> image = recorder.makePromiseTexture(
format, 32, 32, mipMapped,
kTopLeft_GrSurfaceOrigin,
kRGBA_8888_SkColorType,
kPremul_SkAlphaType, nullptr,
dummy_fulfill_proc,
dummy_release_proc,
dummy_done_proc,
nullptr,
SkDeferredDisplayListRecorder::PromiseImageApiVersion::kNew);
if (GR_GL_TEXTURE_2D != target && mipMapped == GrMipMapped::kYes) {
REPORTER_ASSERT(reporter, !image);
continue;
}
REPORTER_ASSERT(reporter, image);
GrTextureProxy* backingProxy = ((SkImage_GpuBase*) image.get())->peekProxy();
REPORTER_ASSERT(reporter, backingProxy->mipMapped() == mipMapped);
if (GR_GL_TEXTURE_2D == target) {
REPORTER_ASSERT(reporter, !backingProxy->hasRestrictedSampling());
} else {
REPORTER_ASSERT(reporter, backingProxy->hasRestrictedSampling());
}
}
}
}
////////////////////////////////////////////////////////////////////////////////
// Test colorType and pixelConfig compatibility.
DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(DDLCompatibilityTest, reporter, ctxInfo) {
GrContext* context = ctxInfo.grContext();
for (int ct = 0; ct <= kLastEnum_SkColorType; ++ct) {
SkColorType colorType = static_cast<SkColorType>(ct);
SurfaceParameters params(context->backend());
params.setColorType(colorType);
params.setColorSpace(nullptr);
SkSurfaceCharacterization c = params.createCharacterization(context);
GrBackendTexture backend;
if (!c.isValid()) {
sk_sp<SkSurface> tmp = params.make(context, &backend);
// If we couldn't characterize the surface we shouldn't be able to create it either
REPORTER_ASSERT(reporter, !tmp);
if (tmp) {
tmp = nullptr;
params.cleanUpBackEnd(context, backend);
}
continue;
}
sk_sp<SkSurface> s = params.make(context, &backend);
REPORTER_ASSERT(reporter, s);
if (!s) {
s = nullptr;
params.cleanUpBackEnd(context, backend);
continue;
}
SkSurface_Gpu* gpuSurface = static_cast<SkSurface_Gpu*>(s.get());
REPORTER_ASSERT(reporter, gpuSurface->isCompatible(c));
s = nullptr;
params.cleanUpBackEnd(context, backend);
s = SkSurface::MakeRenderTarget(context, c, SkBudgeted::kYes);
REPORTER_ASSERT(reporter, s);
if (!s) {
continue;
}
gpuSurface = static_cast<SkSurface_Gpu*>(s.get());
REPORTER_ASSERT(reporter, gpuSurface->isCompatible(c));
}
}