skia2/include/core/SkMath.h
reed@android.com eebf5cb6c0 add copysign for ints and floats
fix addArc to not wrap around if the sweepAngle is close to 360 but lost
precision when convert to radians (and then to unit vectors ala sin/cos)



git-svn-id: http://skia.googlecode.com/svn/trunk@495 2bbb7eff-a529-9590-31e7-b0007b416f81
2010-02-09 18:30:59 +00:00

236 lines
6.9 KiB
C

/*
* Copyright (C) 2006 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef SkMath_DEFINED
#define SkMath_DEFINED
#include "SkTypes.h"
//! Returns the number of leading zero bits (0...32)
int SkCLZ_portable(uint32_t);
/** Computes the 64bit product of a * b, and then shifts the answer down by
shift bits, returning the low 32bits. shift must be [0..63]
e.g. to perform a fixedmul, call SkMulShift(a, b, 16)
*/
int32_t SkMulShift(int32_t a, int32_t b, unsigned shift);
/** Computes numer1 * numer2 / denom in full 64 intermediate precision.
It is an error for denom to be 0. There is no special handling if
the result overflows 32bits.
*/
int32_t SkMulDiv(int32_t numer1, int32_t numer2, int32_t denom);
/** Computes (numer1 << shift) / denom in full 64 intermediate precision.
It is an error for denom to be 0. There is no special handling if
the result overflows 32bits.
*/
int32_t SkDivBits(int32_t numer, int32_t denom, int shift);
/** Return the integer square root of value, with a bias of bitBias
*/
int32_t SkSqrtBits(int32_t value, int bitBias);
/** Return the integer square root of n, treated as a SkFixed (16.16)
*/
#define SkSqrt32(n) SkSqrtBits(n, 15)
/** Return the integer cube root of value, with a bias of bitBias
*/
int32_t SkCubeRootBits(int32_t value, int bitBias);
/** Returns -1 if n < 0, else returns 0
*/
#define SkExtractSign(n) ((int32_t)(n) >> 31)
/** If sign == -1, returns -n, else sign must be 0, and returns n.
Typically used in conjunction with SkExtractSign().
*/
static inline int32_t SkApplySign(int32_t n, int32_t sign) {
SkASSERT(sign == 0 || sign == -1);
return (n ^ sign) - sign;
}
/** Return x with the sign of y */
static inline int32_t SkCopySign32(int32_t x, int32_t y) {
return SkApplySign(x, SkExtractSign(x ^ y));
}
/** Returns (value < 0 ? 0 : value) efficiently (i.e. no compares or branches)
*/
static inline int SkClampPos(int value) {
return value & ~(value >> 31);
}
/** Given an integer and a positive (max) integer, return the value
pinned against 0 and max, inclusive.
Note: only works as long as max - value doesn't wrap around
@param value The value we want returned pinned between [0...max]
@param max The positive max value
@return 0 if value < 0, max if value > max, else value
*/
static inline int SkClampMax(int value, int max) {
// ensure that max is positive
SkASSERT(max >= 0);
// ensure that if value is negative, max - value doesn't wrap around
SkASSERT(value >= 0 || max - value > 0);
#ifdef SK_CPU_HAS_CONDITIONAL_INSTR
if (value < 0) {
value = 0;
}
if (value > max) {
value = max;
}
return value;
#else
int diff = max - value;
// clear diff if diff is positive
diff &= diff >> 31;
// clear the result if value < 0
return (value + diff) & ~(value >> 31);
#endif
}
/** Given a positive value and a positive max, return the value
pinned against max.
Note: only works as long as max - value doesn't wrap around
@return max if value >= max, else value
*/
static inline unsigned SkClampUMax(unsigned value, unsigned max) {
#ifdef SK_CPU_HAS_CONDITIONAL_INSTR
if (value > max) {
value = max;
}
return value;
#else
int diff = max - value;
// clear diff if diff is positive
diff &= diff >> 31;
return value + diff;
#endif
}
///////////////////////////////////////////////////////////////////////////////
#if defined(__arm__) && !defined(__thumb__)
#define SkCLZ(x) __builtin_clz(x)
#endif
#ifndef SkCLZ
#define SkCLZ(x) SkCLZ_portable(x)
#endif
///////////////////////////////////////////////////////////////////////////////
/** Returns the smallest power-of-2 that is >= the specified value. If value
is already a power of 2, then it is returned unchanged. It is undefined
if value is <= 0.
*/
static inline int SkNextPow2(int value) {
SkASSERT(value > 0);
return 1 << (32 - SkCLZ(value - 1));
}
/** Returns the log2 of the specified value, were that value to be rounded up
to the next power of 2. It is undefined to pass 0. Examples:
SkNextLog2(1) -> 0
SkNextLog2(2) -> 1
SkNextLog2(3) -> 2
SkNextLog2(4) -> 2
SkNextLog2(5) -> 3
*/
static inline int SkNextLog2(uint32_t value) {
SkASSERT(value != 0);
return 32 - SkCLZ(value - 1);
}
///////////////////////////////////////////////////////////////////////////////
/** SkMulS16(a, b) multiplies a * b, but requires that a and b are both int16_t.
With this requirement, we can generate faster instructions on some
architectures.
*/
#if defined(__arm__) \
&& !defined(__thumb__) \
&& !defined(__ARM_ARCH_4T__) \
&& !defined(__ARM_ARCH_5T__)
static inline int32_t SkMulS16(S16CPU x, S16CPU y) {
SkASSERT((int16_t)x == x);
SkASSERT((int16_t)y == y);
int32_t product;
asm("smulbb %0, %1, %2 \n"
: "=r"(product)
: "r"(x), "r"(y)
);
return product;
}
#else
#ifdef SK_DEBUG
static inline int32_t SkMulS16(S16CPU x, S16CPU y) {
SkASSERT((int16_t)x == x);
SkASSERT((int16_t)y == y);
return x * y;
}
#else
#define SkMulS16(x, y) ((x) * (y))
#endif
#endif
/** Return a*b/255, truncating away any fractional bits. Only valid if both
a and b are 0..255
*/
static inline U8CPU SkMulDiv255Trunc(U8CPU a, U8CPU b) {
SkASSERT((uint8_t)a == a);
SkASSERT((uint8_t)b == b);
unsigned prod = SkMulS16(a, b) + 1;
return (prod + (prod >> 8)) >> 8;
}
/** Return a*b/255, rounding any fractional bits. Only valid if both
a and b are 0..255
*/
static inline U8CPU SkMulDiv255Round(U8CPU a, U8CPU b) {
SkASSERT((uint8_t)a == a);
SkASSERT((uint8_t)b == b);
unsigned prod = SkMulS16(a, b) + 128;
return (prod + (prod >> 8)) >> 8;
}
/** Return a*b/((1 << shift) - 1), rounding any fractional bits.
Only valid if a and b are unsigned and <= 32767 and shift is > 0 and <= 8
*/
static inline unsigned SkMul16ShiftRound(unsigned a, unsigned b, int shift) {
SkASSERT(a <= 32767);
SkASSERT(b <= 32767);
SkASSERT(shift > 0 && shift <= 8);
unsigned prod = SkMulS16(a, b) + (1 << (shift - 1));
return (prod + (prod >> shift)) >> shift;
}
/** Just the rounding step in SkDiv255Round: round(value / 255)
*/
static inline unsigned SkDiv255Round(unsigned prod) {
prod += 128;
return (prod + (prod >> 8)) >> 8;
}
#endif