996d78b7cf
cubic tests pass git-svn-id: http://skia.googlecode.com/svn/trunk@8161 2bbb7eff-a529-9590-31e7-b0007b416f81
472 lines
22 KiB
C++
472 lines
22 KiB
C++
/*
|
|
* Copyright 2012 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "CubicUtilities.h"
|
|
#include "CurveIntersection.h"
|
|
#include "Intersections.h"
|
|
#include "IntersectionUtilities.h"
|
|
#include "LineIntersection.h"
|
|
#include "LineUtilities.h"
|
|
#include "QuadraticUtilities.h"
|
|
#include "TSearch.h"
|
|
|
|
#if 0
|
|
#undef ONE_OFF_DEBUG
|
|
#define ONE_OFF_DEBUG 0
|
|
#endif
|
|
|
|
#if ONE_OFF_DEBUG
|
|
static const double tLimits1[2][2] = {{0.865205808, 0.865215212}, {0.865207696, 0.865208078}};
|
|
static const double tLimits2[2][2] = {{-0.865211397, -0.865215212}, {-0.865207696, -0.865208078}};
|
|
#endif
|
|
|
|
#define DEBUG_QUAD_PART 0
|
|
#define SWAP_TOP_DEBUG 0
|
|
|
|
static int quadPart(const Cubic& cubic, double tStart, double tEnd, Quadratic& simple) {
|
|
Cubic part;
|
|
sub_divide(cubic, tStart, tEnd, part);
|
|
Quadratic quad;
|
|
demote_cubic_to_quad(part, quad);
|
|
// FIXME: should reduceOrder be looser in this use case if quartic is going to blow up on an
|
|
// extremely shallow quadratic?
|
|
int order = reduceOrder(quad, simple, kReduceOrder_TreatAsFill);
|
|
#if DEBUG_QUAD_PART
|
|
SkDebugf("%s cubic=(%1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g) t=(%1.17g,%1.17g)\n",
|
|
__FUNCTION__, cubic[0].x, cubic[0].y, cubic[1].x, cubic[1].y, cubic[2].x, cubic[2].y,
|
|
cubic[3].x, cubic[3].y, tStart, tEnd);
|
|
SkDebugf("%s part=(%1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g)"
|
|
" quad=(%1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g)\n", __FUNCTION__, part[0].x, part[0].y,
|
|
part[1].x, part[1].y, part[2].x, part[2].y, part[3].x, part[3].y, quad[0].x, quad[0].y,
|
|
quad[1].x, quad[1].y, quad[2].x, quad[2].y);
|
|
SkDebugf("%s simple=(%1.17g,%1.17g", __FUNCTION__, simple[0].x, simple[0].y);
|
|
if (order > 1) {
|
|
SkDebugf(" %1.17g,%1.17g", simple[1].x, simple[1].y);
|
|
}
|
|
if (order > 2) {
|
|
SkDebugf(" %1.17g,%1.17g", simple[2].x, simple[2].y);
|
|
}
|
|
SkDebugf(")\n");
|
|
SkASSERT(order < 4 && order > 0);
|
|
#endif
|
|
return order;
|
|
}
|
|
|
|
static void intersectWithOrder(const Quadratic& simple1, int order1, const Quadratic& simple2,
|
|
int order2, Intersections& i) {
|
|
if (order1 == 3 && order2 == 3) {
|
|
intersect2(simple1, simple2, i);
|
|
} else if (order1 <= 2 && order2 <= 2) {
|
|
intersect((const _Line&) simple1, (const _Line&) simple2, i);
|
|
} else if (order1 == 3 && order2 <= 2) {
|
|
intersect(simple1, (const _Line&) simple2, i);
|
|
} else {
|
|
SkASSERT(order1 <= 2 && order2 == 3);
|
|
intersect(simple2, (const _Line&) simple1, i);
|
|
for (int s = 0; s < i.fUsed; ++s) {
|
|
SkTSwap(i.fT[0][s], i.fT[1][s]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// this flavor centers potential intersections recursively. In contrast, '2' may inadvertently
|
|
// chase intersections near quadratic ends, requiring odd hacks to find them.
|
|
static bool intersect3(const Cubic& cubic1, double t1s, double t1e, const Cubic& cubic2,
|
|
double t2s, double t2e, double precisionScale, Intersections& i) {
|
|
i.upDepth();
|
|
bool result = false;
|
|
Cubic c1, c2;
|
|
sub_divide(cubic1, t1s, t1e, c1);
|
|
sub_divide(cubic2, t2s, t2e, c2);
|
|
SkTDArray<double> ts1;
|
|
// OPTIMIZE: if c1 == c2, call once (happens when detecting self-intersection)
|
|
cubic_to_quadratics(c1, calcPrecision(c1) * precisionScale, ts1);
|
|
SkTDArray<double> ts2;
|
|
cubic_to_quadratics(c2, calcPrecision(c2) * precisionScale, ts2);
|
|
double t1Start = t1s;
|
|
int ts1Count = ts1.count();
|
|
for (int i1 = 0; i1 <= ts1Count; ++i1) {
|
|
const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1;
|
|
const double t1 = t1s + (t1e - t1s) * tEnd1;
|
|
Quadratic s1;
|
|
int o1 = quadPart(cubic1, t1Start, t1, s1);
|
|
double t2Start = t2s;
|
|
int ts2Count = ts2.count();
|
|
for (int i2 = 0; i2 <= ts2Count; ++i2) {
|
|
const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1;
|
|
const double t2 = t2s + (t2e - t2s) * tEnd2;
|
|
if (cubic1 == cubic2 && t1Start >= t2Start) {
|
|
t2Start = t2;
|
|
continue;
|
|
}
|
|
Quadratic s2;
|
|
int o2 = quadPart(cubic2, t2Start, t2, s2);
|
|
#if ONE_OFF_DEBUG
|
|
char tab[] = " ";
|
|
if (tLimits1[0][0] >= t1Start && tLimits1[0][1] <= t1
|
|
&& tLimits1[1][0] >= t2Start && tLimits1[1][1] <= t2) {
|
|
Cubic cSub1, cSub2;
|
|
sub_divide(cubic1, t1Start, t1, cSub1);
|
|
sub_divide(cubic2, t2Start, t2, cSub2);
|
|
SkDebugf("%.*s %s t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)", i.depth()*2, tab, __FUNCTION__,
|
|
t1Start, t1, t2Start, t2);
|
|
Intersections xlocals;
|
|
intersectWithOrder(s1, o1, s2, o2, xlocals);
|
|
SkDebugf(" xlocals.fUsed=%d\n", xlocals.used());
|
|
}
|
|
#endif
|
|
Intersections locals;
|
|
intersectWithOrder(s1, o1, s2, o2, locals);
|
|
double coStart[2] = { -1 };
|
|
_Point coPoint;
|
|
int tCount = locals.used();
|
|
for (int tIdx = 0; tIdx < tCount; ++tIdx) {
|
|
double to1 = t1Start + (t1 - t1Start) * locals.fT[0][tIdx];
|
|
double to2 = t2Start + (t2 - t2Start) * locals.fT[1][tIdx];
|
|
// if the computed t is not sufficiently precise, iterate
|
|
_Point p1 = xy_at_t(cubic1, to1);
|
|
_Point p2 = xy_at_t(cubic2, to2);
|
|
if (p1.approximatelyEqual(p2)) {
|
|
if (locals.fIsCoincident[0] & 1 << tIdx) {
|
|
if (coStart[0] < 0) {
|
|
coStart[0] = to1;
|
|
coStart[1] = to2;
|
|
coPoint = p1;
|
|
} else {
|
|
i.insertCoincidentPair(coStart[0], to1, coStart[1], to2, coPoint, p1);
|
|
coStart[0] = -1;
|
|
}
|
|
result = true;
|
|
} else if (cubic1 != cubic2 || !approximately_equal(to1, to2)) {
|
|
if (i.swapped()) { // FIXME: insert should respect swap
|
|
i.insert(to2, to1, p1);
|
|
} else {
|
|
i.insert(to1, to2, p1);
|
|
}
|
|
result = true;
|
|
}
|
|
} else {
|
|
double offset = precisionScale / 16; // FIME: const is arbitrary -- test & refine
|
|
#if 1
|
|
double c1Bottom = tIdx == 0 ? 0 :
|
|
(t1Start + (t1 - t1Start) * locals.fT[0][tIdx - 1] + to1) / 2;
|
|
double c1Min = SkTMax(c1Bottom, to1 - offset);
|
|
double c1Top = tIdx == tCount - 1 ? 1 :
|
|
(t1Start + (t1 - t1Start) * locals.fT[0][tIdx + 1] + to1) / 2;
|
|
double c1Max = SkTMin(c1Top, to1 + offset);
|
|
double c2Min = SkTMax(0., to2 - offset);
|
|
double c2Max = SkTMin(1., to2 + offset);
|
|
#if ONE_OFF_DEBUG
|
|
SkDebugf("%.*s %s 1 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, __FUNCTION__,
|
|
c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
|
|
&& c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
|
|
to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
|
|
&& to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
|
|
c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
|
|
&& c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
|
|
to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
|
|
&& to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
|
|
SkDebugf("%.*s %s 1 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
|
|
" 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
|
|
i.depth()*2, tab, __FUNCTION__, c1Bottom, c1Top, 0., 1.,
|
|
to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
|
|
SkDebugf("%.*s %s 1 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
|
|
" c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, c1Max, c2Min, c2Max);
|
|
#endif
|
|
intersect3(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
|
|
#if ONE_OFF_DEBUG
|
|
SkDebugf("%.*s %s 1 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, i.used(),
|
|
i.used() > 0 ? i.fT[0][i.used() - 1] : -1);
|
|
#endif
|
|
if (tCount > 1) {
|
|
c1Min = SkTMax(0., to1 - offset);
|
|
c1Max = SkTMin(1., to1 + offset);
|
|
double c2Bottom = tIdx == 0 ? to2 :
|
|
(t2Start + (t2 - t2Start) * locals.fT[1][tIdx - 1] + to2) / 2;
|
|
double c2Top = tIdx == tCount - 1 ? to2 :
|
|
(t2Start + (t2 - t2Start) * locals.fT[1][tIdx + 1] + to2) / 2;
|
|
if (c2Bottom > c2Top) {
|
|
SkTSwap(c2Bottom, c2Top);
|
|
}
|
|
if (c2Bottom == to2) {
|
|
c2Bottom = 0;
|
|
}
|
|
if (c2Top == to2) {
|
|
c2Top = 1;
|
|
}
|
|
c2Min = SkTMax(c2Bottom, to2 - offset);
|
|
c2Max = SkTMin(c2Top, to2 + offset);
|
|
#if ONE_OFF_DEBUG
|
|
SkDebugf("%.*s %s 2 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, __FUNCTION__,
|
|
c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
|
|
&& c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
|
|
to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
|
|
&& to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
|
|
c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
|
|
&& c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
|
|
to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
|
|
&& to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
|
|
SkDebugf("%.*s %s 2 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
|
|
" 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
|
|
i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top,
|
|
to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
|
|
SkDebugf("%.*s %s 2 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
|
|
" c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, c1Max, c2Min, c2Max);
|
|
#endif
|
|
intersect3(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
|
|
#if ONE_OFF_DEBUG
|
|
SkDebugf("%.*s %s 2 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, i.used(),
|
|
i.used() > 0 ? i.fT[0][i.used() - 1] : -1);
|
|
#endif
|
|
c1Min = SkTMax(c1Bottom, to1 - offset);
|
|
c1Max = SkTMin(c1Top, to1 + offset);
|
|
#if ONE_OFF_DEBUG
|
|
SkDebugf("%.*s %s 3 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, __FUNCTION__,
|
|
c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
|
|
&& c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
|
|
to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
|
|
&& to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
|
|
c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
|
|
&& c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
|
|
to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
|
|
&& to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
|
|
SkDebugf("%.*s %s 3 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
|
|
" 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
|
|
i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top,
|
|
to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
|
|
SkDebugf("%.*s %s 3 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
|
|
" c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, c1Max, c2Min, c2Max);
|
|
#endif
|
|
intersect3(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
|
|
#if ONE_OFF_DEBUG
|
|
SkDebugf("%.*s %s 3 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, i.used(),
|
|
i.used() > 0 ? i.fT[0][i.used() - 1] : -1);
|
|
#endif
|
|
}
|
|
#else
|
|
double c1Bottom = tIdx == 0 ? 0 :
|
|
(t1Start + (t1 - t1Start) * locals.fT[0][tIdx - 1] + to1) / 2;
|
|
double c1Min = SkTMax(c1Bottom, to1 - offset);
|
|
double c1Top = tIdx == tCount - 1 ? 1 :
|
|
(t1Start + (t1 - t1Start) * locals.fT[0][tIdx + 1] + to1) / 2;
|
|
double c1Max = SkTMin(c1Top, to1 + offset);
|
|
double c2Bottom = tIdx == 0 ? to2 :
|
|
(t2Start + (t2 - t2Start) * locals.fT[1][tIdx - 1] + to2) / 2;
|
|
double c2Top = tIdx == tCount - 1 ? to2 :
|
|
(t2Start + (t2 - t2Start) * locals.fT[1][tIdx + 1] + to2) / 2;
|
|
if (c2Bottom > c2Top) {
|
|
SkTSwap(c2Bottom, c2Top);
|
|
}
|
|
if (c2Bottom == to2) {
|
|
c2Bottom = 0;
|
|
}
|
|
if (c2Top == to2) {
|
|
c2Top = 1;
|
|
}
|
|
double c2Min = SkTMax(c2Bottom, to2 - offset);
|
|
double c2Max = SkTMin(c2Top, to2 + offset);
|
|
#if ONE_OFF_DEBUG
|
|
SkDebugf("%s contains1=%d/%d contains2=%d/%d\n", __FUNCTION__,
|
|
c1Min <= 0.210357794 && 0.210357794 <= c1Max
|
|
&& c2Min <= 0.223476406 && 0.223476406 <= c2Max,
|
|
to1 - offset <= 0.210357794 && 0.210357794 <= to1 + offset
|
|
&& to2 - offset <= 0.223476406 && 0.223476406 <= to2 + offset,
|
|
c1Min <= 0.211324707 && 0.211324707 <= c1Max
|
|
&& c2Min <= 0.211327209 && 0.211327209 <= c2Max,
|
|
to1 - offset <= 0.211324707 && 0.211324707 <= to1 + offset
|
|
&& to2 - offset <= 0.211327209 && 0.211327209 <= to2 + offset);
|
|
SkDebugf("%s c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
|
|
" 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
|
|
__FUNCTION__, c1Bottom, c1Top, c2Bottom, c2Top,
|
|
to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
|
|
SkDebugf("%s to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
|
|
" c2Max=%1.9g\n", __FUNCTION__, to1, to2, c1Min, c1Max, c2Min, c2Max);
|
|
#endif
|
|
#endif
|
|
intersect3(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
|
|
// TODO: if no intersection is found, either quadratics intersected where
|
|
// cubics did not, or the intersection was missed. In the former case, expect
|
|
// the quadratics to be nearly parallel at the point of intersection, and check
|
|
// for that.
|
|
}
|
|
}
|
|
SkASSERT(coStart[0] == -1);
|
|
t2Start = t2;
|
|
}
|
|
t1Start = t1;
|
|
}
|
|
i.downDepth();
|
|
return result;
|
|
}
|
|
|
|
#if 0
|
|
#define LINE_FRACTION (1.0 / gPrecisionUnit)
|
|
#else
|
|
#define LINE_FRACTION 0.1
|
|
#endif
|
|
|
|
// intersect the end of the cubic with the other. Try lines from the end to control and opposite
|
|
// end to determine range of t on opposite cubic.
|
|
static bool intersectEnd(const Cubic& cubic1, bool start, const Cubic& cubic2, const _Rect& bounds2,
|
|
Intersections& i) {
|
|
// bool selfIntersect = cubic1 == cubic2;
|
|
_Line line;
|
|
int t1Index = start ? 0 : 3;
|
|
line[0] = cubic1[t1Index];
|
|
// don't bother if the two cubics are connnected
|
|
#if 0
|
|
if (!selfIntersect && (line[0].approximatelyEqual(cubic2[0])
|
|
|| line[0].approximatelyEqual(cubic2[3]))) {
|
|
return false;
|
|
}
|
|
#endif
|
|
bool result = false;
|
|
SkTDArray<double> tVals; // OPTIMIZE: replace with hard-sized array
|
|
for (int index = 0; index < 4; ++index) {
|
|
if (index == t1Index) {
|
|
continue;
|
|
}
|
|
_Vector dxy1 = cubic1[index] - line[0];
|
|
dxy1 /= gPrecisionUnit;
|
|
line[1] = line[0] + dxy1;
|
|
_Rect lineBounds;
|
|
lineBounds.setBounds(line);
|
|
if (!bounds2.intersects(lineBounds)) {
|
|
continue;
|
|
}
|
|
Intersections local;
|
|
if (!intersect(cubic2, line, local)) {
|
|
continue;
|
|
}
|
|
for (int idx2 = 0; idx2 < local.used(); ++idx2) {
|
|
double foundT = local.fT[0][idx2];
|
|
if (approximately_less_than_zero(foundT)
|
|
|| approximately_greater_than_one(foundT)) {
|
|
continue;
|
|
}
|
|
if (local.fPt[idx2].approximatelyEqual(line[0])) {
|
|
if (i.swapped()) { // FIXME: insert should respect swap
|
|
i.insert(foundT, start ? 0 : 1, line[0]);
|
|
} else {
|
|
i.insert(start ? 0 : 1, foundT, line[0]);
|
|
}
|
|
result = true;
|
|
} else {
|
|
*tVals.append() = local.fT[0][idx2];
|
|
}
|
|
}
|
|
}
|
|
if (tVals.count() == 0) {
|
|
return result;
|
|
}
|
|
QSort<double>(tVals.begin(), tVals.end() - 1);
|
|
double tMin1 = start ? 0 : 1 - LINE_FRACTION;
|
|
double tMax1 = start ? LINE_FRACTION : 1;
|
|
int tIdx = 0;
|
|
do {
|
|
int tLast = tIdx;
|
|
while (tLast + 1 < tVals.count() && roughly_equal(tVals[tLast + 1], tVals[tIdx])) {
|
|
++tLast;
|
|
}
|
|
double tMin2 = SkTMax(tVals[tIdx] - LINE_FRACTION, 0.0);
|
|
double tMax2 = SkTMin(tVals[tLast] + LINE_FRACTION, 1.0);
|
|
int lastUsed = i.used();
|
|
result |= intersect3(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, i);
|
|
if (lastUsed == i.used()) {
|
|
tMin2 = SkTMax(tVals[tIdx] - (1.0 / gPrecisionUnit), 0.0);
|
|
tMax2 = SkTMin(tVals[tLast] + (1.0 / gPrecisionUnit), 1.0);
|
|
result |= intersect3(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, i);
|
|
}
|
|
tIdx = tLast + 1;
|
|
} while (tIdx < tVals.count());
|
|
return result;
|
|
}
|
|
|
|
const double CLOSE_ENOUGH = 0.001;
|
|
|
|
static bool closeStart(const Cubic& cubic, int cubicIndex, Intersections& i, _Point& pt) {
|
|
if (i.fT[cubicIndex][0] != 0 || i.fT[cubicIndex][1] > CLOSE_ENOUGH) {
|
|
return false;
|
|
}
|
|
pt = xy_at_t(cubic, (i.fT[cubicIndex][0] + i.fT[cubicIndex][1]) / 2);
|
|
return true;
|
|
}
|
|
|
|
static bool closeEnd(const Cubic& cubic, int cubicIndex, Intersections& i, _Point& pt) {
|
|
int last = i.used() - 1;
|
|
if (i.fT[cubicIndex][last] != 1 || i.fT[cubicIndex][last - 1] < 1 - CLOSE_ENOUGH) {
|
|
return false;
|
|
}
|
|
pt = xy_at_t(cubic, (i.fT[cubicIndex][last] + i.fT[cubicIndex][last - 1]) / 2);
|
|
return true;
|
|
}
|
|
|
|
bool intersect3(const Cubic& c1, const Cubic& c2, Intersections& i) {
|
|
bool result = intersect3(c1, 0, 1, c2, 0, 1, 1, i);
|
|
// FIXME: pass in cached bounds from caller
|
|
_Rect c1Bounds, c2Bounds;
|
|
c1Bounds.setBounds(c1); // OPTIMIZE use setRawBounds ?
|
|
c2Bounds.setBounds(c2);
|
|
result |= intersectEnd(c1, false, c2, c2Bounds, i);
|
|
result |= intersectEnd(c1, true, c2, c2Bounds, i);
|
|
bool selfIntersect = c1 == c2;
|
|
if (!selfIntersect) {
|
|
i.swap();
|
|
result |= intersectEnd(c2, false, c1, c1Bounds, i);
|
|
result |= intersectEnd(c2, true, c1, c1Bounds, i);
|
|
i.swap();
|
|
}
|
|
// If an end point and a second point very close to the end is returned, the second
|
|
// point may have been detected because the approximate quads
|
|
// intersected at the end and close to it. Verify that the second point is valid.
|
|
if (i.used() <= 1 || i.coincidentUsed()) {
|
|
return result;
|
|
}
|
|
_Point pt[2];
|
|
if (closeStart(c1, 0, i, pt[0]) && closeStart(c2, 1, i, pt[1])
|
|
&& pt[0].approximatelyEqual(pt[1])) {
|
|
i.removeOne(1);
|
|
}
|
|
if (closeEnd(c1, 0, i, pt[0]) && closeEnd(c2, 1, i, pt[1])
|
|
&& pt[0].approximatelyEqual(pt[1])) {
|
|
i.removeOne(i.used() - 2);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// Up promote the quad to a cubic.
|
|
// OPTIMIZATION If this is a common use case, optimize by duplicating
|
|
// the intersect 3 loop to avoid the promotion / demotion code
|
|
int intersect(const Cubic& cubic, const Quadratic& quad, Intersections& i) {
|
|
Cubic up;
|
|
toCubic(quad, up);
|
|
(void) intersect3(cubic, up, i);
|
|
return i.used();
|
|
}
|
|
|
|
/* http://www.ag.jku.at/compass/compasssample.pdf
|
|
( Self-Intersection Problems and Approximate Implicitization by Jan B. Thomassen
|
|
Centre of Mathematics for Applications, University of Oslo http://www.cma.uio.no janbth@math.uio.no
|
|
SINTEF Applied Mathematics http://www.sintef.no )
|
|
describes a method to find the self intersection of a cubic by taking the gradient of the implicit
|
|
form dotted with the normal, and solving for the roots. My math foo is too poor to implement this.*/
|
|
|
|
int intersect(const Cubic& c, Intersections& i) {
|
|
// check to see if x or y end points are the extrema. Are other quick rejects possible?
|
|
if (ends_are_extrema_in_x_or_y(c)) {
|
|
return false;
|
|
}
|
|
(void) intersect3(c, c, i);
|
|
if (i.used() > 0) {
|
|
SkASSERT(i.used() == 1);
|
|
if (i.fT[0][0] > i.fT[1][0]) {
|
|
SkTSwap(i.fT[0][0], i.fT[1][0]);
|
|
}
|
|
}
|
|
return i.used();
|
|
}
|