7eeb74fdfd
With explicit resource allocation there should be no explicit instantiating at flush time. There are, however, still several instances where instantiate is called outside of testing (e.g., readSurfacePixels and writeSurfacePixels). Change-Id: Ic459a550ca85048f66d6a1eb7d601411f83c6e32 Reviewed-on: https://skia-review.googlesource.com/c/skia/+/204721 Reviewed-by: Brian Salomon <bsalomon@google.com> Commit-Queue: Robert Phillips <robertphillips@google.com>
782 lines
36 KiB
C++
782 lines
36 KiB
C++
/*
|
|
* Copyright 2016 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "SkTypes.h"
|
|
#include "Test.h"
|
|
|
|
#include "GrClip.h"
|
|
#include "GrContext.h"
|
|
#include "GrContextPriv.h"
|
|
#include "GrGpuResource.h"
|
|
#include "GrMemoryPool.h"
|
|
#include "GrProxyProvider.h"
|
|
#include "GrRenderTargetContext.h"
|
|
#include "GrRenderTargetContextPriv.h"
|
|
#include "GrResourceProvider.h"
|
|
#include "glsl/GrGLSLFragmentProcessor.h"
|
|
#include "glsl/GrGLSLFragmentShaderBuilder.h"
|
|
#include "ops/GrFillRectOp.h"
|
|
#include "ops/GrMeshDrawOp.h"
|
|
#include "TestUtils.h"
|
|
|
|
#include <atomic>
|
|
#include <random>
|
|
|
|
namespace {
|
|
class TestOp : public GrMeshDrawOp {
|
|
public:
|
|
DEFINE_OP_CLASS_ID
|
|
static std::unique_ptr<GrDrawOp> Make(GrContext* context,
|
|
std::unique_ptr<GrFragmentProcessor> fp) {
|
|
GrOpMemoryPool* pool = context->priv().opMemoryPool();
|
|
|
|
return pool->allocate<TestOp>(std::move(fp));
|
|
}
|
|
|
|
const char* name() const override { return "TestOp"; }
|
|
|
|
void visitProxies(const VisitProxyFunc& func, VisitorType) const override {
|
|
fProcessors.visitProxies(func);
|
|
}
|
|
|
|
FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; }
|
|
|
|
GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip,
|
|
GrFSAAType fsaaType, GrClampType clampType) override {
|
|
static constexpr GrProcessorAnalysisColor kUnknownColor;
|
|
SkPMColor4f overrideColor;
|
|
return fProcessors.finalize(
|
|
kUnknownColor, GrProcessorAnalysisCoverage::kNone, clip,
|
|
&GrUserStencilSettings::kUnused, fsaaType, caps, clampType, &overrideColor);
|
|
}
|
|
|
|
private:
|
|
friend class ::GrOpMemoryPool; // for ctor
|
|
|
|
TestOp(std::unique_ptr<GrFragmentProcessor> fp)
|
|
: INHERITED(ClassID()), fProcessors(std::move(fp)) {
|
|
this->setBounds(SkRect::MakeWH(100, 100), HasAABloat::kNo, IsZeroArea::kNo);
|
|
}
|
|
|
|
void onPrepareDraws(Target* target) override { return; }
|
|
void onExecute(GrOpFlushState*, const SkRect&) override { return; }
|
|
|
|
GrProcessorSet fProcessors;
|
|
|
|
typedef GrMeshDrawOp INHERITED;
|
|
};
|
|
|
|
/**
|
|
* FP used to test ref/IO counts on owned GrGpuResources. Can also be a parent FP to test counts
|
|
* of resources owned by child FPs.
|
|
*/
|
|
class TestFP : public GrFragmentProcessor {
|
|
public:
|
|
static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> child) {
|
|
return std::unique_ptr<GrFragmentProcessor>(new TestFP(std::move(child)));
|
|
}
|
|
static std::unique_ptr<GrFragmentProcessor> Make(const SkTArray<sk_sp<GrTextureProxy>>& proxies,
|
|
const SkTArray<sk_sp<GrGpuBuffer>>& buffers) {
|
|
return std::unique_ptr<GrFragmentProcessor>(new TestFP(proxies, buffers));
|
|
}
|
|
|
|
const char* name() const override { return "test"; }
|
|
|
|
void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const override {
|
|
static std::atomic<int32_t> nextKey{0};
|
|
b->add32(nextKey++);
|
|
}
|
|
|
|
std::unique_ptr<GrFragmentProcessor> clone() const override {
|
|
return std::unique_ptr<GrFragmentProcessor>(new TestFP(*this));
|
|
}
|
|
|
|
private:
|
|
TestFP(const SkTArray<sk_sp<GrTextureProxy>>& proxies,
|
|
const SkTArray<sk_sp<GrGpuBuffer>>& buffers)
|
|
: INHERITED(kTestFP_ClassID, kNone_OptimizationFlags), fSamplers(4) {
|
|
for (const auto& proxy : proxies) {
|
|
fSamplers.emplace_back(proxy);
|
|
}
|
|
this->setTextureSamplerCnt(fSamplers.count());
|
|
}
|
|
|
|
TestFP(std::unique_ptr<GrFragmentProcessor> child)
|
|
: INHERITED(kTestFP_ClassID, kNone_OptimizationFlags), fSamplers(4) {
|
|
this->registerChildProcessor(std::move(child));
|
|
}
|
|
|
|
explicit TestFP(const TestFP& that)
|
|
: INHERITED(kTestFP_ClassID, that.optimizationFlags()), fSamplers(4) {
|
|
for (int i = 0; i < that.fSamplers.count(); ++i) {
|
|
fSamplers.emplace_back(that.fSamplers[i]);
|
|
}
|
|
for (int i = 0; i < that.numChildProcessors(); ++i) {
|
|
this->registerChildProcessor(that.childProcessor(i).clone());
|
|
}
|
|
this->setTextureSamplerCnt(fSamplers.count());
|
|
}
|
|
|
|
virtual GrGLSLFragmentProcessor* onCreateGLSLInstance() const override {
|
|
class TestGLSLFP : public GrGLSLFragmentProcessor {
|
|
public:
|
|
TestGLSLFP() {}
|
|
void emitCode(EmitArgs& args) override {
|
|
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
|
|
fragBuilder->codeAppendf("%s = %s;", args.fOutputColor, args.fInputColor);
|
|
}
|
|
|
|
private:
|
|
};
|
|
return new TestGLSLFP();
|
|
}
|
|
|
|
bool onIsEqual(const GrFragmentProcessor&) const override { return false; }
|
|
const TextureSampler& onTextureSampler(int i) const override { return fSamplers[i]; }
|
|
|
|
GrTAllocator<TextureSampler> fSamplers;
|
|
typedef GrFragmentProcessor INHERITED;
|
|
};
|
|
}
|
|
|
|
template <typename T>
|
|
inline void testingOnly_getIORefCnts(const T* resource, int* refCnt, int* readCnt, int* writeCnt) {
|
|
*refCnt = resource->fRefCnt;
|
|
*readCnt = resource->fPendingReads;
|
|
*writeCnt = resource->fPendingWrites;
|
|
}
|
|
|
|
void testingOnly_getIORefCnts(GrTextureProxy* proxy, int* refCnt, int* readCnt, int* writeCnt) {
|
|
*refCnt = proxy->getBackingRefCnt_TestOnly();
|
|
*readCnt = proxy->getPendingReadCnt_TestOnly();
|
|
*writeCnt = proxy->getPendingWriteCnt_TestOnly();
|
|
}
|
|
|
|
DEF_GPUTEST_FOR_ALL_CONTEXTS(ProcessorRefTest, reporter, ctxInfo) {
|
|
GrContext* context = ctxInfo.grContext();
|
|
GrProxyProvider* proxyProvider = context->priv().proxyProvider();
|
|
|
|
GrSurfaceDesc desc;
|
|
desc.fWidth = 10;
|
|
desc.fHeight = 10;
|
|
desc.fConfig = kRGBA_8888_GrPixelConfig;
|
|
|
|
const GrBackendFormat format =
|
|
context->priv().caps()->getBackendFormatFromColorType(kRGBA_8888_SkColorType);
|
|
|
|
for (bool makeClone : {false, true}) {
|
|
for (int parentCnt = 0; parentCnt < 2; parentCnt++) {
|
|
sk_sp<GrRenderTargetContext> renderTargetContext(
|
|
context->priv().makeDeferredRenderTargetContext(
|
|
format, SkBackingFit::kApprox, 1, 1,
|
|
kRGBA_8888_GrPixelConfig, nullptr));
|
|
{
|
|
sk_sp<GrTextureProxy> proxy1 = proxyProvider->createProxy(
|
|
format, desc, kTopLeft_GrSurfaceOrigin, SkBackingFit::kExact,
|
|
SkBudgeted::kYes);
|
|
sk_sp<GrTextureProxy> proxy2 = proxyProvider->createProxy(
|
|
format, desc, kTopLeft_GrSurfaceOrigin, SkBackingFit::kExact,
|
|
SkBudgeted::kYes);
|
|
sk_sp<GrTextureProxy> proxy3 = proxyProvider->createProxy(
|
|
format, desc, kTopLeft_GrSurfaceOrigin, SkBackingFit::kExact,
|
|
SkBudgeted::kYes);
|
|
sk_sp<GrTextureProxy> proxy4 = proxyProvider->createProxy(
|
|
format, desc, kTopLeft_GrSurfaceOrigin, SkBackingFit::kExact,
|
|
SkBudgeted::kYes);
|
|
{
|
|
SkTArray<sk_sp<GrTextureProxy>> proxies;
|
|
SkTArray<sk_sp<GrGpuBuffer>> buffers;
|
|
proxies.push_back(proxy1);
|
|
auto fp = TestFP::Make(std::move(proxies), std::move(buffers));
|
|
for (int i = 0; i < parentCnt; ++i) {
|
|
fp = TestFP::Make(std::move(fp));
|
|
}
|
|
std::unique_ptr<GrFragmentProcessor> clone;
|
|
if (makeClone) {
|
|
clone = fp->clone();
|
|
}
|
|
std::unique_ptr<GrDrawOp> op(TestOp::Make(context, std::move(fp)));
|
|
renderTargetContext->priv().testingOnly_addDrawOp(std::move(op));
|
|
if (clone) {
|
|
op = TestOp::Make(context, std::move(clone));
|
|
renderTargetContext->priv().testingOnly_addDrawOp(std::move(op));
|
|
}
|
|
}
|
|
int refCnt, readCnt, writeCnt;
|
|
|
|
testingOnly_getIORefCnts(proxy1.get(), &refCnt, &readCnt, &writeCnt);
|
|
// IO counts should be double if there is a clone of the FP.
|
|
int ioRefMul = makeClone ? 2 : 1;
|
|
REPORTER_ASSERT(reporter, -1 == refCnt);
|
|
REPORTER_ASSERT(reporter, ioRefMul * 1 == readCnt);
|
|
REPORTER_ASSERT(reporter, ioRefMul * 0 == writeCnt);
|
|
|
|
context->flush();
|
|
|
|
testingOnly_getIORefCnts(proxy1.get(), &refCnt, &readCnt, &writeCnt);
|
|
REPORTER_ASSERT(reporter, 1 == refCnt);
|
|
REPORTER_ASSERT(reporter, ioRefMul * 0 == readCnt);
|
|
REPORTER_ASSERT(reporter, ioRefMul * 0 == writeCnt);
|
|
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// This test uses the random GrFragmentProcessor test factory, which relies on static initializers.
|
|
#if SK_ALLOW_STATIC_GLOBAL_INITIALIZERS
|
|
|
|
#include "CommandLineFlags.h"
|
|
static DEFINE_bool(randomProcessorTest, false,
|
|
"Use non-deterministic seed for random processor tests?");
|
|
static DEFINE_int(processorSeed, 0,
|
|
"Use specific seed for processor tests. Overridden by --randomProcessorTest.");
|
|
|
|
#if GR_TEST_UTILS
|
|
|
|
static GrColor input_texel_color(int i, int j, SkScalar delta) {
|
|
// Delta must be less than 0.5 to prevent over/underflow issues with the input color
|
|
SkASSERT(delta <= 0.5);
|
|
|
|
SkColor color = SkColorSetARGB((uint8_t)(i & 0xFF),
|
|
(uint8_t)(j & 0xFF),
|
|
(uint8_t)((i + j) & 0xFF),
|
|
(uint8_t)((2 * j - i) & 0xFF));
|
|
SkColor4f color4f = SkColor4f::FromColor(color);
|
|
for (int i = 0; i < 4; i++) {
|
|
if (color4f[i] > 0.5) {
|
|
color4f[i] -= delta;
|
|
} else {
|
|
color4f[i] += delta;
|
|
}
|
|
}
|
|
return color4f.premul().toBytes_RGBA();
|
|
}
|
|
|
|
void test_draw_op(GrContext* context,
|
|
GrRenderTargetContext* rtc,
|
|
std::unique_ptr<GrFragmentProcessor> fp,
|
|
sk_sp<GrTextureProxy> inputDataProxy) {
|
|
GrPaint paint;
|
|
paint.addColorTextureProcessor(std::move(inputDataProxy), SkMatrix::I());
|
|
paint.addColorFragmentProcessor(std::move(fp));
|
|
paint.setPorterDuffXPFactory(SkBlendMode::kSrc);
|
|
|
|
auto op = GrFillRectOp::Make(context, std::move(paint), GrAAType::kNone, SkMatrix::I(),
|
|
SkRect::MakeWH(rtc->width(), rtc->height()));
|
|
rtc->addDrawOp(GrNoClip(), std::move(op));
|
|
}
|
|
|
|
// This assumes that the output buffer will be the same size as inputDataProxy
|
|
void render_fp(GrContext* context, GrRenderTargetContext* rtc, GrFragmentProcessor* fp,
|
|
sk_sp<GrTextureProxy> inputDataProxy, GrColor* buffer) {
|
|
int width = inputDataProxy->width();
|
|
int height = inputDataProxy->height();
|
|
|
|
// test_draw_op needs to take ownership of an FP, so give it a clone that it can own
|
|
test_draw_op(context, rtc, fp->clone(), inputDataProxy);
|
|
memset(buffer, 0x0, sizeof(GrColor) * width * height);
|
|
rtc->readPixels(SkImageInfo::Make(width, height, kRGBA_8888_SkColorType,
|
|
kPremul_SkAlphaType),
|
|
buffer, 0, 0, 0);
|
|
}
|
|
|
|
/** Initializes the two test texture proxies that are available to the FP test factories. */
|
|
bool init_test_textures(GrResourceProvider* resourceProvider,
|
|
GrProxyProvider* proxyProvider,
|
|
SkRandom* random,
|
|
sk_sp<GrTextureProxy> proxies[2]) {
|
|
static const int kTestTextureSize = 256;
|
|
|
|
{
|
|
// Put premul data into the RGBA texture that the test FPs can optionally use.
|
|
std::unique_ptr<GrColor[]> rgbaData(new GrColor[kTestTextureSize * kTestTextureSize]);
|
|
for (int y = 0; y < kTestTextureSize; ++y) {
|
|
for (int x = 0; x < kTestTextureSize; ++x) {
|
|
rgbaData[kTestTextureSize * y + x] = input_texel_color(
|
|
random->nextULessThan(256), random->nextULessThan(256), 0.0f);
|
|
}
|
|
}
|
|
|
|
SkImageInfo ii = SkImageInfo::Make(kTestTextureSize, kTestTextureSize,
|
|
kRGBA_8888_SkColorType, kPremul_SkAlphaType);
|
|
SkPixmap pixmap(ii, rgbaData.get(), ii.minRowBytes());
|
|
sk_sp<SkImage> img = SkImage::MakeRasterCopy(pixmap);
|
|
proxies[0] = proxyProvider->createTextureProxy(img, kNone_GrSurfaceFlags, 1,
|
|
SkBudgeted::kYes, SkBackingFit::kExact,
|
|
GrInternalSurfaceFlags::kNoPendingIO);
|
|
|
|
if (resourceProvider->explicitlyAllocateGPUResources()) {
|
|
proxies[0]->instantiate(resourceProvider);
|
|
}
|
|
}
|
|
|
|
{
|
|
// Put random values into the alpha texture that the test FPs can optionally use.
|
|
std::unique_ptr<uint8_t[]> alphaData(new uint8_t[kTestTextureSize * kTestTextureSize]);
|
|
for (int y = 0; y < kTestTextureSize; ++y) {
|
|
for (int x = 0; x < kTestTextureSize; ++x) {
|
|
alphaData[kTestTextureSize * y + x] = random->nextULessThan(256);
|
|
}
|
|
}
|
|
|
|
SkImageInfo ii = SkImageInfo::Make(kTestTextureSize, kTestTextureSize,
|
|
kAlpha_8_SkColorType, kPremul_SkAlphaType);
|
|
SkPixmap pixmap(ii, alphaData.get(), ii.minRowBytes());
|
|
sk_sp<SkImage> img = SkImage::MakeRasterCopy(pixmap);
|
|
proxies[1] = proxyProvider->createTextureProxy(img, kNone_GrSurfaceFlags, 1,
|
|
SkBudgeted::kYes, SkBackingFit::kExact,
|
|
GrInternalSurfaceFlags::kNoPendingIO);
|
|
|
|
if (resourceProvider->explicitlyAllocateGPUResources()) {
|
|
proxies[1]->instantiate(resourceProvider);
|
|
}
|
|
}
|
|
|
|
return proxies[0] && proxies[1];
|
|
}
|
|
|
|
// Creates a texture of premul colors used as the output of the fragment processor that precedes
|
|
// the fragment processor under test. Color values are those provided by input_texel_color().
|
|
sk_sp<GrTextureProxy> make_input_texture(GrProxyProvider* proxyProvider, int width, int height,
|
|
SkScalar delta) {
|
|
std::unique_ptr<GrColor[]> data(new GrColor[width * height]);
|
|
for (int y = 0; y < width; ++y) {
|
|
for (int x = 0; x < height; ++x) {
|
|
data.get()[width * y + x] = input_texel_color(x, y, delta);
|
|
}
|
|
}
|
|
|
|
SkImageInfo ii = SkImageInfo::Make(width, height, kRGBA_8888_SkColorType, kPremul_SkAlphaType);
|
|
SkPixmap pixmap(ii, data.get(), ii.minRowBytes());
|
|
sk_sp<SkImage> img = SkImage::MakeRasterCopy(pixmap);
|
|
return proxyProvider->createTextureProxy(img, kNone_GrSurfaceFlags, 1,
|
|
SkBudgeted::kYes, SkBackingFit::kExact);
|
|
}
|
|
|
|
bool log_surface_context(sk_sp<GrSurfaceContext> src, SkString* dst) {
|
|
SkImageInfo ii = SkImageInfo::Make(src->width(), src->height(), kRGBA_8888_SkColorType,
|
|
kPremul_SkAlphaType);
|
|
SkBitmap bm;
|
|
SkAssertResult(bm.tryAllocPixels(ii));
|
|
SkAssertResult(src->readPixels(ii, bm.getPixels(), bm.rowBytes(), 0, 0));
|
|
|
|
return bitmap_to_base64_data_uri(bm, dst);
|
|
}
|
|
|
|
bool log_surface_proxy(GrContext* context, sk_sp<GrSurfaceProxy> src, SkString* dst) {
|
|
sk_sp<GrSurfaceContext> sContext(context->priv().makeWrappedSurfaceContext(src));
|
|
return log_surface_context(sContext, dst);
|
|
}
|
|
|
|
bool fuzzy_color_equals(const SkPMColor4f& c1, const SkPMColor4f& c2) {
|
|
// With the loss of precision of rendering into 32-bit color, then estimating the FP's output
|
|
// from that, it is not uncommon for a valid output to differ from estimate by up to 0.01
|
|
// (really 1/128 ~ .0078, but frequently floating point issues make that tolerance a little
|
|
// too unforgiving).
|
|
static constexpr SkScalar kTolerance = 0.01f;
|
|
for (int i = 0; i < 4; i++) {
|
|
if (!SkScalarNearlyEqual(c1[i], c2[i], kTolerance)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
int modulation_index(int channelIndex, bool alphaModulation) {
|
|
return alphaModulation ? 3 : channelIndex;
|
|
}
|
|
|
|
// Given three input colors (color preceding the FP being tested), and the output of the FP, this
|
|
// ensures that the out1 = fp * in1.a, out2 = fp * in2.a, and out3 = fp * in3.a, where fp is the
|
|
// pre-modulated color that should not be changing across frames (FP's state doesn't change).
|
|
//
|
|
// When alphaModulation is false, this tests the very similar conditions that out1 = fp * in1,
|
|
// etc. using per-channel modulation instead of modulation by just the input alpha channel.
|
|
// - This estimates the pre-modulated fp color from one of the input/output pairs and confirms the
|
|
// conditions hold for the other two pairs.
|
|
bool legal_modulation(const GrColor& in1, const GrColor& in2, const GrColor& in3,
|
|
const GrColor& out1, const GrColor& out2, const GrColor& out3,
|
|
bool alphaModulation) {
|
|
// Convert to floating point, which is the number space the FP operates in (more or less)
|
|
SkPMColor4f in1f = SkPMColor4f::FromBytes_RGBA(in1);
|
|
SkPMColor4f in2f = SkPMColor4f::FromBytes_RGBA(in2);
|
|
SkPMColor4f in3f = SkPMColor4f::FromBytes_RGBA(in3);
|
|
SkPMColor4f out1f = SkPMColor4f::FromBytes_RGBA(out1);
|
|
SkPMColor4f out2f = SkPMColor4f::FromBytes_RGBA(out2);
|
|
SkPMColor4f out3f = SkPMColor4f::FromBytes_RGBA(out3);
|
|
|
|
// Reconstruct the output of the FP before the shader modulated its color with the input value.
|
|
// When the original input is very small, it may cause the final output color to round
|
|
// to 0, in which case we estimate the pre-modulated color using one of the stepped frames that
|
|
// will then have a guaranteed larger channel value (since the offset will be added to it).
|
|
SkPMColor4f fpPreModulation;
|
|
for (int i = 0; i < 4; i++) {
|
|
int modulationIndex = modulation_index(i, alphaModulation);
|
|
if (in1f[modulationIndex] < 0.2f) {
|
|
// Use the stepped frame
|
|
fpPreModulation[i] = out2f[i] / in2f[modulationIndex];
|
|
} else {
|
|
fpPreModulation[i] = out1f[i] / in1f[modulationIndex];
|
|
}
|
|
}
|
|
|
|
// With reconstructed pre-modulated FP output, derive the expected value of fp * input for each
|
|
// of the transformed input colors.
|
|
SkPMColor4f expected1 = alphaModulation ? (fpPreModulation * in1f.fA)
|
|
: (fpPreModulation * in1f);
|
|
SkPMColor4f expected2 = alphaModulation ? (fpPreModulation * in2f.fA)
|
|
: (fpPreModulation * in2f);
|
|
SkPMColor4f expected3 = alphaModulation ? (fpPreModulation * in3f.fA)
|
|
: (fpPreModulation * in3f);
|
|
|
|
return fuzzy_color_equals(out1f, expected1) &&
|
|
fuzzy_color_equals(out2f, expected2) &&
|
|
fuzzy_color_equals(out3f, expected3);
|
|
}
|
|
|
|
DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorOptimizationValidationTest, reporter, ctxInfo) {
|
|
GrContext* context = ctxInfo.grContext();
|
|
GrProxyProvider* proxyProvider = context->priv().proxyProvider();
|
|
auto resourceProvider = context->priv().resourceProvider();
|
|
using FPFactory = GrFragmentProcessorTestFactory;
|
|
|
|
// This test side-steps the GrResourceAllocator thus violates some assumptions and
|
|
// asserts
|
|
bool orig = resourceProvider->testingOnly_setExplicitlyAllocateGPUResources(false);
|
|
|
|
uint32_t seed = FLAGS_processorSeed;
|
|
if (FLAGS_randomProcessorTest) {
|
|
std::random_device rd;
|
|
seed = rd();
|
|
}
|
|
// If a non-deterministic bot fails this test, check the output to see what seed it used, then
|
|
// use --processorSeed <seed> (without --randomProcessorTest) to reproduce.
|
|
SkRandom random(seed);
|
|
|
|
const GrBackendFormat format =
|
|
context->priv().caps()->getBackendFormatFromColorType(kRGBA_8888_SkColorType);
|
|
|
|
// Make the destination context for the test.
|
|
static constexpr int kRenderSize = 256;
|
|
sk_sp<GrRenderTargetContext> rtc = context->priv().makeDeferredRenderTargetContext(
|
|
format, SkBackingFit::kExact, kRenderSize, kRenderSize, kRGBA_8888_GrPixelConfig,
|
|
nullptr);
|
|
|
|
sk_sp<GrTextureProxy> proxies[2];
|
|
if (!init_test_textures(resourceProvider, proxyProvider, &random, proxies)) {
|
|
ERRORF(reporter, "Could not create test textures");
|
|
return;
|
|
}
|
|
GrProcessorTestData testData(&random, context, rtc.get(), proxies);
|
|
|
|
// Coverage optimization uses three frames with a linearly transformed input texture. The first
|
|
// frame has no offset, second frames add .2 and .4, which should then be present as a fixed
|
|
// difference between the frame outputs if the FP is properly following the modulation
|
|
// requirements of the coverage optimization.
|
|
static constexpr SkScalar kInputDelta = 0.2f;
|
|
auto inputTexture1 = make_input_texture(proxyProvider, kRenderSize, kRenderSize, 0.0f);
|
|
auto inputTexture2 = make_input_texture(proxyProvider, kRenderSize, kRenderSize, kInputDelta);
|
|
auto inputTexture3 = make_input_texture(proxyProvider, kRenderSize, kRenderSize, 2*kInputDelta);
|
|
|
|
// Encoded images are very verbose and this tests many potential images, so only export the
|
|
// first failure (subsequent failures have a reasonable chance of being related).
|
|
bool loggedFirstFailure = false;
|
|
bool loggedFirstWarning = false;
|
|
|
|
// Storage for the three frames required for coverage compatibility optimization. Each frame
|
|
// uses the correspondingly numbered inputTextureX.
|
|
std::unique_ptr<GrColor[]> readData1(new GrColor[kRenderSize * kRenderSize]);
|
|
std::unique_ptr<GrColor[]> readData2(new GrColor[kRenderSize * kRenderSize]);
|
|
std::unique_ptr<GrColor[]> readData3(new GrColor[kRenderSize * kRenderSize]);
|
|
|
|
// Because processor factories configure themselves in random ways, this is not exhaustive.
|
|
for (int i = 0; i < FPFactory::Count(); ++i) {
|
|
int timesToInvokeFactory = 5;
|
|
// Increase the number of attempts if the FP has child FPs since optimizations likely depend
|
|
// on child optimizations being present.
|
|
std::unique_ptr<GrFragmentProcessor> fp = FPFactory::MakeIdx(i, &testData);
|
|
for (int j = 0; j < fp->numChildProcessors(); ++j) {
|
|
// This value made a reasonable trade off between time and coverage when this test was
|
|
// written.
|
|
timesToInvokeFactory *= FPFactory::Count() / 2;
|
|
}
|
|
#if defined(__MSVC_RUNTIME_CHECKS)
|
|
// This test is infuriatingly slow with MSVC runtime checks enabled
|
|
timesToInvokeFactory = 1;
|
|
#endif
|
|
for (int j = 0; j < timesToInvokeFactory; ++j) {
|
|
fp = FPFactory::MakeIdx(i, &testData);
|
|
if (!fp->instantiate(resourceProvider)) {
|
|
continue;
|
|
}
|
|
|
|
if (!fp->hasConstantOutputForConstantInput() && !fp->preservesOpaqueInput() &&
|
|
!fp->compatibleWithCoverageAsAlpha()) {
|
|
continue;
|
|
}
|
|
|
|
if (fp->compatibleWithCoverageAsAlpha()) {
|
|
// 2nd and 3rd frames are only used when checking coverage optimization
|
|
render_fp(context, rtc.get(), fp.get(), inputTexture2, readData2.get());
|
|
render_fp(context, rtc.get(), fp.get(), inputTexture3, readData3.get());
|
|
}
|
|
// Draw base frame last so that rtc holds the original FP behavior if we need to
|
|
// dump the image to the log.
|
|
render_fp(context, rtc.get(), fp.get(), inputTexture1, readData1.get());
|
|
|
|
if (0) { // Useful to see what FPs are being tested.
|
|
SkString children;
|
|
for (int c = 0; c < fp->numChildProcessors(); ++c) {
|
|
if (!c) {
|
|
children.append("(");
|
|
}
|
|
children.append(fp->childProcessor(c).name());
|
|
children.append(c == fp->numChildProcessors() - 1 ? ")" : ", ");
|
|
}
|
|
SkDebugf("%s %s\n", fp->name(), children.c_str());
|
|
}
|
|
|
|
// This test has a history of being flaky on a number of devices. If an FP is logically
|
|
// violating the optimizations, it's reasonable to expect it to violate requirements on
|
|
// a large number of pixels in the image. Sporadic pixel violations are more indicative
|
|
// of device errors and represents a separate problem.
|
|
#if defined(SK_BUILD_FOR_SKQP)
|
|
static constexpr int kMaxAcceptableFailedPixels = 0; // Strict when running as SKQP
|
|
#else
|
|
static constexpr int kMaxAcceptableFailedPixels = 2 * kRenderSize; // ~0.7% of the image
|
|
#endif
|
|
|
|
int failedPixelCount = 0;
|
|
// Collect first optimization failure message, to be output later as a warning or an
|
|
// error depending on whether the rendering "passed" or failed.
|
|
SkString coverageMessage;
|
|
SkString opaqueMessage;
|
|
SkString constMessage;
|
|
for (int y = 0; y < kRenderSize; ++y) {
|
|
for (int x = 0; x < kRenderSize; ++x) {
|
|
bool passing = true;
|
|
GrColor input = input_texel_color(x, y, 0.0f);
|
|
GrColor output = readData1.get()[y * kRenderSize + x];
|
|
|
|
if (fp->compatibleWithCoverageAsAlpha()) {
|
|
GrColor i2 = input_texel_color(x, y, kInputDelta);
|
|
GrColor i3 = input_texel_color(x, y, 2 * kInputDelta);
|
|
|
|
GrColor o2 = readData2.get()[y * kRenderSize + x];
|
|
GrColor o3 = readData3.get()[y * kRenderSize + x];
|
|
|
|
// A compatible processor is allowed to modulate either the input color or
|
|
// just the input alpha.
|
|
bool legalAlphaModulation = legal_modulation(input, i2, i3, output, o2, o3,
|
|
/* alpha */ true);
|
|
bool legalColorModulation = legal_modulation(input, i2, i3, output, o2, o3,
|
|
/* alpha */ false);
|
|
|
|
if (!legalColorModulation && !legalAlphaModulation) {
|
|
passing = false;
|
|
|
|
if (coverageMessage.isEmpty()) {
|
|
coverageMessage.printf("\"Modulating\" processor %s did not match "
|
|
"alpha-modulation nor color-modulation rules. "
|
|
"Input: 0x%08x, Output: 0x%08x, pixel (%d, %d).",
|
|
fp->name(), input, output, x, y);
|
|
}
|
|
}
|
|
}
|
|
|
|
SkPMColor4f input4f = SkPMColor4f::FromBytes_RGBA(input);
|
|
SkPMColor4f output4f = SkPMColor4f::FromBytes_RGBA(output);
|
|
SkPMColor4f expected4f;
|
|
if (fp->hasConstantOutputForConstantInput(input4f, &expected4f)) {
|
|
float rDiff = fabsf(output4f.fR - expected4f.fR);
|
|
float gDiff = fabsf(output4f.fG - expected4f.fG);
|
|
float bDiff = fabsf(output4f.fB - expected4f.fB);
|
|
float aDiff = fabsf(output4f.fA - expected4f.fA);
|
|
static constexpr float kTol = 4 / 255.f;
|
|
if (rDiff > kTol || gDiff > kTol || bDiff > kTol || aDiff > kTol) {
|
|
if (constMessage.isEmpty()) {
|
|
passing = false;
|
|
|
|
constMessage.printf("Processor %s claimed output for const input "
|
|
"doesn't match actual output. Error: %f, Tolerance: %f, "
|
|
"input: (%f, %f, %f, %f), actual: (%f, %f, %f, %f), "
|
|
"expected(%f, %f, %f, %f)", fp->name(),
|
|
SkTMax(rDiff, SkTMax(gDiff, SkTMax(bDiff, aDiff))), kTol,
|
|
input4f.fR, input4f.fG, input4f.fB, input4f.fA,
|
|
output4f.fR, output4f.fG, output4f.fB, output4f.fA,
|
|
expected4f.fR, expected4f.fG, expected4f.fB, expected4f.fA);
|
|
}
|
|
}
|
|
}
|
|
if (input4f.isOpaque() && fp->preservesOpaqueInput() && !output4f.isOpaque()) {
|
|
passing = false;
|
|
|
|
if (opaqueMessage.isEmpty()) {
|
|
opaqueMessage.printf("Processor %s claimed opaqueness is preserved but "
|
|
"it is not. Input: 0x%08x, Output: 0x%08x.",
|
|
fp->name(), input, output);
|
|
}
|
|
}
|
|
|
|
if (!passing) {
|
|
// Regardless of how many optimizations the pixel violates, count it as a
|
|
// single bad pixel.
|
|
failedPixelCount++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Finished analyzing the entire image, see if the number of pixel failures meets the
|
|
// threshold for an FP violating the optimization requirements.
|
|
if (failedPixelCount > kMaxAcceptableFailedPixels) {
|
|
ERRORF(reporter, "Processor violated %d of %d pixels, seed: 0x%08x, processor: %s"
|
|
", first failing pixel details are below:",
|
|
failedPixelCount, kRenderSize * kRenderSize, seed,
|
|
fp->dumpInfo().c_str());
|
|
|
|
// Print first failing pixel's details.
|
|
if (!coverageMessage.isEmpty()) {
|
|
ERRORF(reporter, coverageMessage.c_str());
|
|
}
|
|
if (!constMessage.isEmpty()) {
|
|
ERRORF(reporter, constMessage.c_str());
|
|
}
|
|
if (!opaqueMessage.isEmpty()) {
|
|
ERRORF(reporter, opaqueMessage.c_str());
|
|
}
|
|
|
|
if (!loggedFirstFailure) {
|
|
// Print with ERRORF to make sure the encoded image is output
|
|
SkString input;
|
|
log_surface_proxy(context, inputTexture1, &input);
|
|
SkString output;
|
|
log_surface_context(rtc, &output);
|
|
ERRORF(reporter, "Input image: %s\n\n"
|
|
"===========================================================\n\n"
|
|
"Output image: %s\n", input.c_str(), output.c_str());
|
|
loggedFirstFailure = true;
|
|
}
|
|
} else if(failedPixelCount > 0) {
|
|
// Don't trigger an error, but don't just hide the failures either.
|
|
INFOF(reporter, "Processor violated %d of %d pixels (below error threshold), seed: "
|
|
"0x%08x, processor: %s", failedPixelCount, kRenderSize * kRenderSize,
|
|
seed, fp->dumpInfo().c_str());
|
|
if (!coverageMessage.isEmpty()) {
|
|
INFOF(reporter, coverageMessage.c_str());
|
|
}
|
|
if (!constMessage.isEmpty()) {
|
|
INFOF(reporter, constMessage.c_str());
|
|
}
|
|
if (!opaqueMessage.isEmpty()) {
|
|
INFOF(reporter, opaqueMessage.c_str());
|
|
}
|
|
if (!loggedFirstWarning) {
|
|
SkString input;
|
|
log_surface_proxy(context, inputTexture1, &input);
|
|
SkString output;
|
|
log_surface_context(rtc, &output);
|
|
INFOF(reporter, "Input image: %s\n\n"
|
|
"===========================================================\n\n"
|
|
"Output image: %s\n", input.c_str(), output.c_str());
|
|
loggedFirstWarning = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
resourceProvider->testingOnly_setExplicitlyAllocateGPUResources(orig);
|
|
}
|
|
|
|
// Tests that fragment processors returned by GrFragmentProcessor::clone() are equivalent to their
|
|
// progenitors.
|
|
DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorCloneTest, reporter, ctxInfo) {
|
|
GrContext* context = ctxInfo.grContext();
|
|
GrProxyProvider* proxyProvider = context->priv().proxyProvider();
|
|
auto resourceProvider = context->priv().resourceProvider();
|
|
|
|
// This test side-steps the GrResourceAllocator thus violates some assumptions and
|
|
// asserts
|
|
bool orig = resourceProvider->testingOnly_setExplicitlyAllocateGPUResources(false);
|
|
|
|
SkRandom random;
|
|
|
|
const GrBackendFormat format =
|
|
context->priv().caps()->getBackendFormatFromColorType(kRGBA_8888_SkColorType);
|
|
|
|
// Make the destination context for the test.
|
|
static constexpr int kRenderSize = 1024;
|
|
sk_sp<GrRenderTargetContext> rtc = context->priv().makeDeferredRenderTargetContext(
|
|
format, SkBackingFit::kExact, kRenderSize, kRenderSize, kRGBA_8888_GrPixelConfig,
|
|
nullptr);
|
|
|
|
sk_sp<GrTextureProxy> proxies[2];
|
|
if (!init_test_textures(resourceProvider, proxyProvider, &random, proxies)) {
|
|
ERRORF(reporter, "Could not create test textures");
|
|
return;
|
|
}
|
|
GrProcessorTestData testData(&random, context, rtc.get(), proxies);
|
|
|
|
auto inputTexture = make_input_texture(proxyProvider, kRenderSize, kRenderSize, 0.0f);
|
|
std::unique_ptr<GrColor[]> readData1(new GrColor[kRenderSize * kRenderSize]);
|
|
std::unique_ptr<GrColor[]> readData2(new GrColor[kRenderSize * kRenderSize]);
|
|
auto readInfo = SkImageInfo::Make(kRenderSize, kRenderSize, kRGBA_8888_SkColorType,
|
|
kPremul_SkAlphaType);
|
|
|
|
// Because processor factories configure themselves in random ways, this is not exhaustive.
|
|
for (int i = 0; i < GrFragmentProcessorTestFactory::Count(); ++i) {
|
|
static constexpr int kTimesToInvokeFactory = 10;
|
|
for (int j = 0; j < kTimesToInvokeFactory; ++j) {
|
|
auto fp = GrFragmentProcessorTestFactory::MakeIdx(i, &testData);
|
|
auto clone = fp->clone();
|
|
if (!clone) {
|
|
ERRORF(reporter, "Clone of processor %s failed.", fp->name());
|
|
continue;
|
|
}
|
|
const char* name = fp->name();
|
|
if (!fp->instantiate(resourceProvider) || !clone->instantiate(resourceProvider)) {
|
|
continue;
|
|
}
|
|
REPORTER_ASSERT(reporter, !strcmp(fp->name(), clone->name()));
|
|
REPORTER_ASSERT(reporter, fp->compatibleWithCoverageAsAlpha() ==
|
|
clone->compatibleWithCoverageAsAlpha());
|
|
REPORTER_ASSERT(reporter, fp->isEqual(*clone));
|
|
REPORTER_ASSERT(reporter, fp->preservesOpaqueInput() == clone->preservesOpaqueInput());
|
|
REPORTER_ASSERT(reporter, fp->hasConstantOutputForConstantInput() ==
|
|
clone->hasConstantOutputForConstantInput());
|
|
REPORTER_ASSERT(reporter, fp->numChildProcessors() == clone->numChildProcessors());
|
|
REPORTER_ASSERT(reporter, fp->usesLocalCoords() == clone->usesLocalCoords());
|
|
// Draw with original and read back the results.
|
|
render_fp(context, rtc.get(), fp.get(), inputTexture, readData1.get());
|
|
|
|
// Draw with clone and read back the results.
|
|
render_fp(context, rtc.get(), clone.get(), inputTexture, readData2.get());
|
|
|
|
// Check that the results are the same.
|
|
bool passing = true;
|
|
for (int y = 0; y < kRenderSize && passing; ++y) {
|
|
for (int x = 0; x < kRenderSize && passing; ++x) {
|
|
int idx = y * kRenderSize + x;
|
|
if (readData1[idx] != readData2[idx]) {
|
|
ERRORF(reporter,
|
|
"Processor %s made clone produced different output. "
|
|
"Input color: 0x%08x, Original Output Color: 0x%08x, "
|
|
"Clone Output Color: 0x%08x..",
|
|
name, input_texel_color(x, y, 0.0f), readData1[idx], readData2[idx]);
|
|
passing = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
resourceProvider->testingOnly_setExplicitlyAllocateGPUResources(orig);
|
|
}
|
|
|
|
#endif // GR_TEST_UTILS
|
|
#endif // SK_ALLOW_STATIC_GLOBAL_INITIALIZERS
|