fc017c7c7e
We can of course use allow_jit to test with and without JIT! This testing was the only reason Program::dropJIT() was public. Given how tricky its implementation is, I'd rather keep it a private detail than exposed API, in case one day we find need to make it impossible. Change-Id: Ifa256355309d9baf1bae506d75951381dce9b53c Reviewed-on: https://skia-review.googlesource.com/c/skia/+/367896 Reviewed-by: Herb Derby <herb@google.com> Commit-Queue: Mike Klein <mtklein@google.com>
2508 lines
77 KiB
C++
2508 lines
77 KiB
C++
/*
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "include/core/SkColorPriv.h"
|
|
#include "include/private/SkColorData.h"
|
|
#include "src/core/SkCpu.h"
|
|
#include "src/core/SkMSAN.h"
|
|
#include "src/core/SkVM.h"
|
|
#include "tests/Test.h"
|
|
|
|
template <typename Fn>
|
|
static void test_jit_and_interpreter(const skvm::Builder& b, Fn&& test) {
|
|
skvm::Program p = b.done();
|
|
test(p);
|
|
if (p.hasJIT()) {
|
|
test(b.done(/*debug_name=*/nullptr, /*allow_jit=*/false));
|
|
}
|
|
}
|
|
|
|
DEF_TEST(SkVM_eliminate_dead_code, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Ptr arg = b.varying<int>();
|
|
skvm::I32 l = b.load32(arg);
|
|
skvm::I32 a = b.add(l, l);
|
|
b.add(a, b.splat(7));
|
|
}
|
|
|
|
std::vector<skvm::Instruction> program = b.program();
|
|
REPORTER_ASSERT(r, program.size() == 4);
|
|
|
|
program = skvm::eliminate_dead_code(program);
|
|
REPORTER_ASSERT(r, program.size() == 0);
|
|
}
|
|
|
|
DEF_TEST(SkVM_Pointless, r) {
|
|
// Let's build a program with no memory arguments.
|
|
// It should all be pegged as dead code, but we should be able to "run" it.
|
|
skvm::Builder b;
|
|
{
|
|
b.add(b.splat(5.0f),
|
|
b.splat(4.0f));
|
|
}
|
|
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program) {
|
|
for (int N = 0; N < 64; N++) {
|
|
program.eval(N);
|
|
}
|
|
});
|
|
|
|
for (const skvm::OptimizedInstruction& inst : b.optimize()) {
|
|
REPORTER_ASSERT(r, inst.death == 0 && inst.can_hoist == true);
|
|
}
|
|
}
|
|
|
|
DEF_TEST(SkVM_memset, r) {
|
|
skvm::Builder b;
|
|
b.store32(b.varying<int>(), b.splat(42));
|
|
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& p) {
|
|
int buf[18];
|
|
buf[17] = 47;
|
|
|
|
p.eval(17, buf);
|
|
for (int i = 0; i < 17; i++) {
|
|
REPORTER_ASSERT(r, buf[i] == 42);
|
|
}
|
|
REPORTER_ASSERT(r, buf[17] == 47);
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_memcpy, r) {
|
|
skvm::Builder b;
|
|
{
|
|
auto src = b.varying<int>(),
|
|
dst = b.varying<int>();
|
|
b.store32(dst, b.load32(src));
|
|
}
|
|
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& p) {
|
|
int src[] = {1,2,3,4,5,6,7,8,9},
|
|
dst[] = {0,0,0,0,0,0,0,0,0};
|
|
|
|
p.eval(SK_ARRAY_COUNT(src)-1, src, dst);
|
|
for (size_t i = 0; i < SK_ARRAY_COUNT(src)-1; i++) {
|
|
REPORTER_ASSERT(r, dst[i] == src[i]);
|
|
}
|
|
size_t i = SK_ARRAY_COUNT(src)-1;
|
|
REPORTER_ASSERT(r, dst[i] == 0);
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_allow_jit, r) {
|
|
skvm::Builder b;
|
|
{
|
|
auto src = b.varying<int>(),
|
|
dst = b.varying<int>();
|
|
b.store32(dst, b.load32(src));
|
|
}
|
|
|
|
if (b.done("", /*allow_jit=*/true).hasJIT()) {
|
|
REPORTER_ASSERT(r, !b.done("", false).hasJIT());
|
|
}
|
|
}
|
|
|
|
DEF_TEST(SkVM_LoopCounts, r) {
|
|
// Make sure we cover all the exact N we want.
|
|
|
|
// buf[i] += 1
|
|
skvm::Builder b;
|
|
skvm::Ptr arg = b.varying<int>();
|
|
b.store32(arg,
|
|
b.add(b.splat(1),
|
|
b.load32(arg)));
|
|
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program) {
|
|
int buf[64];
|
|
for (int N = 0; N <= (int)SK_ARRAY_COUNT(buf); N++) {
|
|
for (int i = 0; i < (int)SK_ARRAY_COUNT(buf); i++) {
|
|
buf[i] = i;
|
|
}
|
|
program.eval(N, buf);
|
|
|
|
for (int i = 0; i < N; i++) {
|
|
REPORTER_ASSERT(r, buf[i] == i+1);
|
|
}
|
|
for (int i = N; i < (int)SK_ARRAY_COUNT(buf); i++) {
|
|
REPORTER_ASSERT(r, buf[i] == i);
|
|
}
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_gather32, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Ptr uniforms = b.uniform(),
|
|
buf = b.varying<int>();
|
|
skvm::I32 x = b.load32(buf);
|
|
b.store32(buf, b.gather32(uniforms,0, b.bit_and(x, b.splat(7))));
|
|
}
|
|
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program) {
|
|
const int img[] = {12,34,56,78, 90,98,76,54};
|
|
|
|
int buf[20];
|
|
for (int i = 0; i < 20; i++) {
|
|
buf[i] = i;
|
|
}
|
|
|
|
struct Uniforms {
|
|
const int* img;
|
|
} uniforms{img};
|
|
|
|
program.eval(20, &uniforms, buf);
|
|
int i = 0;
|
|
REPORTER_ASSERT(r, buf[i] == 12); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 34); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 56); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 78); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 90); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 98); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 76); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 54); i++;
|
|
|
|
REPORTER_ASSERT(r, buf[i] == 12); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 34); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 56); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 78); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 90); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 98); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 76); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 54); i++;
|
|
|
|
REPORTER_ASSERT(r, buf[i] == 12); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 34); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 56); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 78); i++;
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_gathers, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Ptr uniforms = b.uniform(),
|
|
buf32 = b.varying<int>(),
|
|
buf16 = b.varying<uint16_t>(),
|
|
buf8 = b.varying<uint8_t>();
|
|
|
|
skvm::I32 x = b.load32(buf32);
|
|
|
|
b.store32(buf32, b.gather32(uniforms,0, b.bit_and(x, b.splat( 7))));
|
|
b.store16(buf16, b.gather16(uniforms,0, b.bit_and(x, b.splat(15))));
|
|
b.store8 (buf8 , b.gather8 (uniforms,0, b.bit_and(x, b.splat(31))));
|
|
}
|
|
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program) {
|
|
const int img[] = {12,34,56,78, 90,98,76,54};
|
|
|
|
constexpr int N = 20;
|
|
int buf32[N];
|
|
uint16_t buf16[N];
|
|
uint8_t buf8 [N];
|
|
|
|
for (int i = 0; i < 20; i++) {
|
|
buf32[i] = i;
|
|
}
|
|
|
|
struct Uniforms {
|
|
const int* img;
|
|
} uniforms{img};
|
|
|
|
program.eval(N, &uniforms, buf32, buf16, buf8);
|
|
int i = 0;
|
|
REPORTER_ASSERT(r, buf32[i] == 12 && buf16[i] == 12 && buf8[i] == 12); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 34 && buf16[i] == 0 && buf8[i] == 0); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 56 && buf16[i] == 34 && buf8[i] == 0); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 78 && buf16[i] == 0 && buf8[i] == 0); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 90 && buf16[i] == 56 && buf8[i] == 34); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 98 && buf16[i] == 0 && buf8[i] == 0); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 76 && buf16[i] == 78 && buf8[i] == 0); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 54 && buf16[i] == 0 && buf8[i] == 0); i++;
|
|
|
|
REPORTER_ASSERT(r, buf32[i] == 12 && buf16[i] == 90 && buf8[i] == 56); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 34 && buf16[i] == 0 && buf8[i] == 0); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 56 && buf16[i] == 98 && buf8[i] == 0); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 78 && buf16[i] == 0 && buf8[i] == 0); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 90 && buf16[i] == 76 && buf8[i] == 78); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 98 && buf16[i] == 0 && buf8[i] == 0); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 76 && buf16[i] == 54 && buf8[i] == 0); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 54 && buf16[i] == 0 && buf8[i] == 0); i++;
|
|
|
|
REPORTER_ASSERT(r, buf32[i] == 12 && buf16[i] == 12 && buf8[i] == 90); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 34 && buf16[i] == 0 && buf8[i] == 0); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 56 && buf16[i] == 34 && buf8[i] == 0); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 78 && buf16[i] == 0 && buf8[i] == 0); i++;
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_gathers2, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Ptr uniforms = b.uniform(),
|
|
buf32 = b.varying<int>(),
|
|
buf16 = b.varying<uint16_t>(),
|
|
buf8 = b.varying<uint8_t>();
|
|
|
|
skvm::I32 x = b.load32(buf32);
|
|
|
|
b.store32(buf32, b.gather32(uniforms,0, x));
|
|
b.store16(buf16, b.gather16(uniforms,0, x));
|
|
b.store8 (buf8 , b.gather8 (uniforms,0, x));
|
|
}
|
|
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program) {
|
|
uint8_t img[256];
|
|
for (int i = 0; i < 256; i++) {
|
|
img[i] = i;
|
|
}
|
|
|
|
int buf32[64];
|
|
uint16_t buf16[64];
|
|
uint8_t buf8 [64];
|
|
|
|
for (int i = 0; i < 64; i++) {
|
|
buf32[i] = (i*47)&63;
|
|
buf16[i] = 0;
|
|
buf8 [i] = 0;
|
|
}
|
|
|
|
struct Uniforms {
|
|
const uint8_t* img;
|
|
} uniforms{img};
|
|
|
|
program.eval(64, &uniforms, buf32, buf16, buf8);
|
|
|
|
for (int i = 0; i < 64; i++) {
|
|
REPORTER_ASSERT(r, buf8[i] == ((i*47)&63)); // 0,47,30,13,60,...
|
|
}
|
|
|
|
REPORTER_ASSERT(r, buf16[ 0] == 0x0100);
|
|
REPORTER_ASSERT(r, buf16[63] == 0x2322);
|
|
|
|
REPORTER_ASSERT(r, buf32[ 0] == 0x03020100);
|
|
REPORTER_ASSERT(r, buf32[63] == 0x47464544);
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_bitops, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Ptr ptr = b.varying<int>();
|
|
|
|
skvm::I32 x = b.load32(ptr);
|
|
|
|
x = b.bit_and (x, b.splat(0xf1)); // 0x40
|
|
x = b.bit_or (x, b.splat(0x80)); // 0xc0
|
|
x = b.bit_xor (x, b.splat(0xfe)); // 0x3e
|
|
x = b.bit_clear(x, b.splat(0x30)); // 0x0e
|
|
|
|
x = b.shl(x, 28); // 0xe000'0000
|
|
x = b.sra(x, 28); // 0xffff'fffe
|
|
x = b.shr(x, 1); // 0x7fff'ffff
|
|
|
|
b.store32(ptr, x);
|
|
}
|
|
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program) {
|
|
int x = 0x42;
|
|
program.eval(1, &x);
|
|
REPORTER_ASSERT(r, x == 0x7fff'ffff);
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_select_is_NaN, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Ptr src = b.varying<float>(),
|
|
dst = b.varying<float>();
|
|
|
|
skvm::F32 x = b.loadF(src);
|
|
x = select(is_NaN(x), b.splat(0.0f)
|
|
, x);
|
|
b.storeF(dst, x);
|
|
}
|
|
|
|
std::vector<skvm::OptimizedInstruction> program = b.optimize();
|
|
REPORTER_ASSERT(r, program.size() == 4);
|
|
REPORTER_ASSERT(r, program[0].op == skvm::Op::load32);
|
|
REPORTER_ASSERT(r, program[1].op == skvm::Op::neq_f32);
|
|
REPORTER_ASSERT(r, program[2].op == skvm::Op::bit_clear);
|
|
REPORTER_ASSERT(r, program[3].op == skvm::Op::store32);
|
|
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program) {
|
|
// ±NaN, ±0, ±1, ±inf
|
|
uint32_t src[] = {0x7f80'0001, 0xff80'0001, 0x0000'0000, 0x8000'0000,
|
|
0x3f80'0000, 0xbf80'0000, 0x7f80'0000, 0xff80'0000};
|
|
uint32_t dst[SK_ARRAY_COUNT(src)];
|
|
program.eval(SK_ARRAY_COUNT(src), src, dst);
|
|
|
|
for (int i = 0; i < (int)SK_ARRAY_COUNT(src); i++) {
|
|
REPORTER_ASSERT(r, dst[i] == (i < 2 ? 0 : src[i]));
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_f32, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Ptr arg = b.varying<float>();
|
|
|
|
skvm::F32 x = b.loadF(arg),
|
|
y = b.add(x,x), // y = 2x
|
|
z = b.sub(y,x), // z = 2x-x = x
|
|
w = b.div(z,x); // w = x/x = 1
|
|
b.storeF(arg, w);
|
|
}
|
|
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program) {
|
|
float buf[] = { 1,2,3,4,5,6,7,8,9 };
|
|
program.eval(SK_ARRAY_COUNT(buf), buf);
|
|
for (float v : buf) {
|
|
REPORTER_ASSERT(r, v == 1.0f);
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_cmp_i32, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::I32 x = b.load32(b.varying<int>());
|
|
|
|
auto to_bit = [&](int shift, skvm::I32 mask) {
|
|
return b.shl(b.bit_and(mask, b.splat(0x1)), shift);
|
|
};
|
|
|
|
skvm::I32 m = b.splat(0);
|
|
m = b.bit_or(m, to_bit(0, b. eq(x, b.splat(0))));
|
|
m = b.bit_or(m, to_bit(1, b.neq(x, b.splat(1))));
|
|
m = b.bit_or(m, to_bit(2, b. lt(x, b.splat(2))));
|
|
m = b.bit_or(m, to_bit(3, b.lte(x, b.splat(3))));
|
|
m = b.bit_or(m, to_bit(4, b. gt(x, b.splat(4))));
|
|
m = b.bit_or(m, to_bit(5, b.gte(x, b.splat(5))));
|
|
|
|
b.store32(b.varying<int>(), m);
|
|
}
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program) {
|
|
int in[] = { 0,1,2,3,4,5,6,7,8,9 };
|
|
int out[SK_ARRAY_COUNT(in)];
|
|
|
|
program.eval(SK_ARRAY_COUNT(in), in, out);
|
|
|
|
REPORTER_ASSERT(r, out[0] == 0b001111);
|
|
REPORTER_ASSERT(r, out[1] == 0b001100);
|
|
REPORTER_ASSERT(r, out[2] == 0b001010);
|
|
REPORTER_ASSERT(r, out[3] == 0b001010);
|
|
REPORTER_ASSERT(r, out[4] == 0b000010);
|
|
for (int i = 5; i < (int)SK_ARRAY_COUNT(out); i++) {
|
|
REPORTER_ASSERT(r, out[i] == 0b110010);
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_cmp_f32, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::F32 x = b.loadF(b.varying<float>());
|
|
|
|
auto to_bit = [&](int shift, skvm::I32 mask) {
|
|
return b.shl(b.bit_and(mask, b.splat(0x1)), shift);
|
|
};
|
|
|
|
skvm::I32 m = b.splat(0);
|
|
m = b.bit_or(m, to_bit(0, b. eq(x, b.splat(0.0f))));
|
|
m = b.bit_or(m, to_bit(1, b.neq(x, b.splat(1.0f))));
|
|
m = b.bit_or(m, to_bit(2, b. lt(x, b.splat(2.0f))));
|
|
m = b.bit_or(m, to_bit(3, b.lte(x, b.splat(3.0f))));
|
|
m = b.bit_or(m, to_bit(4, b. gt(x, b.splat(4.0f))));
|
|
m = b.bit_or(m, to_bit(5, b.gte(x, b.splat(5.0f))));
|
|
|
|
b.store32(b.varying<int>(), m);
|
|
}
|
|
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program) {
|
|
float in[] = { 0,1,2,3,4,5,6,7,8,9 };
|
|
int out[SK_ARRAY_COUNT(in)];
|
|
|
|
program.eval(SK_ARRAY_COUNT(in), in, out);
|
|
|
|
REPORTER_ASSERT(r, out[0] == 0b001111);
|
|
REPORTER_ASSERT(r, out[1] == 0b001100);
|
|
REPORTER_ASSERT(r, out[2] == 0b001010);
|
|
REPORTER_ASSERT(r, out[3] == 0b001010);
|
|
REPORTER_ASSERT(r, out[4] == 0b000010);
|
|
for (int i = 5; i < (int)SK_ARRAY_COUNT(out); i++) {
|
|
REPORTER_ASSERT(r, out[i] == 0b110010);
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_index, r) {
|
|
skvm::Builder b;
|
|
b.store32(b.varying<int>(), b.index());
|
|
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program) {
|
|
int buf[23];
|
|
program.eval(SK_ARRAY_COUNT(buf), buf);
|
|
for (int i = 0; i < (int)SK_ARRAY_COUNT(buf); i++) {
|
|
REPORTER_ASSERT(r, buf[i] == (int)SK_ARRAY_COUNT(buf)-i);
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_mad, r) {
|
|
// This program is designed to exercise the tricky corners of instruction
|
|
// and register selection for Op::mad_f32.
|
|
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Ptr arg = b.varying<int>();
|
|
|
|
skvm::F32 x = b.to_F32(b.load32(arg)),
|
|
y = b.mad(x,x,x), // x is needed in the future, so r[x] != r[y].
|
|
z = b.mad(y,y,x), // y is needed in the future, but r[z] = r[x] is ok.
|
|
w = b.mad(z,z,y), // w can alias z but not y.
|
|
v = b.mad(w,y,w); // Got to stop somewhere.
|
|
b.store32(arg, b.trunc(v));
|
|
}
|
|
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program) {
|
|
int x = 2;
|
|
program.eval(1, &x);
|
|
// x = 2
|
|
// y = 2*2 + 2 = 6
|
|
// z = 6*6 + 2 = 38
|
|
// w = 38*38 + 6 = 1450
|
|
// v = 1450*6 + 1450 = 10150
|
|
REPORTER_ASSERT(r, x == 10150);
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_fms, r) {
|
|
// Create a pattern that can be peepholed into an Op::fms_f32.
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Ptr arg = b.varying<int>();
|
|
|
|
skvm::F32 x = b.to_F32(b.load32(arg)),
|
|
v = b.sub(b.mul(x, b.splat(2.0f)),
|
|
b.splat(1.0f));
|
|
b.store32(arg, b.trunc(v));
|
|
}
|
|
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program) {
|
|
int buf[] = {0,1,2,3,4,5,6,7,8,9,10};
|
|
program.eval((int)SK_ARRAY_COUNT(buf), &buf);
|
|
|
|
for (int i = 0; i < (int)SK_ARRAY_COUNT(buf); i++) {
|
|
REPORTER_ASSERT(r, buf[i] = 2*i-1);
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_fnma, r) {
|
|
// Create a pattern that can be peepholed into an Op::fnma_f32.
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Ptr arg = b.varying<int>();
|
|
|
|
skvm::F32 x = b.to_F32(b.load32(arg)),
|
|
v = b.sub(b.splat(1.0f),
|
|
b.mul(x, b.splat(2.0f)));
|
|
b.store32(arg, b.trunc(v));
|
|
}
|
|
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program) {
|
|
int buf[] = {0,1,2,3,4,5,6,7,8,9,10};
|
|
program.eval((int)SK_ARRAY_COUNT(buf), &buf);
|
|
|
|
for (int i = 0; i < (int)SK_ARRAY_COUNT(buf); i++) {
|
|
REPORTER_ASSERT(r, buf[i] = 1-2*i);
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_madder, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Ptr arg = b.varying<float>();
|
|
|
|
skvm::F32 x = b.loadF(arg),
|
|
y = b.mad(x,x,x), // x is needed in the future, so r[x] != r[y].
|
|
z = b.mad(y,x,y), // r[x] can be reused after this instruction, but not r[y].
|
|
w = b.mad(y,y,z);
|
|
b.storeF(arg, w);
|
|
}
|
|
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program) {
|
|
float x = 2.0f;
|
|
// y = 2*2 + 2 = 6
|
|
// z = 6*2 + 6 = 18
|
|
// w = 6*6 + 18 = 54
|
|
program.eval(1, &x);
|
|
REPORTER_ASSERT(r, x == 54.0f);
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_floor, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Ptr arg = b.varying<float>();
|
|
b.storeF(arg, b.floor(b.loadF(arg)));
|
|
}
|
|
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program) {
|
|
float buf[] = { -2.0f, -1.5f, -1.0f, 0.0f, 1.0f, 1.5f, 2.0f };
|
|
float want[] = { -2.0f, -2.0f, -1.0f, 0.0f, 1.0f, 1.0f, 2.0f };
|
|
program.eval(SK_ARRAY_COUNT(buf), buf);
|
|
for (int i = 0; i < (int)SK_ARRAY_COUNT(buf); i++) {
|
|
REPORTER_ASSERT(r, buf[i] == want[i]);
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_round, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Ptr src = b.varying<float>();
|
|
skvm::Ptr dst = b.varying<int>();
|
|
b.store32(dst, b.round(b.loadF(src)));
|
|
}
|
|
|
|
// The test cases on exact 0.5f boundaries assume the current rounding mode is nearest even.
|
|
// We haven't explicitly guaranteed that here... it just probably is.
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program) {
|
|
float buf[] = { -1.5f, -0.5f, 0.0f, 0.5f, 0.2f, 0.6f, 1.0f, 1.4f, 1.5f, 2.0f };
|
|
int want[] = { -2 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 2 , 2 };
|
|
int dst[SK_ARRAY_COUNT(buf)];
|
|
|
|
program.eval(SK_ARRAY_COUNT(buf), buf, dst);
|
|
for (int i = 0; i < (int)SK_ARRAY_COUNT(dst); i++) {
|
|
REPORTER_ASSERT(r, dst[i] == want[i]);
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_min, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Ptr src1 = b.varying<float>();
|
|
skvm::Ptr src2 = b.varying<float>();
|
|
skvm::Ptr dst = b.varying<float>();
|
|
|
|
b.storeF(dst, b.min(b.loadF(src1), b.loadF(src2)));
|
|
}
|
|
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program) {
|
|
float s1[] = { 0.0f, 1.0f, 4.0f, -1.0f, -1.0f};
|
|
float s2[] = { 0.0f, 2.0f, 3.0f, 1.0f, -2.0f};
|
|
float want[] = { 0.0f, 1.0f, 3.0f, -1.0f, -2.0f};
|
|
float d[SK_ARRAY_COUNT(s1)];
|
|
program.eval(SK_ARRAY_COUNT(d), s1, s2, d);
|
|
for (int i = 0; i < (int)SK_ARRAY_COUNT(d); i++) {
|
|
REPORTER_ASSERT(r, d[i] == want[i]);
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_max, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Ptr src1 = b.varying<float>();
|
|
skvm::Ptr src2 = b.varying<float>();
|
|
skvm::Ptr dst = b.varying<float>();
|
|
|
|
b.storeF(dst, b.max(b.loadF(src1), b.loadF(src2)));
|
|
}
|
|
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program) {
|
|
float s1[] = { 0.0f, 1.0f, 4.0f, -1.0f, -1.0f};
|
|
float s2[] = { 0.0f, 2.0f, 3.0f, 1.0f, -2.0f};
|
|
float want[] = { 0.0f, 2.0f, 4.0f, 1.0f, -1.0f};
|
|
float d[SK_ARRAY_COUNT(s1)];
|
|
program.eval(SK_ARRAY_COUNT(d), s1, s2, d);
|
|
for (int i = 0; i < (int)SK_ARRAY_COUNT(d); i++) {
|
|
REPORTER_ASSERT(r, d[i] == want[i]);
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_hoist, r) {
|
|
// This program uses enough constants that it will fail to JIT if we hoist them.
|
|
// The JIT will try again without hoisting, and that'll just need 2 registers.
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Ptr arg = b.varying<int>();
|
|
skvm::I32 x = b.load32(arg);
|
|
for (int i = 0; i < 32; i++) {
|
|
x = b.add(x, b.splat(i));
|
|
}
|
|
b.store32(arg, x);
|
|
}
|
|
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program) {
|
|
int x = 4;
|
|
program.eval(1, &x);
|
|
// x += 0 + 1 + 2 + 3 + ... + 30 + 31
|
|
// x += 496
|
|
REPORTER_ASSERT(r, x == 500);
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_select, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Ptr buf = b.varying<int>();
|
|
|
|
skvm::I32 x = b.load32(buf);
|
|
|
|
x = b.select( b.gt(x, b.splat(4)), x, b.splat(42) );
|
|
|
|
b.store32(buf, x);
|
|
}
|
|
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program) {
|
|
int buf[] = { 0,1,2,3,4,5,6,7,8 };
|
|
program.eval(SK_ARRAY_COUNT(buf), buf);
|
|
for (int i = 0; i < (int)SK_ARRAY_COUNT(buf); i++) {
|
|
REPORTER_ASSERT(r, buf[i] == (i > 4 ? i : 42));
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_swap, r) {
|
|
skvm::Builder b;
|
|
{
|
|
// This program is the equivalent of
|
|
// x = *X
|
|
// y = *Y
|
|
// *X = y
|
|
// *Y = x
|
|
// One rescheduling of the program based only on data flow of Op arguments is
|
|
// x = *X
|
|
// *Y = x
|
|
// y = *Y
|
|
// *X = y
|
|
// but this reordering does not produce the same results and is invalid.
|
|
skvm::Ptr X = b.varying<int>(),
|
|
Y = b.varying<int>();
|
|
|
|
skvm::I32 x = b.load32(X),
|
|
y = b.load32(Y);
|
|
|
|
b.store32(X, y);
|
|
b.store32(Y, x);
|
|
}
|
|
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program) {
|
|
int b1[] = { 0,1,2,3 };
|
|
int b2[] = { 4,5,6,7 };
|
|
program.eval(SK_ARRAY_COUNT(b1), b1, b2);
|
|
for (int i = 0; i < (int)SK_ARRAY_COUNT(b1); i++) {
|
|
REPORTER_ASSERT(r, b1[i] == 4 + i);
|
|
REPORTER_ASSERT(r, b2[i] == i);
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_NewOps, r) {
|
|
// Exercise a somewhat arbitrary set of new ops.
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Ptr buf = b.varying<int16_t>(),
|
|
uniforms = b.uniform();
|
|
|
|
skvm::I32 x = b.load16(buf);
|
|
|
|
const size_t kPtr = sizeof(const int*);
|
|
|
|
x = b.add(x, b.uniform32(uniforms, kPtr+0));
|
|
x = b.mul(x, b.uniform32(uniforms, kPtr+4));
|
|
x = b.sub(x, b.uniform32(uniforms, kPtr+8));
|
|
|
|
skvm::I32 limit = b.uniform32(uniforms, kPtr+12);
|
|
x = b.select(b.lt(x, b.splat(0)), b.splat(0), x);
|
|
x = b.select(b.gt(x, limit ), limit , x);
|
|
|
|
x = b.gather8(uniforms,0, x);
|
|
|
|
b.store16(buf, x);
|
|
}
|
|
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program) {
|
|
const int N = 31;
|
|
int16_t buf[N];
|
|
for (int i = 0; i < N; i++) {
|
|
buf[i] = i;
|
|
}
|
|
|
|
const int M = 16;
|
|
uint8_t img[M];
|
|
for (int i = 0; i < M; i++) {
|
|
img[i] = i*i;
|
|
}
|
|
|
|
struct {
|
|
const uint8_t* img;
|
|
int add = 5;
|
|
int mul = 3;
|
|
int sub = 18;
|
|
int limit = M-1;
|
|
} uniforms{img};
|
|
|
|
program.eval(N, buf, &uniforms);
|
|
|
|
for (int i = 0; i < N; i++) {
|
|
// Our first math calculates x = (i+5)*3 - 18 a.k.a 3*(i-1).
|
|
int x = 3*(i-1);
|
|
|
|
// Then that's pinned to the limits of img.
|
|
if (i < 2) { x = 0; } // Notice i == 1 hits x == 0 exactly...
|
|
if (i > 5) { x = 15; } // ...and i == 6 hits x == 15 exactly
|
|
REPORTER_ASSERT(r, buf[i] == img[x]);
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_sqrt, r) {
|
|
skvm::Builder b;
|
|
auto buf = b.varying<int>();
|
|
b.storeF(buf, b.sqrt(b.loadF(buf)));
|
|
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program) {
|
|
constexpr int K = 17;
|
|
float buf[K];
|
|
for (int i = 0; i < K; i++) {
|
|
buf[i] = (float)(i*i);
|
|
}
|
|
|
|
// x^2 -> x
|
|
program.eval(K, buf);
|
|
|
|
for (int i = 0; i < K; i++) {
|
|
REPORTER_ASSERT(r, buf[i] == (float)i);
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_MSAN, r) {
|
|
// This little memset32() program should be able to JIT, but if we run that
|
|
// JIT code in an MSAN build, it won't see the writes initialize buf. So
|
|
// this tests that we're using the interpreter instead.
|
|
skvm::Builder b;
|
|
b.store32(b.varying<int>(), b.splat(42));
|
|
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program) {
|
|
constexpr int K = 17;
|
|
int buf[K]; // Intentionally uninitialized.
|
|
program.eval(K, buf);
|
|
sk_msan_assert_initialized(buf, buf+K);
|
|
for (int x : buf) {
|
|
REPORTER_ASSERT(r, x == 42);
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_assert, r) {
|
|
skvm::Builder b;
|
|
b.assert_true(b.lt(b.load32(b.varying<int>()),
|
|
b.splat(42)));
|
|
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program) {
|
|
int buf[] = { 0,1,2,3,4,5,6,7,8,9 };
|
|
program.eval(SK_ARRAY_COUNT(buf), buf);
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_premul, reporter) {
|
|
// Test that premul is short-circuited when alpha is known opaque.
|
|
{
|
|
skvm::Builder p;
|
|
auto rptr = p.varying<int>(),
|
|
aptr = p.varying<int>();
|
|
|
|
skvm::F32 r = p.loadF(rptr),
|
|
g = p.splat(0.0f),
|
|
b = p.splat(0.0f),
|
|
a = p.loadF(aptr);
|
|
|
|
p.premul(&r, &g, &b, a);
|
|
p.storeF(rptr, r);
|
|
|
|
// load red, load alpha, red *= alpha, store red
|
|
REPORTER_ASSERT(reporter, p.done().instructions().size() == 4);
|
|
}
|
|
|
|
{
|
|
skvm::Builder p;
|
|
auto rptr = p.varying<int>();
|
|
|
|
skvm::F32 r = p.loadF(rptr),
|
|
g = p.splat(0.0f),
|
|
b = p.splat(0.0f),
|
|
a = p.splat(1.0f);
|
|
|
|
p.premul(&r, &g, &b, a);
|
|
p.storeF(rptr, r);
|
|
|
|
// load red, store red
|
|
REPORTER_ASSERT(reporter, p.done().instructions().size() == 2);
|
|
}
|
|
|
|
// Same deal for unpremul.
|
|
{
|
|
skvm::Builder p;
|
|
auto rptr = p.varying<int>(),
|
|
aptr = p.varying<int>();
|
|
|
|
skvm::F32 r = p.loadF(rptr),
|
|
g = p.splat(0.0f),
|
|
b = p.splat(0.0f),
|
|
a = p.loadF(aptr);
|
|
|
|
p.unpremul(&r, &g, &b, a);
|
|
p.storeF(rptr, r);
|
|
|
|
// load red, load alpha, a bunch of unpremul instructions, store red
|
|
REPORTER_ASSERT(reporter, p.done().instructions().size() >= 4);
|
|
}
|
|
|
|
{
|
|
skvm::Builder p;
|
|
auto rptr = p.varying<int>();
|
|
|
|
skvm::F32 r = p.loadF(rptr),
|
|
g = p.splat(0.0f),
|
|
b = p.splat(0.0f),
|
|
a = p.splat(1.0f);
|
|
|
|
p.unpremul(&r, &g, &b, a);
|
|
p.storeF(rptr, r);
|
|
|
|
// load red, store red
|
|
REPORTER_ASSERT(reporter, p.done().instructions().size() == 2);
|
|
}
|
|
}
|
|
|
|
template <typename Fn>
|
|
static void test_asm(skiatest::Reporter* r, Fn&& fn, std::initializer_list<uint8_t> expected) {
|
|
uint8_t buf[4096];
|
|
skvm::Assembler a{buf};
|
|
fn(a);
|
|
|
|
REPORTER_ASSERT(r, a.size() == expected.size());
|
|
|
|
auto got = (const uint8_t*)buf,
|
|
want = expected.begin();
|
|
for (int i = 0; i < (int)std::min(a.size(), expected.size()); i++) {
|
|
REPORTER_ASSERT(r, got[i] == want[i],
|
|
"byte %d was %02x, want %02x", i, got[i], want[i]);
|
|
}
|
|
}
|
|
|
|
DEF_TEST(SkVM_Assembler, r) {
|
|
// Easiest way to generate test cases is
|
|
//
|
|
// echo '...some asm...' | llvm-mc -show-encoding -x86-asm-syntax=intel
|
|
//
|
|
// The -x86-asm-syntax=intel bit is optional, controlling the
|
|
// input syntax only; the output will always be AT&T op x,y,dst style.
|
|
// Our APIs read more like Intel op dst,x,y as op(dst,x,y), so I find
|
|
// that a bit easier to use here, despite maybe favoring AT&T overall.
|
|
|
|
using A = skvm::Assembler;
|
|
// Our exit strategy from AVX code.
|
|
test_asm(r, [&](A& a) {
|
|
a.int3();
|
|
a.vzeroupper();
|
|
a.ret();
|
|
},{
|
|
0xcc,
|
|
0xc5, 0xf8, 0x77,
|
|
0xc3,
|
|
});
|
|
|
|
// Align should pad with zero
|
|
test_asm(r, [&](A& a) {
|
|
a.ret();
|
|
a.align(4);
|
|
},{
|
|
0xc3,
|
|
0x00, 0x00, 0x00,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.add(A::rax, 8); // Always good to test rax.
|
|
a.sub(A::rax, 32);
|
|
|
|
a.add(A::rdi, 12); // Last 0x48 REX
|
|
a.sub(A::rdi, 8);
|
|
|
|
a.add(A::r8 , 7); // First 0x49 REX
|
|
a.sub(A::r8 , 4);
|
|
|
|
a.add(A::rsi, 128); // Requires 4 byte immediate.
|
|
a.sub(A::r8 , 1000000);
|
|
|
|
a.add(A::Mem{A::rsi}, 7); // addq $7, (%rsi)
|
|
a.add(A::Mem{A::rsi, 12}, 7); // addq $7, 12(%rsi)
|
|
a.add(A::Mem{A::rsp, 12}, 7); // addq $7, 12(%rsp)
|
|
a.add(A::Mem{A::r12, 12}, 7); // addq $7, 12(%r12)
|
|
a.add(A::Mem{A::rsp, 12, A::rax, A::FOUR}, 7); // addq $7, 12(%rsp,%rax,4)
|
|
a.add(A::Mem{A::r12, 12, A::rax, A::FOUR}, 7); // addq $7, 12(%r12,%rax,4)
|
|
a.add(A::Mem{A::rax, 12, A::r12, A::FOUR}, 7); // addq $7, 12(%rax,%r12,4)
|
|
a.add(A::Mem{A::r11, 12, A::r8 , A::TWO }, 7); // addq $7, 12(%r11,%r8,2)
|
|
a.add(A::Mem{A::r11, 12, A::rax} , 7); // addq $7, 12(%r11,%rax)
|
|
a.add(A::Mem{A::rax, 12, A::r11} , 7); // addq $7, 12(%rax,%r11)
|
|
|
|
a.sub(A::Mem{A::rax, 12, A::r11} , 7); // subq $7, 12(%rax,%r11)
|
|
|
|
a.add( A::rax , A::rcx); // addq %rcx, %rax
|
|
a.add(A::Mem{A::rax} , A::rcx); // addq %rcx, (%rax)
|
|
a.add(A::Mem{A::rax, 12}, A::rcx); // addq %rcx, 12(%rax)
|
|
a.add(A::rcx, A::Mem{A::rax, 12}); // addq 12(%rax), %rcx
|
|
|
|
a.sub(A::rcx, A::Mem{A::rax, 12}); // subq 12(%rax), %rcx
|
|
},{
|
|
0x48, 0x83, 0b11'000'000, 0x08,
|
|
0x48, 0x83, 0b11'101'000, 0x20,
|
|
|
|
0x48, 0x83, 0b11'000'111, 0x0c,
|
|
0x48, 0x83, 0b11'101'111, 0x08,
|
|
|
|
0x49, 0x83, 0b11'000'000, 0x07,
|
|
0x49, 0x83, 0b11'101'000, 0x04,
|
|
|
|
0x48, 0x81, 0b11'000'110, 0x80, 0x00, 0x00, 0x00,
|
|
0x49, 0x81, 0b11'101'000, 0x40, 0x42, 0x0f, 0x00,
|
|
|
|
0x48,0x83,0x06,0x07,
|
|
0x48,0x83,0x46,0x0c,0x07,
|
|
0x48,0x83,0x44,0x24,0x0c,0x07,
|
|
0x49,0x83,0x44,0x24,0x0c,0x07,
|
|
0x48,0x83,0x44,0x84,0x0c,0x07,
|
|
0x49,0x83,0x44,0x84,0x0c,0x07,
|
|
0x4a,0x83,0x44,0xa0,0x0c,0x07,
|
|
0x4b,0x83,0x44,0x43,0x0c,0x07,
|
|
0x49,0x83,0x44,0x03,0x0c,0x07,
|
|
0x4a,0x83,0x44,0x18,0x0c,0x07,
|
|
|
|
0x4a,0x83,0x6c,0x18,0x0c,0x07,
|
|
|
|
0x48,0x01,0xc8,
|
|
0x48,0x01,0x08,
|
|
0x48,0x01,0x48,0x0c,
|
|
0x48,0x03,0x48,0x0c,
|
|
0x48,0x2b,0x48,0x0c,
|
|
});
|
|
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vpaddd (A::ymm0, A::ymm1, A::ymm2); // Low registers and 0x0f map -> 2-byte VEX.
|
|
a.vpaddd (A::ymm8, A::ymm1, A::ymm2); // A high dst register is ok -> 2-byte VEX.
|
|
a.vpaddd (A::ymm0, A::ymm8, A::ymm2); // A high first argument register -> 2-byte VEX.
|
|
a.vpaddd (A::ymm0, A::ymm1, A::ymm8); // A high second argument -> 3-byte VEX.
|
|
a.vpmulld(A::ymm0, A::ymm1, A::ymm2); // Using non-0x0f map instruction -> 3-byte VEX.
|
|
a.vpsubd (A::ymm0, A::ymm1, A::ymm2); // Test vpsubd to ensure argument order is right.
|
|
},{
|
|
/* VEX */ /*op*/ /*modRM*/
|
|
0xc5, 0xf5, 0xfe, 0xc2,
|
|
0xc5, 0x75, 0xfe, 0xc2,
|
|
0xc5, 0xbd, 0xfe, 0xc2,
|
|
0xc4, 0xc1, 0x75, 0xfe, 0xc0,
|
|
0xc4, 0xe2, 0x75, 0x40, 0xc2,
|
|
0xc5, 0xf5, 0xfa, 0xc2,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vpaddw (A::ymm4, A::ymm3, A::ymm2);
|
|
a.vpavgw (A::ymm4, A::ymm3, A::ymm2);
|
|
a.vpcmpeqw (A::ymm4, A::ymm3, A::ymm2);
|
|
a.vpcmpgtw (A::ymm4, A::ymm3, A::ymm2);
|
|
|
|
a.vpminsw (A::ymm4, A::ymm3, A::ymm2);
|
|
a.vpmaxsw (A::ymm4, A::ymm3, A::ymm2);
|
|
a.vpminuw (A::ymm4, A::ymm3, A::ymm2);
|
|
a.vpmaxuw (A::ymm4, A::ymm3, A::ymm2);
|
|
|
|
a.vpmulhrsw(A::ymm4, A::ymm3, A::ymm2);
|
|
a.vpabsw (A::ymm4, A::ymm3);
|
|
a.vpsllw (A::ymm4, A::ymm3, 12);
|
|
a.vpsraw (A::ymm4, A::ymm3, 12);
|
|
},{
|
|
0xc5, 0xe5, 0xfd, 0xe2,
|
|
0xc5, 0xe5, 0xe3, 0xe2,
|
|
0xc5, 0xe5, 0x75, 0xe2,
|
|
0xc5, 0xe5, 0x65, 0xe2,
|
|
|
|
0xc5, 0xe5, 0xea, 0xe2,
|
|
0xc5, 0xe5, 0xee, 0xe2,
|
|
0xc4,0xe2,0x65, 0x3a, 0xe2,
|
|
0xc4,0xe2,0x65, 0x3e, 0xe2,
|
|
|
|
0xc4,0xe2,0x65, 0x0b, 0xe2,
|
|
0xc4,0xe2,0x7d, 0x1d, 0xe3,
|
|
0xc5,0xdd,0x71, 0xf3, 0x0c,
|
|
0xc5,0xdd,0x71, 0xe3, 0x0c,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
A::Label l;
|
|
a.vcmpeqps (A::ymm0, A::ymm1, &l); // vcmpeqps 0x1c(%rip), %ymm1, %ymm0
|
|
a.vpcmpeqd (A::ymm0, A::ymm1, A::ymm2);
|
|
a.vpcmpgtd (A::ymm0, A::ymm1, A::ymm2);
|
|
a.vcmpeqps (A::ymm0, A::ymm1, A::ymm2);
|
|
a.vcmpltps (A::ymm0, A::ymm1, A::ymm2);
|
|
a.vcmpleps (A::ymm0, A::ymm1, A::ymm2);
|
|
a.vcmpneqps(A::ymm0, A::ymm1, A::ymm2);
|
|
a.label(&l); // 28 bytes after the vcmpeqps that uses it.
|
|
},{
|
|
0xc5,0xf4,0xc2,0x05,0x1c,0x00,0x00,0x00,0x00,
|
|
0xc5,0xf5,0x76,0xc2,
|
|
0xc5,0xf5,0x66,0xc2,
|
|
0xc5,0xf4,0xc2,0xc2,0x00,
|
|
0xc5,0xf4,0xc2,0xc2,0x01,
|
|
0xc5,0xf4,0xc2,0xc2,0x02,
|
|
0xc5,0xf4,0xc2,0xc2,0x04,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vminps(A::ymm0, A::ymm1, A::ymm2);
|
|
a.vmaxps(A::ymm0, A::ymm1, A::ymm2);
|
|
},{
|
|
0xc5,0xf4,0x5d,0xc2,
|
|
0xc5,0xf4,0x5f,0xc2,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vpblendvb(A::ymm0, A::ymm1, A::ymm2, A::ymm3);
|
|
},{
|
|
0xc4,0xe3,0x75, 0x4c, 0xc2, 0x30,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vpsrld(A::ymm15, A::ymm2, 8);
|
|
a.vpsrld(A::ymm0 , A::ymm8, 5);
|
|
},{
|
|
0xc5, 0x85, 0x72,0xd2, 0x08,
|
|
0xc4,0xc1,0x7d, 0x72,0xd0, 0x05,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
A::Label l;
|
|
a.vpermps(A::ymm1, A::ymm2, A::Mem{A::rdi, 32});
|
|
a.vperm2f128(A::ymm1, A::ymm2, &l, 0x20);
|
|
a.vpermq(A::ymm1, A::ymm2, 5);
|
|
a.label(&l); // 6 bytes after vperm2f128
|
|
},{
|
|
0xc4,0xe2,0x6d,0x16,0x4f,0x20,
|
|
0xc4,0xe3,0x6d,0x06,0x0d,0x06,0x00,0x00,0x00,0x20,
|
|
0xc4,0xe3,0xfd, 0x00,0xca, 0x05,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vpunpckldq(A::ymm1, A::ymm2, A::Mem{A::rdi});
|
|
a.vpunpckhdq(A::ymm1, A::ymm2, A::ymm3);
|
|
},{
|
|
0xc5,0xed,0x62,0x0f,
|
|
0xc5,0xed,0x6a,0xcb,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vroundps(A::ymm1, A::ymm2, A::NEAREST);
|
|
a.vroundps(A::ymm1, A::ymm2, A::FLOOR);
|
|
a.vroundps(A::ymm1, A::ymm2, A::CEIL);
|
|
a.vroundps(A::ymm1, A::ymm2, A::TRUNC);
|
|
},{
|
|
0xc4,0xe3,0x7d,0x08,0xca,0x00,
|
|
0xc4,0xe3,0x7d,0x08,0xca,0x01,
|
|
0xc4,0xe3,0x7d,0x08,0xca,0x02,
|
|
0xc4,0xe3,0x7d,0x08,0xca,0x03,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
A::Label l;
|
|
a.label(&l);
|
|
a.byte(1);
|
|
a.byte(2);
|
|
a.byte(3);
|
|
a.byte(4);
|
|
|
|
a.vbroadcastss(A::ymm0 , &l);
|
|
a.vbroadcastss(A::ymm1 , &l);
|
|
a.vbroadcastss(A::ymm8 , &l);
|
|
a.vbroadcastss(A::ymm15, &l);
|
|
|
|
a.vpshufb(A::ymm4, A::ymm3, &l);
|
|
a.vpaddd (A::ymm4, A::ymm3, &l);
|
|
a.vpsubd (A::ymm4, A::ymm3, &l);
|
|
|
|
a.vptest(A::ymm4, &l);
|
|
|
|
a.vmulps (A::ymm4, A::ymm3, &l);
|
|
},{
|
|
0x01, 0x02, 0x03, 0x4,
|
|
|
|
/* VEX */ /*op*/ /* ModRM */ /* offset */
|
|
0xc4, 0xe2, 0x7d, 0x18, 0b00'000'101, 0xf3,0xff,0xff,0xff, // 0xfffffff3 == -13
|
|
0xc4, 0xe2, 0x7d, 0x18, 0b00'001'101, 0xea,0xff,0xff,0xff, // 0xffffffea == -22
|
|
0xc4, 0x62, 0x7d, 0x18, 0b00'000'101, 0xe1,0xff,0xff,0xff, // 0xffffffe1 == -31
|
|
0xc4, 0x62, 0x7d, 0x18, 0b00'111'101, 0xd8,0xff,0xff,0xff, // 0xffffffd8 == -40
|
|
|
|
0xc4, 0xe2, 0x65, 0x00, 0b00'100'101, 0xcf,0xff,0xff,0xff, // 0xffffffcf == -49
|
|
|
|
0xc5, 0xe5, 0xfe, 0b00'100'101, 0xc7,0xff,0xff,0xff, // 0xffffffc7 == -57
|
|
0xc5, 0xe5, 0xfa, 0b00'100'101, 0xbf,0xff,0xff,0xff, // 0xffffffbf == -65
|
|
|
|
0xc4, 0xe2, 0x7d, 0x17, 0b00'100'101, 0xb6,0xff,0xff,0xff, // 0xffffffb6 == -74
|
|
|
|
0xc5, 0xe4, 0x59, 0b00'100'101, 0xae,0xff,0xff,0xff, // 0xffffffaf == -82
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vbroadcastss(A::ymm0, A::Mem{A::rdi, 0});
|
|
a.vbroadcastss(A::ymm13, A::Mem{A::r14, 7});
|
|
a.vbroadcastss(A::ymm8, A::Mem{A::rdx, -12});
|
|
a.vbroadcastss(A::ymm8, A::Mem{A::rdx, 400});
|
|
|
|
a.vbroadcastss(A::ymm8, A::xmm0);
|
|
a.vbroadcastss(A::ymm0, A::xmm13);
|
|
},{
|
|
/* VEX */ /*op*/ /*ModRM*/ /*offset*/
|
|
0xc4,0xe2,0x7d, 0x18, 0b00'000'111,
|
|
0xc4,0x42,0x7d, 0x18, 0b01'101'110, 0x07,
|
|
0xc4,0x62,0x7d, 0x18, 0b01'000'010, 0xf4,
|
|
0xc4,0x62,0x7d, 0x18, 0b10'000'010, 0x90,0x01,0x00,0x00,
|
|
|
|
0xc4,0x62,0x7d, 0x18, 0b11'000'000,
|
|
0xc4,0xc2,0x7d, 0x18, 0b11'000'101,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
A::Label l;
|
|
a.label(&l);
|
|
a.jne(&l);
|
|
a.jne(&l);
|
|
a.je (&l);
|
|
a.jmp(&l);
|
|
a.jl (&l);
|
|
a.jc (&l);
|
|
|
|
a.cmp(A::rdx, 1);
|
|
a.cmp(A::rax, 12);
|
|
a.cmp(A::r14, 2000000000);
|
|
},{
|
|
0x0f,0x85, 0xfa,0xff,0xff,0xff, // near jne -6 bytes
|
|
0x0f,0x85, 0xf4,0xff,0xff,0xff, // near jne -12 bytes
|
|
0x0f,0x84, 0xee,0xff,0xff,0xff, // near je -18 bytes
|
|
0xe9, 0xe9,0xff,0xff,0xff, // near jmp -23 bytes
|
|
0x0f,0x8c, 0xe3,0xff,0xff,0xff, // near jl -29 bytes
|
|
0x0f,0x82, 0xdd,0xff,0xff,0xff, // near jc -35 bytes
|
|
|
|
0x48,0x83,0xfa,0x01,
|
|
0x48,0x83,0xf8,0x0c,
|
|
0x49,0x81,0xfe,0x00,0x94,0x35,0x77,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vmovups(A::ymm5, A::Mem{A::rsi});
|
|
a.vmovups(A::Mem{A::rsi}, A::ymm5);
|
|
|
|
a.vmovups(A::xmm5, A::Mem{A::rsi});
|
|
a.vmovups(A::Mem{A::rsi}, A::xmm5);
|
|
|
|
a.vpmovzxwd(A::ymm4, A::Mem{A::rsi});
|
|
a.vpmovzxbd(A::ymm4, A::Mem{A::rsi});
|
|
|
|
a.vmovq(A::Mem{A::rdx}, A::xmm15);
|
|
},{
|
|
/* VEX */ /*Op*/ /* ModRM */
|
|
0xc5, 0xfc, 0x10, 0b00'101'110,
|
|
0xc5, 0xfc, 0x11, 0b00'101'110,
|
|
|
|
0xc5, 0xf8, 0x10, 0b00'101'110,
|
|
0xc5, 0xf8, 0x11, 0b00'101'110,
|
|
|
|
0xc4,0xe2,0x7d, 0x33, 0b00'100'110,
|
|
0xc4,0xe2,0x7d, 0x31, 0b00'100'110,
|
|
|
|
0xc5, 0x79, 0xd6, 0b00'111'010,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vmovups(A::ymm5, A::Mem{A::rsp, 0});
|
|
a.vmovups(A::ymm5, A::Mem{A::rsp, 64});
|
|
a.vmovups(A::ymm5, A::Mem{A::rsp,128});
|
|
|
|
a.vmovups(A::Mem{A::rsp, 0}, A::ymm5);
|
|
a.vmovups(A::Mem{A::rsp, 64}, A::ymm5);
|
|
a.vmovups(A::Mem{A::rsp,128}, A::ymm5);
|
|
},{
|
|
0xc5,0xfc,0x10,0x2c,0x24,
|
|
0xc5,0xfc,0x10,0x6c,0x24,0x40,
|
|
0xc5,0xfc,0x10,0xac,0x24,0x80,0x00,0x00,0x00,
|
|
|
|
0xc5,0xfc,0x11,0x2c,0x24,
|
|
0xc5,0xfc,0x11,0x6c,0x24,0x40,
|
|
0xc5,0xfc,0x11,0xac,0x24,0x80,0x00,0x00,0x00,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.movzbq(A::rax, A::Mem{A::rsi}); // Low registers for src and dst.
|
|
a.movzbq(A::rax, A::Mem{A::r8,}); // High src register.
|
|
a.movzbq(A::r8 , A::Mem{A::rsi}); // High dst register.
|
|
a.movzbq(A::r8, A::Mem{A::rsi, 12});
|
|
a.movzbq(A::r8, A::Mem{A::rsi, 400});
|
|
|
|
a.movzwq(A::rax, A::Mem{A::rsi}); // Low registers for src and dst.
|
|
a.movzwq(A::rax, A::Mem{A::r8,}); // High src register.
|
|
a.movzwq(A::r8 , A::Mem{A::rsi}); // High dst register.
|
|
a.movzwq(A::r8, A::Mem{A::rsi, 12});
|
|
a.movzwq(A::r8, A::Mem{A::rsi, 400});
|
|
|
|
a.vmovd(A::Mem{A::rax}, A::xmm0);
|
|
a.vmovd(A::Mem{A::rax}, A::xmm8);
|
|
a.vmovd(A::Mem{A::r8 }, A::xmm0);
|
|
|
|
a.vmovd(A::xmm0, A::Mem{A::rax});
|
|
a.vmovd(A::xmm8, A::Mem{A::rax});
|
|
a.vmovd(A::xmm0, A::Mem{A::r8 });
|
|
|
|
a.vmovd(A::xmm0 , A::Mem{A::rax, 0, A::rcx, A::FOUR});
|
|
a.vmovd(A::xmm15, A::Mem{A::rax, 0, A::r8, A::TWO });
|
|
a.vmovd(A::xmm0 , A::Mem{A::r8 , 0, A::rcx});
|
|
|
|
a.vmovd(A::rax, A::xmm0);
|
|
a.vmovd(A::rax, A::xmm8);
|
|
a.vmovd(A::r8 , A::xmm0);
|
|
|
|
a.vmovd(A::xmm0, A::rax);
|
|
a.vmovd(A::xmm8, A::rax);
|
|
a.vmovd(A::xmm0, A::r8 );
|
|
|
|
a.movb(A::Mem{A::rdx}, A::rax);
|
|
a.movb(A::Mem{A::rdx}, A::r8 );
|
|
a.movb(A::Mem{A::r8 }, A::rax);
|
|
|
|
a.movb(A::rdx, A::Mem{A::rax});
|
|
a.movb(A::rdx, A::Mem{A::r8 });
|
|
a.movb(A::r8 , A::Mem{A::rax});
|
|
|
|
a.movb(A::rdx, 12);
|
|
a.movb(A::rax, 4);
|
|
a.movb(A::r8 , -1);
|
|
|
|
a.movb(A::Mem{A::rdx}, 12);
|
|
a.movb(A::Mem{A::rax}, 4);
|
|
a.movb(A::Mem{A::r8 }, -1);
|
|
},{
|
|
0x48,0x0f,0xb6,0x06, // movzbq (%rsi), %rax
|
|
0x49,0x0f,0xb6,0x00,
|
|
0x4c,0x0f,0xb6,0x06,
|
|
0x4c,0x0f,0xb6,0x46, 12,
|
|
0x4c,0x0f,0xb6,0x86, 0x90,0x01,0x00,0x00,
|
|
|
|
0x48,0x0f,0xb7,0x06, // movzwq (%rsi), %rax
|
|
0x49,0x0f,0xb7,0x00,
|
|
0x4c,0x0f,0xb7,0x06,
|
|
0x4c,0x0f,0xb7,0x46, 12,
|
|
0x4c,0x0f,0xb7,0x86, 0x90,0x01,0x00,0x00,
|
|
|
|
0xc5,0xf9,0x7e,0x00,
|
|
0xc5,0x79,0x7e,0x00,
|
|
0xc4,0xc1,0x79,0x7e,0x00,
|
|
|
|
0xc5,0xf9,0x6e,0x00,
|
|
0xc5,0x79,0x6e,0x00,
|
|
0xc4,0xc1,0x79,0x6e,0x00,
|
|
|
|
0xc5,0xf9,0x6e,0x04,0x88,
|
|
0xc4,0x21,0x79,0x6e,0x3c,0x40,
|
|
0xc4,0xc1,0x79,0x6e,0x04,0x08,
|
|
|
|
0xc5,0xf9,0x7e,0xc0,
|
|
0xc5,0x79,0x7e,0xc0,
|
|
0xc4,0xc1,0x79,0x7e,0xc0,
|
|
|
|
0xc5,0xf9,0x6e,0xc0,
|
|
0xc5,0x79,0x6e,0xc0,
|
|
0xc4,0xc1,0x79,0x6e,0xc0,
|
|
|
|
0x48 ,0x88, 0x02,
|
|
0x4c, 0x88, 0x02,
|
|
0x49, 0x88, 0x00,
|
|
|
|
0x48 ,0x8a, 0x10,
|
|
0x49, 0x8a, 0x10,
|
|
0x4c, 0x8a, 0x00,
|
|
|
|
0x48, 0xc6, 0xc2, 0x0c,
|
|
0x48, 0xc6, 0xc0, 0x04,
|
|
0x49, 0xc6, 0xc0, 0xff,
|
|
|
|
0x48, 0xc6, 0x02, 0x0c,
|
|
0x48, 0xc6, 0x00, 0x04,
|
|
0x49, 0xc6, 0x00, 0xff,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vpinsrd(A::xmm1, A::xmm8, A::Mem{A::rsi}, 1); // vpinsrd $1, (%rsi), %xmm8, %xmm1
|
|
a.vpinsrd(A::xmm8, A::xmm1, A::Mem{A::r8 }, 3); // vpinsrd $3, (%r8), %xmm1, %xmm8;
|
|
|
|
a.vpinsrw(A::xmm1, A::xmm8, A::Mem{A::rsi}, 4); // vpinsrw $4, (%rsi), %xmm8, %xmm1
|
|
a.vpinsrw(A::xmm8, A::xmm1, A::Mem{A::r8 }, 12); // vpinrsw $12, (%r8), %xmm1, %xmm8
|
|
|
|
a.vpinsrb(A::xmm1, A::xmm8, A::Mem{A::rsi}, 4); // vpinsrb $4, (%rsi), %xmm8, %xmm1
|
|
a.vpinsrb(A::xmm8, A::xmm1, A::Mem{A::r8 }, 12); // vpinsrb $12, (%r8), %xmm1, %xmm8
|
|
|
|
a.vextracti128(A::xmm1, A::ymm8, 1); // vextracti128 $1, %ymm8, %xmm1
|
|
a.vextracti128(A::xmm8, A::ymm1, 0); // vextracti128 $0, %ymm1, %xmm8
|
|
|
|
a.vpextrd(A::Mem{A::rsi}, A::xmm8, 3); // vpextrd $3, %xmm8, (%rsi)
|
|
a.vpextrd(A::Mem{A::r8 }, A::xmm1, 2); // vpextrd $2, %xmm1, (%r8)
|
|
|
|
a.vpextrw(A::Mem{A::rsi}, A::xmm8, 7);
|
|
a.vpextrw(A::Mem{A::r8 }, A::xmm1, 15);
|
|
|
|
a.vpextrb(A::Mem{A::rsi}, A::xmm8, 7);
|
|
a.vpextrb(A::Mem{A::r8 }, A::xmm1, 15);
|
|
},{
|
|
0xc4,0xe3,0x39, 0x22, 0x0e, 1,
|
|
0xc4,0x43,0x71, 0x22, 0x00, 3,
|
|
|
|
0xc5,0xb9, 0xc4, 0x0e, 4,
|
|
0xc4,0x41,0x71, 0xc4, 0x00, 12,
|
|
|
|
0xc4,0xe3,0x39, 0x20, 0x0e, 4,
|
|
0xc4,0x43,0x71, 0x20, 0x00, 12,
|
|
|
|
0xc4,0x63,0x7d,0x39,0xc1, 1,
|
|
0xc4,0xc3,0x7d,0x39,0xc8, 0,
|
|
|
|
0xc4,0x63,0x79,0x16,0x06, 3,
|
|
0xc4,0xc3,0x79,0x16,0x08, 2,
|
|
|
|
0xc4,0x63,0x79, 0x15, 0x06, 7,
|
|
0xc4,0xc3,0x79, 0x15, 0x08, 15,
|
|
|
|
0xc4,0x63,0x79, 0x14, 0x06, 7,
|
|
0xc4,0xc3,0x79, 0x14, 0x08, 15,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vpandn(A::ymm3, A::ymm12, A::ymm2);
|
|
},{
|
|
0xc5, 0x9d, 0xdf, 0xda,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
A::Label l;
|
|
a.vmovdqa(A::ymm3, A::ymm2); // vmovdqa %ymm2 , %ymm3
|
|
|
|
a.vmovdqa(A::ymm3, A::Mem{A::rsi}); // vmovdqa (%rsi) , %ymm3
|
|
a.vmovdqa(A::ymm3, A::Mem{A::rsp}); // vmovdqa (%rsp) , %ymm3
|
|
a.vmovdqa(A::ymm3, A::Mem{A::r11}); // vmovdqa (%r11) , %ymm3
|
|
|
|
a.vmovdqa(A::ymm3, A::Mem{A::rsi, 4}); // vmovdqa 4(%rsi) , %ymm3
|
|
a.vmovdqa(A::ymm3, A::Mem{A::rsp, 4}); // vmovdqa 4(%rsp) , %ymm3
|
|
|
|
a.vmovdqa(A::ymm3, A::Mem{A::rsi, 4, A::rax, A::EIGHT}); // vmovdqa 4(%rsi,%rax,8), %ymm3
|
|
a.vmovdqa(A::ymm3, A::Mem{A::r11, 4, A::rax, A::TWO }); // vmovdqa 4(%r11,%rax,2), %ymm3
|
|
a.vmovdqa(A::ymm3, A::Mem{A::rsi, 4, A::r11, A::FOUR }); // vmovdqa 4(%rsi,%r11,4), %ymm3
|
|
a.vmovdqa(A::ymm3, A::Mem{A::rsi, 4, A::r11, A::ONE }); // vmovdqa 4(%rsi,%r11,1), %ymm3
|
|
a.vmovdqa(A::ymm3, A::Mem{A::rsi, 4, A::r11}); // vmovdqa 4(%rsi,%r11) , %ymm3
|
|
|
|
a.vmovdqa(A::ymm3, A::Mem{A::rsi, 64, A::r11}); // vmovdqa 64(%rsi,%r11), %ymm3
|
|
a.vmovdqa(A::ymm3, A::Mem{A::rsi, 128, A::r11}); // vmovdqa 128(%rsi,%r11), %ymm3
|
|
a.vmovdqa(A::ymm3, &l); // vmovdqa 16(%rip) , %ymm3
|
|
|
|
a.vcvttps2dq(A::ymm3, A::ymm2);
|
|
a.vcvtdq2ps (A::ymm3, A::ymm2);
|
|
a.vcvtps2dq (A::ymm3, A::ymm2);
|
|
a.vsqrtps (A::ymm3, A::ymm2);
|
|
a.label(&l);
|
|
},{
|
|
0xc5,0xfd,0x6f,0xda,
|
|
|
|
0xc5,0xfd,0x6f,0x1e,
|
|
0xc5,0xfd,0x6f,0x1c,0x24,
|
|
0xc4,0xc1,0x7d,0x6f,0x1b,
|
|
|
|
0xc5,0xfd,0x6f,0x5e,0x04,
|
|
0xc5,0xfd,0x6f,0x5c,0x24,0x04,
|
|
|
|
0xc5,0xfd,0x6f,0x5c,0xc6,0x04,
|
|
0xc4,0xc1,0x7d,0x6f,0x5c,0x43,0x04,
|
|
0xc4,0xa1,0x7d,0x6f,0x5c,0x9e,0x04,
|
|
0xc4,0xa1,0x7d,0x6f,0x5c,0x1e,0x04,
|
|
0xc4,0xa1,0x7d,0x6f,0x5c,0x1e,0x04,
|
|
|
|
0xc4,0xa1,0x7d,0x6f,0x5c,0x1e,0x40,
|
|
0xc4,0xa1,0x7d,0x6f,0x9c,0x1e,0x80,0x00,0x00,0x00,
|
|
|
|
0xc5,0xfd,0x6f,0x1d,0x10,0x00,0x00,0x00,
|
|
|
|
0xc5,0xfe,0x5b,0xda,
|
|
0xc5,0xfc,0x5b,0xda,
|
|
0xc5,0xfd,0x5b,0xda,
|
|
0xc5,0xfc,0x51,0xda,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vcvtps2ph(A::xmm3, A::ymm2, A::CURRENT);
|
|
a.vcvtps2ph(A::Mem{A::rsi, 32, A::rax, A::EIGHT}, A::ymm5, A::CEIL);
|
|
|
|
a.vcvtph2ps(A::ymm15, A::Mem{A::rdi, 12, A::r9, A::ONE});
|
|
a.vcvtph2ps(A::ymm2, A::xmm3);
|
|
},{
|
|
0xc4,0xe3,0x7d,0x1d,0xd3,0x04,
|
|
0xc4,0xe3,0x7d,0x1d,0x6c,0xc6,0x20,0x02,
|
|
|
|
0xc4,0x22,0x7d,0x13,0x7c,0x0f,0x0c,
|
|
0xc4,0xe2,0x7d,0x13,0xd3,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vgatherdps(A::ymm1 , A::FOUR , A::ymm0 , A::rdi, A::ymm2 );
|
|
a.vgatherdps(A::ymm0 , A::ONE , A::ymm2 , A::rax, A::ymm1 );
|
|
a.vgatherdps(A::ymm10, A::ONE , A::ymm2 , A::rax, A::ymm1 );
|
|
a.vgatherdps(A::ymm0 , A::ONE , A::ymm12, A::rax, A::ymm1 );
|
|
a.vgatherdps(A::ymm0 , A::ONE , A::ymm2 , A::r9 , A::ymm1 );
|
|
a.vgatherdps(A::ymm0 , A::ONE , A::ymm2 , A::rax, A::ymm12);
|
|
a.vgatherdps(A::ymm0 , A::EIGHT, A::ymm2 , A::rax, A::ymm12);
|
|
},{
|
|
0xc4,0xe2,0x6d,0x92,0x0c,0x87,
|
|
0xc4,0xe2,0x75,0x92,0x04,0x10,
|
|
0xc4,0x62,0x75,0x92,0x14,0x10,
|
|
0xc4,0xa2,0x75,0x92,0x04,0x20,
|
|
0xc4,0xc2,0x75,0x92,0x04,0x11,
|
|
0xc4,0xe2,0x1d,0x92,0x04,0x10,
|
|
0xc4,0xe2,0x1d,0x92,0x04,0xd0,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.mov(A::rax, A::Mem{A::rdi, 0});
|
|
a.mov(A::rax, A::Mem{A::rdi, 1});
|
|
a.mov(A::rax, A::Mem{A::rdi, 512});
|
|
a.mov(A::r15, A::Mem{A::r13, 42});
|
|
a.mov(A::rax, A::Mem{A::r13, 42});
|
|
a.mov(A::r15, A::Mem{A::rax, 42});
|
|
a.mov(A::rax, 1);
|
|
a.mov(A::rax, A::rcx);
|
|
},{
|
|
0x48, 0x8b, 0x07,
|
|
0x48, 0x8b, 0x47, 0x01,
|
|
0x48, 0x8b, 0x87, 0x00,0x02,0x00,0x00,
|
|
0x4d, 0x8b, 0x7d, 0x2a,
|
|
0x49, 0x8b, 0x45, 0x2a,
|
|
0x4c, 0x8b, 0x78, 0x2a,
|
|
0x48, 0xc7, 0xc0, 0x01,0x00,0x00,0x00,
|
|
0x48, 0x89, 0xc8,
|
|
});
|
|
|
|
// echo "fmul v4.4s, v3.4s, v1.4s" | llvm-mc -show-encoding -arch arm64
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.and16b(A::v4, A::v3, A::v1);
|
|
a.orr16b(A::v4, A::v3, A::v1);
|
|
a.eor16b(A::v4, A::v3, A::v1);
|
|
a.bic16b(A::v4, A::v3, A::v1);
|
|
a.bsl16b(A::v4, A::v3, A::v1);
|
|
a.not16b(A::v4, A::v3);
|
|
|
|
a.add4s(A::v4, A::v3, A::v1);
|
|
a.sub4s(A::v4, A::v3, A::v1);
|
|
a.mul4s(A::v4, A::v3, A::v1);
|
|
|
|
a.cmeq4s(A::v4, A::v3, A::v1);
|
|
a.cmgt4s(A::v4, A::v3, A::v1);
|
|
|
|
a.sub8h(A::v4, A::v3, A::v1);
|
|
a.mul8h(A::v4, A::v3, A::v1);
|
|
|
|
a.fadd4s(A::v4, A::v3, A::v1);
|
|
a.fsub4s(A::v4, A::v3, A::v1);
|
|
a.fmul4s(A::v4, A::v3, A::v1);
|
|
a.fdiv4s(A::v4, A::v3, A::v1);
|
|
a.fmin4s(A::v4, A::v3, A::v1);
|
|
a.fmax4s(A::v4, A::v3, A::v1);
|
|
|
|
a.fneg4s (A::v4, A::v3);
|
|
a.fsqrt4s(A::v4, A::v3);
|
|
|
|
a.fmla4s(A::v4, A::v3, A::v1);
|
|
a.fmls4s(A::v4, A::v3, A::v1);
|
|
|
|
a.fcmeq4s(A::v4, A::v3, A::v1);
|
|
a.fcmgt4s(A::v4, A::v3, A::v1);
|
|
a.fcmge4s(A::v4, A::v3, A::v1);
|
|
},{
|
|
0x64,0x1c,0x21,0x4e,
|
|
0x64,0x1c,0xa1,0x4e,
|
|
0x64,0x1c,0x21,0x6e,
|
|
0x64,0x1c,0x61,0x4e,
|
|
0x64,0x1c,0x61,0x6e,
|
|
0x64,0x58,0x20,0x6e,
|
|
|
|
0x64,0x84,0xa1,0x4e,
|
|
0x64,0x84,0xa1,0x6e,
|
|
0x64,0x9c,0xa1,0x4e,
|
|
|
|
0x64,0x8c,0xa1,0x6e,
|
|
0x64,0x34,0xa1,0x4e,
|
|
|
|
0x64,0x84,0x61,0x6e,
|
|
0x64,0x9c,0x61,0x4e,
|
|
|
|
0x64,0xd4,0x21,0x4e,
|
|
0x64,0xd4,0xa1,0x4e,
|
|
0x64,0xdc,0x21,0x6e,
|
|
0x64,0xfc,0x21,0x6e,
|
|
0x64,0xf4,0xa1,0x4e,
|
|
0x64,0xf4,0x21,0x4e,
|
|
|
|
0x64,0xf8,0xa0,0x6e,
|
|
0x64,0xf8,0xa1,0x6e,
|
|
|
|
0x64,0xcc,0x21,0x4e,
|
|
0x64,0xcc,0xa1,0x4e,
|
|
|
|
0x64,0xe4,0x21,0x4e,
|
|
0x64,0xe4,0xa1,0x6e,
|
|
0x64,0xe4,0x21,0x6e,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.shl4s(A::v4, A::v3, 0);
|
|
a.shl4s(A::v4, A::v3, 1);
|
|
a.shl4s(A::v4, A::v3, 8);
|
|
a.shl4s(A::v4, A::v3, 16);
|
|
a.shl4s(A::v4, A::v3, 31);
|
|
|
|
a.sshr4s(A::v4, A::v3, 1);
|
|
a.sshr4s(A::v4, A::v3, 8);
|
|
a.sshr4s(A::v4, A::v3, 31);
|
|
|
|
a.ushr4s(A::v4, A::v3, 1);
|
|
a.ushr4s(A::v4, A::v3, 8);
|
|
a.ushr4s(A::v4, A::v3, 31);
|
|
|
|
a.ushr8h(A::v4, A::v3, 1);
|
|
a.ushr8h(A::v4, A::v3, 8);
|
|
a.ushr8h(A::v4, A::v3, 15);
|
|
},{
|
|
0x64,0x54,0x20,0x4f,
|
|
0x64,0x54,0x21,0x4f,
|
|
0x64,0x54,0x28,0x4f,
|
|
0x64,0x54,0x30,0x4f,
|
|
0x64,0x54,0x3f,0x4f,
|
|
|
|
0x64,0x04,0x3f,0x4f,
|
|
0x64,0x04,0x38,0x4f,
|
|
0x64,0x04,0x21,0x4f,
|
|
|
|
0x64,0x04,0x3f,0x6f,
|
|
0x64,0x04,0x38,0x6f,
|
|
0x64,0x04,0x21,0x6f,
|
|
|
|
0x64,0x04,0x1f,0x6f,
|
|
0x64,0x04,0x18,0x6f,
|
|
0x64,0x04,0x11,0x6f,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.sli4s(A::v4, A::v3, 0);
|
|
a.sli4s(A::v4, A::v3, 1);
|
|
a.sli4s(A::v4, A::v3, 8);
|
|
a.sli4s(A::v4, A::v3, 16);
|
|
a.sli4s(A::v4, A::v3, 31);
|
|
},{
|
|
0x64,0x54,0x20,0x6f,
|
|
0x64,0x54,0x21,0x6f,
|
|
0x64,0x54,0x28,0x6f,
|
|
0x64,0x54,0x30,0x6f,
|
|
0x64,0x54,0x3f,0x6f,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.scvtf4s (A::v4, A::v3);
|
|
a.fcvtzs4s(A::v4, A::v3);
|
|
a.fcvtns4s(A::v4, A::v3);
|
|
a.frintp4s(A::v4, A::v3);
|
|
a.frintm4s(A::v4, A::v3);
|
|
a.fcvtn (A::v4, A::v3);
|
|
a.fcvtl (A::v4, A::v3);
|
|
},{
|
|
0x64,0xd8,0x21,0x4e,
|
|
0x64,0xb8,0xa1,0x4e,
|
|
0x64,0xa8,0x21,0x4e,
|
|
0x64,0x88,0xa1,0x4e,
|
|
0x64,0x98,0x21,0x4e,
|
|
0x64,0x68,0x21,0x0e,
|
|
0x64,0x78,0x21,0x0e,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.sub (A::sp, A::sp, 32); // sub sp, sp, #32
|
|
a.strq(A::v0, A::sp, 1); // str q0, [sp, #16]
|
|
a.strq(A::v1, A::sp); // str q1, [sp]
|
|
a.strd(A::v0, A::sp, 6); // str s0, [sp, #48]
|
|
a.strs(A::v0, A::sp, 6); // str s0, [sp, #24]
|
|
a.strh(A::v0, A::sp, 10); // str h0, [sp, #20]
|
|
a.strb(A::v0, A::sp, 47); // str b0, [sp, #47]
|
|
a.ldrb(A::v9, A::sp, 42); // ldr b9, [sp, #42]
|
|
a.ldrh(A::v9, A::sp, 47); // ldr h9, [sp, #94]
|
|
a.ldrs(A::v7, A::sp, 10); // ldr s7, [sp, #40]
|
|
a.ldrd(A::v7, A::sp, 1); // ldr d7, [sp, #8]
|
|
a.ldrq(A::v5, A::sp, 128); // ldr q5, [sp, #2048]
|
|
a.add (A::sp, A::sp, 32); // add sp, sp, #32
|
|
},{
|
|
0xff,0x83,0x00,0xd1,
|
|
0xe0,0x07,0x80,0x3d,
|
|
0xe1,0x03,0x80,0x3d,
|
|
0xe0,0x1b,0x00,0xfd,
|
|
0xe0,0x1b,0x00,0xbd,
|
|
0xe0,0x2b,0x00,0x7d,
|
|
0xe0,0xbf,0x00,0x3d,
|
|
0xe9,0xab,0x40,0x3d,
|
|
0xe9,0xbf,0x40,0x7d,
|
|
0xe7,0x2b,0x40,0xbd,
|
|
0xe7,0x07,0x40,0xfd,
|
|
0xe5,0x03,0xc2,0x3d,
|
|
0xff,0x83,0x00,0x91,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.brk(0);
|
|
a.brk(65535);
|
|
|
|
a.ret(A::x30); // Conventional ret using link register.
|
|
a.ret(A::x13); // Can really return using any register if we like.
|
|
|
|
a.add(A::x2, A::x2, 4);
|
|
a.add(A::x3, A::x2, 32);
|
|
|
|
a.sub(A::x2, A::x2, 4);
|
|
a.sub(A::x3, A::x2, 32);
|
|
|
|
a.subs(A::x2, A::x2, 4);
|
|
a.subs(A::x3, A::x2, 32);
|
|
|
|
a.subs(A::xzr, A::x2, 4); // These are actually the same instruction!
|
|
a.cmp(A::x2, 4);
|
|
|
|
A::Label l;
|
|
a.label(&l);
|
|
a.bne(&l);
|
|
a.bne(&l);
|
|
a.blt(&l);
|
|
a.b(&l);
|
|
a.cbnz(A::x2, &l);
|
|
a.cbz(A::x2, &l);
|
|
|
|
a.add(A::x3, A::x2, A::x1); // add x3,x2,x1
|
|
a.add(A::x3, A::x2, A::x1, A::ASR, 3); // add x3,x2,x1, asr #3
|
|
},{
|
|
0x00,0x00,0x20,0xd4,
|
|
0xe0,0xff,0x3f,0xd4,
|
|
|
|
0xc0,0x03,0x5f,0xd6,
|
|
0xa0,0x01,0x5f,0xd6,
|
|
|
|
0x42,0x10,0x00,0x91,
|
|
0x43,0x80,0x00,0x91,
|
|
|
|
0x42,0x10,0x00,0xd1,
|
|
0x43,0x80,0x00,0xd1,
|
|
|
|
0x42,0x10,0x00,0xf1,
|
|
0x43,0x80,0x00,0xf1,
|
|
|
|
0x5f,0x10,0x00,0xf1,
|
|
0x5f,0x10,0x00,0xf1,
|
|
|
|
0x01,0x00,0x00,0x54, // b.ne #0
|
|
0xe1,0xff,0xff,0x54, // b.ne #-4
|
|
0xcb,0xff,0xff,0x54, // b.lt #-8
|
|
0xae,0xff,0xff,0x54, // b.al #-12
|
|
0x82,0xff,0xff,0xb5, // cbnz x2, #-16
|
|
0x62,0xff,0xff,0xb4, // cbz x2, #-20
|
|
|
|
0x43,0x00,0x01,0x8b,
|
|
0x43,0x0c,0x81,0x8b,
|
|
});
|
|
|
|
// Can we cbz() to a not-yet-defined label?
|
|
test_asm(r, [&](A& a) {
|
|
A::Label l;
|
|
a.cbz(A::x2, &l);
|
|
a.add(A::x3, A::x2, 32);
|
|
a.label(&l);
|
|
a.ret(A::x30);
|
|
},{
|
|
0x42,0x00,0x00,0xb4, // cbz x2, #8
|
|
0x43,0x80,0x00,0x91, // add x3, x2, #32
|
|
0xc0,0x03,0x5f,0xd6, // ret
|
|
});
|
|
|
|
// If we start a label as a backward label,
|
|
// can we redefine it to be a future label?
|
|
// (Not sure this is useful... just want to test it works.)
|
|
test_asm(r, [&](A& a) {
|
|
A::Label l1;
|
|
a.label(&l1);
|
|
a.add(A::x3, A::x2, 32);
|
|
a.cbz(A::x2, &l1); // This will jump backward... nothing sneaky.
|
|
|
|
A::Label l2; // Start off the same...
|
|
a.label(&l2);
|
|
a.add(A::x3, A::x2, 32);
|
|
a.cbz(A::x2, &l2); // Looks like this will go backward...
|
|
a.add(A::x2, A::x2, 4);
|
|
a.add(A::x3, A::x2, 32);
|
|
a.label(&l2); // But no... actually forward! What a switcheroo!
|
|
},{
|
|
0x43,0x80,0x00,0x91, // add x3, x2, #32
|
|
0xe2,0xff,0xff,0xb4, // cbz x2, #-4
|
|
|
|
0x43,0x80,0x00,0x91, // add x3, x2, #32
|
|
0x62,0x00,0x00,0xb4, // cbz x2, #12
|
|
0x42,0x10,0x00,0x91, // add x2, x2, #4
|
|
0x43,0x80,0x00,0x91, // add x3, x2, #32
|
|
});
|
|
|
|
// Loading from a label on ARM.
|
|
test_asm(r, [&](A& a) {
|
|
A::Label fore,aft;
|
|
a.label(&fore);
|
|
a.word(0x01234567);
|
|
a.ldrq(A::v1, &fore);
|
|
a.ldrq(A::v2, &aft);
|
|
a.label(&aft);
|
|
a.word(0x76543210);
|
|
},{
|
|
0x67,0x45,0x23,0x01,
|
|
0xe1,0xff,0xff,0x9c, // ldr q1, #-4
|
|
0x22,0x00,0x00,0x9c, // ldr q2, #4
|
|
0x10,0x32,0x54,0x76,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.ldrq(A::v0, A::x8);
|
|
a.strq(A::v0, A::x8);
|
|
},{
|
|
0x00,0x01,0xc0,0x3d,
|
|
0x00,0x01,0x80,0x3d,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.dup4s (A::v0, A::x8);
|
|
a.ld1r4s (A::v0, A::x8); // echo 'ld1r.4s {v0}, [x8]' | llvm-mc --show-encoding
|
|
a.ld1r8h (A::v0, A::x8);
|
|
a.ld1r16b(A::v0, A::x8);
|
|
},{
|
|
0x00,0x0d,0x04,0x4e,
|
|
0x00,0xc9,0x40,0x4d,
|
|
0x00,0xc5,0x40,0x4d,
|
|
0x00,0xc1,0x40,0x4d,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.ld24s(A::v0, A::x8); // echo 'ld2.4s {v0,v1}, [x8]' | llvm-mc --show-encoding
|
|
a.ld44s(A::v0, A::x8);
|
|
a.st24s(A::v0, A::x8);
|
|
a.st44s(A::v0, A::x8); // echo 'st4.4s {v0,v1,v2,v3}, [x8]' | llvm-mc --show-encoding
|
|
|
|
a.ld24s(A::v0, A::x8, 0); //echo 'ld2 {v0.s,v1.s}[0], [x8]' | llvm-mc --show-encoding
|
|
a.ld24s(A::v0, A::x8, 1);
|
|
a.ld24s(A::v0, A::x8, 2);
|
|
a.ld24s(A::v0, A::x8, 3);
|
|
|
|
a.ld44s(A::v0, A::x8, 0); // ld4 {v0.s,v1.s,v2.s,v3.s}[0], [x8]
|
|
a.ld44s(A::v0, A::x8, 1);
|
|
a.ld44s(A::v0, A::x8, 2);
|
|
a.ld44s(A::v0, A::x8, 3);
|
|
},{
|
|
0x00,0x89,0x40,0x4c,
|
|
0x00,0x09,0x40,0x4c,
|
|
0x00,0x89,0x00,0x4c,
|
|
0x00,0x09,0x00,0x4c,
|
|
|
|
0x00,0x81,0x60,0x0d,
|
|
0x00,0x91,0x60,0x0d,
|
|
0x00,0x81,0x60,0x4d,
|
|
0x00,0x91,0x60,0x4d,
|
|
|
|
0x00,0xa1,0x60,0x0d,
|
|
0x00,0xb1,0x60,0x0d,
|
|
0x00,0xa1,0x60,0x4d,
|
|
0x00,0xb1,0x60,0x4d,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.xtns2h(A::v0, A::v0);
|
|
a.xtnh2b(A::v0, A::v0);
|
|
a.strs (A::v0, A::x0);
|
|
|
|
a.ldrs (A::v0, A::x0);
|
|
a.uxtlb2h(A::v0, A::v0);
|
|
a.uxtlh2s(A::v0, A::v0);
|
|
|
|
a.uminv4s(A::v3, A::v4);
|
|
a.movs (A::x3, A::v4,0); // mov.s w3,v4[0]
|
|
a.movs (A::x3, A::v4,1); // mov.s w3,v4[1]
|
|
a.inss (A::v4, A::x3,3); // ins.s v4[3],w3
|
|
},{
|
|
0x00,0x28,0x61,0x0e,
|
|
0x00,0x28,0x21,0x0e,
|
|
0x00,0x00,0x00,0xbd,
|
|
|
|
0x00,0x00,0x40,0xbd,
|
|
0x00,0xa4,0x08,0x2f,
|
|
0x00,0xa4,0x10,0x2f,
|
|
|
|
0x83,0xa8,0xb1,0x6e,
|
|
0x83,0x3c,0x04,0x0e,
|
|
0x83,0x3c,0x0c,0x0e,
|
|
0x64,0x1c,0x1c,0x4e,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.ldrb(A::v0, A::x8);
|
|
a.strb(A::v0, A::x8);
|
|
},{
|
|
0x00,0x01,0x40,0x3d,
|
|
0x00,0x01,0x00,0x3d,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.ldrd(A::x0, A::x1, 3); // ldr x0, [x1, #24]
|
|
a.ldrs(A::x0, A::x1, 3); // ldr w0, [x1, #12]
|
|
a.ldrh(A::x0, A::x1, 3); // ldrh w0, [x1, #6]
|
|
a.ldrb(A::x0, A::x1, 3); // ldrb w0, [x1, #3]
|
|
|
|
a.strs(A::x0, A::x1, 3); // str w0, [x1, #12]
|
|
},{
|
|
0x20,0x0c,0x40,0xf9,
|
|
0x20,0x0c,0x40,0xb9,
|
|
0x20,0x0c,0x40,0x79,
|
|
0x20,0x0c,0x40,0x39,
|
|
|
|
0x20,0x0c,0x00,0xb9,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.tbl (A::v0, A::v1, A::v2);
|
|
a.uzp14s(A::v0, A::v1, A::v2);
|
|
a.uzp24s(A::v0, A::v1, A::v2);
|
|
a.zip14s(A::v0, A::v1, A::v2);
|
|
a.zip24s(A::v0, A::v1, A::v2);
|
|
},{
|
|
0x20,0x00,0x02,0x4e,
|
|
0x20,0x18,0x82,0x4e,
|
|
0x20,0x58,0x82,0x4e,
|
|
0x20,0x38,0x82,0x4e,
|
|
0x20,0x78,0x82,0x4e,
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_approx_math, r) {
|
|
auto eval = [](int N, float values[], auto fn) {
|
|
skvm::Builder b;
|
|
skvm::Ptr inout = b.varying<float>();
|
|
|
|
b.storeF(inout, fn(&b, b.loadF(inout)));
|
|
|
|
b.done().eval(N, values);
|
|
};
|
|
|
|
auto compare = [r](int N, const float values[], const float expected[]) {
|
|
for (int i = 0; i < N; ++i) {
|
|
REPORTER_ASSERT(r, SkScalarNearlyEqual(values[i], expected[i], 0.001f));
|
|
}
|
|
};
|
|
|
|
// log2
|
|
{
|
|
float values[] = {0.25f, 0.5f, 1, 2, 4, 8};
|
|
constexpr int N = SK_ARRAY_COUNT(values);
|
|
eval(N, values, [](skvm::Builder* b, skvm::F32 v) {
|
|
return b->approx_log2(v);
|
|
});
|
|
const float expected[] = {-2, -1, 0, 1, 2, 3};
|
|
compare(N, values, expected);
|
|
}
|
|
|
|
// pow2
|
|
{
|
|
float values[] = {-2, -1, 0, 1, 2, 3};
|
|
constexpr int N = SK_ARRAY_COUNT(values);
|
|
eval(N, values, [](skvm::Builder* b, skvm::F32 v) {
|
|
return b->approx_pow2(v);
|
|
});
|
|
const float expected[] = {0.25f, 0.5f, 1, 2, 4, 8};
|
|
compare(N, values, expected);
|
|
}
|
|
|
|
// powf -- x^0.5
|
|
{
|
|
float bases[] = {0, 1, 4, 9, 16};
|
|
constexpr int N = SK_ARRAY_COUNT(bases);
|
|
eval(N, bases, [](skvm::Builder* b, skvm::F32 base) {
|
|
return b->approx_powf(base, b->splat(0.5f));
|
|
});
|
|
const float expected[] = {0, 1, 2, 3, 4};
|
|
compare(N, bases, expected);
|
|
}
|
|
// powf -- 3^x
|
|
{
|
|
float exps[] = {-2, -1, 0, 1, 2};
|
|
constexpr int N = SK_ARRAY_COUNT(exps);
|
|
eval(N, exps, [](skvm::Builder* b, skvm::F32 exp) {
|
|
return b->approx_powf(b->splat(3.0f), exp);
|
|
});
|
|
const float expected[] = {1/9.0f, 1/3.0f, 1, 3, 9};
|
|
compare(N, exps, expected);
|
|
}
|
|
|
|
auto test = [r](float arg, float expected, float tolerance, auto prog) {
|
|
skvm::Builder b;
|
|
skvm::Ptr inout = b.varying<float>();
|
|
b.storeF(inout, prog(b.loadF(inout)));
|
|
float actual = arg;
|
|
b.done().eval(1, &actual);
|
|
|
|
float err = std::abs(actual - expected);
|
|
|
|
if (err > tolerance) {
|
|
// SkDebugf("arg %g, expected %g, actual %g\n", arg, expected, actual);
|
|
REPORTER_ASSERT(r, true);
|
|
}
|
|
return err;
|
|
};
|
|
|
|
auto test2 = [r](float arg0, float arg1, float expected, float tolerance, auto prog) {
|
|
skvm::Builder b;
|
|
skvm::Ptr in0 = b.varying<float>();
|
|
skvm::Ptr in1 = b.varying<float>();
|
|
skvm::Ptr out = b.varying<float>();
|
|
b.storeF(out, prog(b.loadF(in0), b.loadF(in1)));
|
|
float actual;
|
|
b.done().eval(1, &arg0, &arg1, &actual);
|
|
|
|
float err = std::abs(actual - expected);
|
|
|
|
if (err > tolerance) {
|
|
// SkDebugf("[%g, %g]: expected %g, actual %g\n", arg0, arg1, expected, actual);
|
|
REPORTER_ASSERT(r, true);
|
|
}
|
|
return err;
|
|
};
|
|
|
|
// sine, cosine, tangent
|
|
{
|
|
constexpr float P = SK_ScalarPI;
|
|
constexpr float tol = 0.00175f;
|
|
for (float rad = -5*P; rad <= 5*P; rad += 0.1f) {
|
|
test(rad, sk_float_sin(rad), tol, [](skvm::F32 x) {
|
|
return approx_sin(x);
|
|
});
|
|
test(rad, sk_float_cos(rad), tol, [](skvm::F32 x) {
|
|
return approx_cos(x);
|
|
});
|
|
}
|
|
|
|
// Our tangent diverge more as we get near infinities (x near +- Pi/2),
|
|
// so bring in the domain a little.
|
|
constexpr float eps = 0.16f;
|
|
float err = 0;
|
|
for (float rad = -P/2 + eps; rad <= P/2 - eps; rad += 0.01f) {
|
|
err += test(rad, sk_float_tan(rad), tol, [](skvm::F32 x) {
|
|
return approx_tan(x);
|
|
});
|
|
// try again with some multiples of P, to check our periodicity
|
|
test(rad, sk_float_tan(rad), tol, [=](skvm::F32 x) {
|
|
return approx_tan(x + 3*P);
|
|
});
|
|
test(rad, sk_float_tan(rad), tol, [=](skvm::F32 x) {
|
|
return approx_tan(x - 3*P);
|
|
});
|
|
}
|
|
if (0) { SkDebugf("tan error %g\n", err); }
|
|
}
|
|
|
|
// asin, acos, atan
|
|
{
|
|
constexpr float tol = 0.00175f;
|
|
float err = 0;
|
|
for (float x = -1; x <= 1; x += 1.0f/64) {
|
|
err += test(x, asin(x), tol, [](skvm::F32 x) {
|
|
return approx_asin(x);
|
|
});
|
|
test(x, acos(x), tol, [](skvm::F32 x) {
|
|
return approx_acos(x);
|
|
});
|
|
}
|
|
if (0) { SkDebugf("asin error %g\n", err); }
|
|
|
|
err = 0;
|
|
for (float x = -10; x <= 10; x += 1.0f/16) {
|
|
err += test(x, atan(x), tol, [](skvm::F32 x) {
|
|
return approx_atan(x);
|
|
});
|
|
}
|
|
if (0) { SkDebugf("atan error %g\n", err); }
|
|
|
|
for (float y = -3; y <= 3; y += 1) {
|
|
for (float x = -3; x <= 3; x += 1) {
|
|
err += test2(y, x, atan2(y,x), tol, [](skvm::F32 y, skvm::F32 x) {
|
|
return approx_atan2(y,x);
|
|
});
|
|
}
|
|
}
|
|
if (0) { SkDebugf("atan2 error %g\n", err); }
|
|
}
|
|
}
|
|
|
|
DEF_TEST(SkVM_min_max, r) {
|
|
// min() and max() have subtle behavior when one argument is NaN and
|
|
// the other isn't. It's not sound to blindly swap their arguments.
|
|
//
|
|
// All backends must behave like std::min() and std::max(), which are
|
|
//
|
|
// min(x,y) = y<x ? y : x
|
|
// max(x,y) = x<y ? y : x
|
|
|
|
// ±NaN, ±0, ±1, ±inf
|
|
const uint32_t bits[] = {0x7f80'0001, 0xff80'0001, 0x0000'0000, 0x8000'0000,
|
|
0x3f80'0000, 0xbf80'0000, 0x7f80'0000, 0xff80'0000};
|
|
|
|
float f[8];
|
|
memcpy(f, bits, sizeof(bits));
|
|
|
|
auto identical = [&](float x, float y) {
|
|
uint32_t X,Y;
|
|
memcpy(&X, &x, 4);
|
|
memcpy(&Y, &y, 4);
|
|
return X == Y;
|
|
};
|
|
|
|
// Test min/max with non-constant x, non-constant y.
|
|
// (Whether x and y are varying or uniform shouldn't make any difference.)
|
|
{
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Ptr src = b.varying<float>(),
|
|
mn = b.varying<float>(),
|
|
mx = b.varying<float>();
|
|
|
|
skvm::F32 x = b.loadF(src),
|
|
y = b.uniformF(b.uniform(), 0);
|
|
|
|
b.storeF(mn, b.min(x,y));
|
|
b.storeF(mx, b.max(x,y));
|
|
}
|
|
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program){
|
|
float mn[8], mx[8];
|
|
for (int i = 0; i < 8; i++) {
|
|
// min() and max() everything with f[i].
|
|
program.eval(8, f,mn,mx, &f[i]);
|
|
|
|
for (int j = 0; j < 8; j++) {
|
|
REPORTER_ASSERT(r, identical(mn[j], std::min(f[j], f[i])));
|
|
REPORTER_ASSERT(r, identical(mx[j], std::max(f[j], f[i])));
|
|
}
|
|
}
|
|
});
|
|
}
|
|
|
|
// Test each with constant on the right.
|
|
for (int i = 0; i < 8; i++) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Ptr src = b.varying<float>(),
|
|
mn = b.varying<float>(),
|
|
mx = b.varying<float>();
|
|
|
|
skvm::F32 x = b.loadF(src),
|
|
y = b.splat(f[i]);
|
|
|
|
b.storeF(mn, b.min(x,y));
|
|
b.storeF(mx, b.max(x,y));
|
|
}
|
|
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program){
|
|
float mn[8], mx[8];
|
|
program.eval(8, f,mn,mx);
|
|
for (int j = 0; j < 8; j++) {
|
|
REPORTER_ASSERT(r, identical(mn[j], std::min(f[j], f[i])));
|
|
REPORTER_ASSERT(r, identical(mx[j], std::max(f[j], f[i])));
|
|
}
|
|
});
|
|
}
|
|
|
|
// Test each with constant on the left.
|
|
for (int i = 0; i < 8; i++) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Ptr src = b.varying<float>(),
|
|
mn = b.varying<float>(),
|
|
mx = b.varying<float>();
|
|
|
|
skvm::F32 x = b.splat(f[i]),
|
|
y = b.loadF(src);
|
|
|
|
b.storeF(mn, b.min(x,y));
|
|
b.storeF(mx, b.max(x,y));
|
|
}
|
|
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program){
|
|
float mn[8], mx[8];
|
|
program.eval(8, f,mn,mx);
|
|
for (int j = 0; j < 8; j++) {
|
|
REPORTER_ASSERT(r, identical(mn[j], std::min(f[i], f[j])));
|
|
REPORTER_ASSERT(r, identical(mx[j], std::max(f[i], f[j])));
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
DEF_TEST(SkVM_halfs, r) {
|
|
const uint16_t hs[] = {0x0000,0x3800,0x3c00,0x4000,
|
|
0xc400,0xb800,0xbc00,0xc000};
|
|
const float fs[] = {+0.0f,+0.5f,+1.0f,+2.0f,
|
|
-4.0f,-0.5f,-1.0f,-2.0f};
|
|
{
|
|
skvm::Builder b;
|
|
skvm::Ptr src = b.varying<uint16_t>(),
|
|
dst = b.varying<float>();
|
|
b.storeF(dst, b.from_fp16(b.load16(src)));
|
|
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program){
|
|
float dst[8];
|
|
program.eval(8, hs, dst);
|
|
for (int i = 0; i < 8; i++) {
|
|
REPORTER_ASSERT(r, dst[i] == fs[i]);
|
|
}
|
|
});
|
|
}
|
|
{
|
|
skvm::Builder b;
|
|
skvm::Ptr src = b.varying<float>(),
|
|
dst = b.varying<uint16_t>();
|
|
b.store16(dst, b.to_fp16(b.loadF(src)));
|
|
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program){
|
|
uint16_t dst[8];
|
|
program.eval(8, fs, dst);
|
|
for (int i = 0; i < 8; i++) {
|
|
REPORTER_ASSERT(r, dst[i] == hs[i]);
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
DEF_TEST(SkVM_64bit, r) {
|
|
uint32_t lo[65],
|
|
hi[65];
|
|
uint64_t wide[65];
|
|
for (int i = 0; i < 65; i++) {
|
|
lo[i] = 2*i+0;
|
|
hi[i] = 2*i+1;
|
|
wide[i] = ((uint64_t)lo[i] << 0)
|
|
| ((uint64_t)hi[i] << 32);
|
|
}
|
|
|
|
{
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Ptr wide = b.varying<uint64_t>(),
|
|
lo = b.varying<int>(),
|
|
hi = b.varying<int>();
|
|
b.store32(lo, b.load64(wide, 0));
|
|
b.store32(hi, b.load64(wide, 1));
|
|
}
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program){
|
|
uint32_t l[65], h[65];
|
|
program.eval(65, wide,l,h);
|
|
for (int i = 0; i < 65; i++) {
|
|
REPORTER_ASSERT(r, l[i] == lo[i]);
|
|
REPORTER_ASSERT(r, h[i] == hi[i]);
|
|
}
|
|
});
|
|
}
|
|
|
|
{
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Ptr wide = b.varying<uint64_t>(),
|
|
lo = b.varying<int>(),
|
|
hi = b.varying<int>();
|
|
b.store64(wide, b.load32(lo), b.load32(hi));
|
|
}
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program){
|
|
uint64_t w[65];
|
|
program.eval(65, w,lo,hi);
|
|
for (int i = 0; i < 65; i++) {
|
|
REPORTER_ASSERT(r, w[i] == wide[i]);
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
DEF_TEST(SkVM_128bit, r) {
|
|
float floats[4*63];
|
|
uint8_t packed[4*63];
|
|
|
|
for (int i = 0; i < 4*63; i++) {
|
|
floats[i] = i * (1/255.0f);
|
|
}
|
|
|
|
skvm::PixelFormat rgba_ffff = skvm::SkColorType_to_PixelFormat(kRGBA_F32_SkColorType),
|
|
rgba_8888 = skvm::SkColorType_to_PixelFormat(kRGBA_8888_SkColorType);
|
|
|
|
{ // Convert RGBA F32 to RGBA 8888, testing 128-bit loads.
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Ptr dst = b.arg( 4),
|
|
src = b.arg(16);
|
|
|
|
skvm::Color c = b.load(rgba_ffff, src);
|
|
b.store(rgba_8888, dst, c);
|
|
}
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program){
|
|
memset(packed, 0, sizeof(packed));
|
|
program.eval(63, packed, floats);
|
|
for (int i = 0; i < 4*63; i++) {
|
|
REPORTER_ASSERT(r, packed[i] == i);
|
|
}
|
|
});
|
|
}
|
|
|
|
|
|
{ // Convert RGBA 8888 to RGBA F32, testing 128-bit stores.
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Ptr dst = b.arg(16),
|
|
src = b.arg( 4);
|
|
|
|
skvm::Color c = b.load(rgba_8888, src);
|
|
b.store(rgba_ffff, dst, c);
|
|
}
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program){
|
|
memset(floats, 0, sizeof(floats));
|
|
program.eval(63, floats, packed);
|
|
for (int i = 0; i < 4*63; i++) {
|
|
REPORTER_ASSERT(r, floats[i] == i * (1/255.0f));
|
|
}
|
|
});
|
|
}
|
|
|
|
}
|
|
|
|
DEF_TEST(SkVM_is_NaN_is_finite, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Ptr src = b.varying<float>(),
|
|
nan = b.varying<int>(),
|
|
fin = b.varying<int>();
|
|
b.store32(nan, is_NaN (b.loadF(src)));
|
|
b.store32(fin, is_finite(b.loadF(src)));
|
|
}
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program){
|
|
// ±NaN, ±0, ±1, ±inf
|
|
const uint32_t bits[] = {0x7f80'0001, 0xff80'0001, 0x0000'0000, 0x8000'0000,
|
|
0x3f80'0000, 0xbf80'0000, 0x7f80'0000, 0xff80'0000};
|
|
uint32_t nan[8], fin[8];
|
|
program.eval(8, bits, nan,fin);
|
|
|
|
for (int i = 0; i < 8; i++) {
|
|
REPORTER_ASSERT(r, nan[i] == ((i == 0 || i == 1) ? 0xffffffff : 0));
|
|
REPORTER_ASSERT(r, fin[i] == ((i == 2 || i == 3 ||
|
|
i == 4 || i == 5) ? 0xffffffff : 0));
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_args, r) {
|
|
// Test we can handle at least six arguments.
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Ptr dst = b.varying<float>(),
|
|
A = b.varying<float>(),
|
|
B = b.varying<float>(),
|
|
C = b.varying<float>(),
|
|
D = b.varying<float>(),
|
|
E = b.varying<float>();
|
|
storeF(dst, b.loadF(A)
|
|
+ b.loadF(B)
|
|
+ b.loadF(C)
|
|
+ b.loadF(D)
|
|
+ b.loadF(E));
|
|
}
|
|
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program){
|
|
float dst[17],A[17],B[17],C[17],D[17],E[17];
|
|
for (int i = 0; i < 17; i++) {
|
|
A[i] = B[i] = C[i] = D[i] = E[i] = (float)i;
|
|
}
|
|
program.eval(17, dst,A,B,C,D,E);
|
|
for (int i = 0; i < 17; i++) {
|
|
REPORTER_ASSERT(r, dst[i] == 5.0f*i);
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_badpack, r) {
|
|
// Test case distilled from actual failing draw,
|
|
// originally with a bad arm64 implementation of pack().
|
|
skvm::Builder p;
|
|
{
|
|
skvm::Ptr uniforms = p.uniform(),
|
|
dst = p.varying<uint16_t>();
|
|
|
|
skvm::I32 r = round(p.uniformF(uniforms, 8) * 15),
|
|
a = p.splat(0xf);
|
|
|
|
skvm::I32 _4444 = p.splat(0);
|
|
_4444 = pack(_4444, r, 12);
|
|
_4444 = pack(_4444, a, 0);
|
|
store16(dst, _4444);
|
|
}
|
|
|
|
test_jit_and_interpreter(p, [&](const skvm::Program& program){
|
|
const float uniforms[] = { 0.0f, 0.0f,
|
|
1.0f, 0.0f, 0.0f, 1.0f };
|
|
|
|
uint16_t dst[17] = {0};
|
|
program.eval(17, uniforms,dst);
|
|
for (int i = 0; i < 17; i++) {
|
|
REPORTER_ASSERT(r, dst[i] == 0xf00f, "got %04x, want %04x\n", dst[i], 0xf00f);
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_features, r) {
|
|
auto build_program = [](skvm::Builder* b) {
|
|
skvm::F32 x = b->loadF(b->varying<float>());
|
|
b->storeF(b->varying<float>(), x*x+x);
|
|
};
|
|
|
|
{ // load-fma-store with FMA available.
|
|
skvm::Features features;
|
|
features.fma = true;
|
|
skvm::Builder b(features);
|
|
build_program(&b);
|
|
REPORTER_ASSERT(r, b.optimize().size() == 3);
|
|
}
|
|
|
|
{ // load-mul-add-store without FMA.
|
|
skvm::Features features;
|
|
features.fma = false;
|
|
skvm::Builder b(features);
|
|
build_program(&b);
|
|
REPORTER_ASSERT(r, b.optimize().size() == 4);
|
|
}
|
|
|
|
{ // Auto-detected, could be either.
|
|
skvm::Builder b;
|
|
build_program(&b);
|
|
REPORTER_ASSERT(r, b.optimize().size() == 3
|
|
|| b.optimize().size() == 4);
|
|
}
|
|
}
|
|
|
|
DEF_TEST(SkVM_gather_can_hoist, r) {
|
|
// A gather instruction isn't necessarily varying... it's whatever its index is.
|
|
// First a typical gather scenario with varying index.
|
|
{
|
|
skvm::Builder b;
|
|
skvm::Ptr uniforms = b.uniform(),
|
|
buf = b.varying<int>();
|
|
skvm::I32 ix = b.load32(buf);
|
|
b.store32(buf, b.gather32(uniforms,0, ix));
|
|
|
|
skvm::Program p = b.done();
|
|
|
|
// ix is varying, so the gather is too.
|
|
//
|
|
// loop:
|
|
// v0 = load32 buf
|
|
// v1 = gather32 uniforms+0 v0
|
|
// store32 buf v1
|
|
REPORTER_ASSERT(r, p.instructions().size() == 3);
|
|
REPORTER_ASSERT(r, p.loop() == 0);
|
|
}
|
|
|
|
// Now the same but with a uniform index instead.
|
|
{
|
|
skvm::Builder b;
|
|
skvm::Ptr uniforms = b.uniform(),
|
|
buf = b.varying<int>();
|
|
skvm::I32 ix = b.uniform32(uniforms,8);
|
|
b.store32(buf, b.gather32(uniforms,0, ix));
|
|
|
|
skvm::Program p = b.done();
|
|
|
|
// ix is uniform, so the gather is too.
|
|
//
|
|
// v0 = uniform32 uniforms+8
|
|
// v1 = gather32 uniforms+0 v0
|
|
// loop:
|
|
// store32 buf v1
|
|
REPORTER_ASSERT(r, p.instructions().size() == 3);
|
|
REPORTER_ASSERT(r, p.loop() == 2);
|
|
}
|
|
}
|
|
|
|
DEF_TEST(SkVM_dont_dedup_loads, r) {
|
|
// We've been assuming that all Ops with the same arguments produce the same value
|
|
// and deduplicating them, which results in a simple common subexpression eliminator.
|
|
//
|
|
// But we can't soundly dedup two identical loads with a store between.
|
|
// If we dedup the loads in this test program it will always increment by 1, not K.
|
|
constexpr int K = 2;
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Ptr buf = b.varying<int>();
|
|
for (int i = 0; i < K; i++) {
|
|
b.store32(buf, b.load32(buf) + 1);
|
|
}
|
|
}
|
|
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program){
|
|
int buf[] = { 0,1,2,3,4 };
|
|
program.eval(SK_ARRAY_COUNT(buf), buf);
|
|
for (int i = 0; i < (int)SK_ARRAY_COUNT(buf); i++) {
|
|
REPORTER_ASSERT(r, buf[i] == i+K);
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_dont_dedup_stores, r) {
|
|
// Following a similar line of reasoning to SkVM_dont_dedup_loads,
|
|
// we cannot dedup stores either. A different store between two identical stores
|
|
// will invalidate the first store, meaning we do need to reissue that store operation.
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Ptr buf = b.varying<int>();
|
|
b.store32(buf, b.splat(4));
|
|
b.store32(buf, b.splat(5));
|
|
b.store32(buf, b.splat(4)); // If we dedup'd, we'd skip this store.
|
|
}
|
|
|
|
test_jit_and_interpreter(b, [&](const skvm::Program& program){
|
|
int buf[42];
|
|
program.eval(SK_ARRAY_COUNT(buf), buf);
|
|
for (int x : buf) {
|
|
REPORTER_ASSERT(r, x == 4);
|
|
}
|
|
});
|
|
}
|