skia2/samplecode/SamplePathFuzz.cpp
caryclark 63c684a8a6 fuzzer fixes
Fix path bugs exposed by the path fuzzer.

Changes to existing gm and samplecode files defer their calls to construct
SkPath objects until the first draw instead of at test initialization.

Add an experimental call to SkPath to validate the internal SkPathRef.

Fix SkPath::addPoly to set the last moveto after adding a close verb.

Fix stroke to handle failures when computing the unit normal.

Add a unit test for the unit normal failure.

R=reed@google.com

Review URL: https://codereview.chromium.org/953383002
2015-02-25 09:04:04 -08:00

652 lines
19 KiB
C++

/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SampleCode.h"
#include "SkView.h"
#include "SkCanvas.h"
#include "SkPaint.h"
#include "SkPath.h"
#include "SkMatrix.h"
#include "SkColor.h"
#include "SkTDArray.h"
#include "SkRandom.h"
enum RandomAddPath {
kMoveToPath,
kRMoveToPath,
kLineToPath,
kRLineToPath,
kQuadToPath,
kRQuadToPath,
kConicToPath,
kRConicToPath,
kCubicToPath,
kRCubicToPath,
kArcToPath,
kArcTo2Path,
kClosePath,
kAddArc,
kAddRoundRect1,
kAddRoundRect2,
kAddRRect,
kAddPoly,
kAddPath1,
kAddPath2,
kAddPath3,
kReverseAddPath,
};
const int kRandomAddPath_Last = kReverseAddPath;
const char* gRandomAddPathNames[] = {
"kMoveToPath",
"kRMoveToPath",
"kLineToPath",
"kRLineToPath",
"kQuadToPath",
"kRQuadToPath",
"kConicToPath",
"kRConicToPath",
"kCubicToPath",
"kRCubicToPath",
"kArcToPath",
"kArcTo2Path",
"kClosePath",
"kAddArc",
"kAddRoundRect1",
"kAddRoundRect2",
"kAddRRect",
"kAddPoly",
"kAddPath1",
"kAddPath2",
"kAddPath3",
"kReverseAddPath",
};
enum RandomSetRRect {
kSetEmpty,
kSetRect,
kSetOval,
kSetRectXY,
kSetNinePatch,
kSetRectRadii,
};
const char* gRandomSetRRectNames[] = {
"kSetEmpty",
"kSetRect",
"kSetOval",
"kSetRectXY",
"kSetNinePatch",
"kSetRectRadii",
};
int kRandomSetRRect_Last = kSetRectRadii;
enum RandomSetMatrix {
kSetIdentity,
kSetTranslate,
kSetTranslateX,
kSetTranslateY,
kSetScale,
kSetScaleTranslate,
kSetScaleX,
kSetScaleY,
kSetSkew,
kSetSkewTranslate,
kSetSkewX,
kSetSkewY,
kSetRotate,
kSetRotateTranslate,
kSetPerspectiveX,
kSetPerspectiveY,
kSetAll,
};
int kRandomSetMatrix_Last = kSetAll;
const char* gRandomSetMatrixNames[] = {
"kSetIdentity",
"kSetTranslate",
"kSetTranslateX",
"kSetTranslateY",
"kSetScale",
"kSetScaleTranslate",
"kSetScaleX",
"kSetScaleY",
"kSetSkew",
"kSetSkewTranslate",
"kSetSkewX",
"kSetSkewY",
"kSetRotate",
"kSetRotateTranslate",
"kSetPerspectiveX",
"kSetPerspectiveY",
"kSetAll",
};
class FuzzPath {
public:
FuzzPath()
: fFloatMin(0)
, fFloatMax(800)
, fAddCount(0)
, fPrintName(false)
, fValidate(false)
{
fTab = " ";
}
void randomize() {
fPathDepth = 0;
fPathDepthLimit = fRand.nextRangeU(1, 2);
fPathContourCount = fRand.nextRangeU(1, 4);
fPathSegmentLimit = fRand.nextRangeU(1, 8);
fClip = makePath();
SkASSERT(!fPathDepth);
fMatrix = makeMatrix();
fPaint = makePaint();
fPathDepthLimit = fRand.nextRangeU(1, 3);
fPathContourCount = fRand.nextRangeU(1, 6);
fPathSegmentLimit = fRand.nextRangeU(1, 16);
fPath = makePath();
SkASSERT(!fPathDepth);
}
const SkPath& getClip() const {
return fClip;
}
const SkMatrix& getMatrix() const {
return fMatrix;
}
const SkPaint& getPaint() const {
return fPaint;
}
const SkPath& getPath() const {
return fPath;
}
private:
SkPath::AddPathMode makeAddPathMode() {
return (SkPath::AddPathMode) fRand.nextRangeU(SkPath::kAppend_AddPathMode,
SkPath::kExtend_AddPathMode);
}
RandomAddPath makeAddPathType() {
return (RandomAddPath) fRand.nextRangeU(0, kRandomAddPath_Last);
}
SkScalar makeAngle() {
SkScalar angle;
angle = fRand.nextF();
return angle;
}
bool makeBool() {
return fRand.nextBool();
}
SkPath::Direction makeDirection() {
return (SkPath::Direction) fRand.nextRangeU(SkPath::kCW_Direction, SkPath::kCCW_Direction);
}
SkMatrix makeMatrix() {
SkMatrix matrix;
matrix.reset();
RandomSetMatrix setMatrix = (RandomSetMatrix) fRand.nextRangeU(0, kRandomSetMatrix_Last);
if (fPrintName) {
SkDebugf("%.*s%s\n", fPathDepth * 3, fTab, gRandomSetMatrixNames[setMatrix]);
}
switch (setMatrix) {
case kSetIdentity:
break;
case kSetTranslateX:
matrix.setTranslateX(makeScalar());
break;
case kSetTranslateY:
matrix.setTranslateY(makeScalar());
break;
case kSetTranslate:
matrix.setTranslate(makeScalar(), makeScalar());
break;
case kSetScaleX:
matrix.setScaleX(makeScalar());
break;
case kSetScaleY:
matrix.setScaleY(makeScalar());
break;
case kSetScale:
matrix.setScale(makeScalar(), makeScalar());
break;
case kSetScaleTranslate:
matrix.setScale(makeScalar(), makeScalar(), makeScalar(), makeScalar());
break;
case kSetSkewX:
matrix.setSkewX(makeScalar());
break;
case kSetSkewY:
matrix.setSkewY(makeScalar());
break;
case kSetSkew:
matrix.setSkew(makeScalar(), makeScalar());
break;
case kSetSkewTranslate:
matrix.setSkew(makeScalar(), makeScalar(), makeScalar(), makeScalar());
break;
case kSetRotate:
matrix.setRotate(makeScalar());
break;
case kSetRotateTranslate:
matrix.setRotate(makeScalar(), makeScalar(), makeScalar());
break;
case kSetPerspectiveX:
matrix.setPerspX(makeScalar());
break;
case kSetPerspectiveY:
matrix.setPerspY(makeScalar());
break;
case kSetAll:
matrix.setAll(makeScalar(), makeScalar(), makeScalar(),
makeScalar(), makeScalar(), makeScalar(),
makeScalar(), makeScalar(), makeScalar());
break;
}
return matrix;
}
SkPaint makePaint() {
SkPaint paint;
bool antiAlias = fRand.nextBool();
paint.setAntiAlias(antiAlias);
SkPaint::Style style = (SkPaint::Style) fRand.nextRangeU(SkPaint::kFill_Style,
SkPaint::kStrokeAndFill_Style);
paint.setStyle(style);
SkColor color = (SkColor) fRand.nextU();
paint.setColor(color);
SkScalar width = fRand.nextF();
paint.setStrokeWidth(width);
SkScalar miter = fRand.nextF();
paint.setStrokeMiter(miter);
SkPaint::Cap cap = (SkPaint::Cap) fRand.nextRangeU(SkPaint::kButt_Cap, SkPaint::kSquare_Cap);
paint.setStrokeCap(cap);
SkPaint::Join join = (SkPaint::Join) fRand.nextRangeU(SkPaint::kMiter_Join,
SkPaint::kBevel_Join);
paint.setStrokeJoin(join);
return paint;
}
SkPoint makePoint() {
SkPoint result;
makeScalarArray(2, &result.fX);
return result;
}
void makePointArray(size_t arrayCount, SkPoint* points) {
for (size_t index = 0; index < arrayCount; ++index) {
points[index] = makePoint();
}
}
void makePointArray(SkTDArray<SkPoint>* points) {
size_t arrayCount = fRand.nextRangeU(1, 10);
for (size_t index = 0; index < arrayCount; ++index) {
*points->append() = makePoint();
}
}
SkRect makeRect() {
SkRect result;
makeScalarArray(4, &result.fLeft);
return result;
}
SkRRect makeRRect() {
SkRRect rrect;
RandomSetRRect rrectType = makeSetRRectType();
if (fPrintName) {
SkDebugf("%.*s%s\n", fPathDepth * 3, fTab, gRandomSetRRectNames[rrectType]);
}
switch (rrectType) {
case kSetEmpty:
rrect.setEmpty();
break;
case kSetRect: {
SkRect rect = makeRect();
rrect.setRect(rect);
} break;
case kSetOval: {
SkRect oval = makeRect();
rrect.setOval(oval);
} break;
case kSetRectXY: {
SkRect rect = makeRect();
SkScalar xRad = makeScalar();
SkScalar yRad = makeScalar();
rrect.setRectXY(rect, xRad, yRad);
} break;
case kSetNinePatch: {
SkRect rect = makeRect();
SkScalar leftRad = makeScalar();
SkScalar topRad = makeScalar();
SkScalar rightRad = makeScalar();
SkScalar bottomRad = makeScalar();
rrect.setNinePatch(rect, leftRad, topRad, rightRad, bottomRad);
SkDebugf(""); // keep locals in scope
} break;
case kSetRectRadii: {
SkRect rect = makeRect();
SkVector radii[4];
makeVectorArray(SK_ARRAY_COUNT(radii), radii);
rrect.setRectRadii(rect, radii);
} break;
}
return rrect;
}
SkPath makePath() {
SkPath path;
for (uint32_t cIndex = 0; cIndex < fPathContourCount; ++cIndex) {
uint32_t segments = makeSegmentCount();
for (uint32_t sIndex = 0; sIndex < segments; ++sIndex) {
RandomAddPath addPathType = makeAddPathType();
++fAddCount;
if (fPrintName) {
SkDebugf("%.*s%s\n", fPathDepth * 3, fTab,
gRandomAddPathNames[addPathType]);
}
switch (addPathType) {
case kAddArc: {
SkRect oval = makeRect();
SkScalar startAngle = makeAngle();
SkScalar sweepAngle = makeAngle();
path.addArc(oval, startAngle, sweepAngle);
validate(path);
} break;
case kAddRoundRect1: {
SkRect rect = makeRect();
SkScalar rx = makeScalar(), ry = makeScalar();
SkPath::Direction dir = makeDirection();
path.addRoundRect(rect, rx, ry, dir);
validate(path);
} break;
case kAddRoundRect2: {
SkRect rect = makeRect();
SkScalar radii[8];
makeScalarArray(SK_ARRAY_COUNT(radii), radii);
SkPath::Direction dir = makeDirection();
path.addRoundRect(rect, radii, dir);
validate(path);
} break;
case kAddRRect: {
SkRRect rrect = makeRRect();
SkPath::Direction dir = makeDirection();
path.addRRect(rrect, dir);
validate(path);
} break;
case kAddPoly: {
SkTDArray<SkPoint> points;
makePointArray(&points);
bool close = makeBool();
path.addPoly(&points[0], points.count(), close);
validate(path);
} break;
case kAddPath1:
if (fPathDepth < fPathDepthLimit) {
++fPathDepth;
SkPath src = makePath();
validate(src);
SkScalar dx = makeScalar();
SkScalar dy = makeScalar();
SkPath::AddPathMode mode = makeAddPathMode();
path.addPath(src, dx, dy, mode);
--fPathDepth;
validate(path);
}
break;
case kAddPath2:
if (fPathDepth < fPathDepthLimit) {
++fPathDepth;
SkPath src = makePath();
validate(src);
SkPath::AddPathMode mode = makeAddPathMode();
path.addPath(src, mode);
--fPathDepth;
validate(path);
}
break;
case kAddPath3:
if (fPathDepth < fPathDepthLimit) {
++fPathDepth;
SkPath src = makePath();
validate(src);
SkMatrix matrix = makeMatrix();
SkPath::AddPathMode mode = makeAddPathMode();
path.addPath(src, matrix, mode);
--fPathDepth;
validate(path);
}
break;
case kReverseAddPath:
if (fPathDepth < fPathDepthLimit) {
++fPathDepth;
SkPath src = makePath();
validate(src);
path.reverseAddPath(src);
--fPathDepth;
validate(path);
}
break;
case kMoveToPath: {
SkScalar x = makeScalar();
SkScalar y = makeScalar();
path.moveTo(x, y);
validate(path);
} break;
case kRMoveToPath: {
SkScalar x = makeScalar();
SkScalar y = makeScalar();
path.rMoveTo(x, y);
validate(path);
} break;
case kLineToPath: {
SkScalar x = makeScalar();
SkScalar y = makeScalar();
path.lineTo(x, y);
validate(path);
} break;
case kRLineToPath: {
SkScalar x = makeScalar();
SkScalar y = makeScalar();
path.rLineTo(x, y);
validate(path);
} break;
case kQuadToPath: {
SkPoint pt[2];
makePointArray(SK_ARRAY_COUNT(pt), pt);
path.quadTo(pt[0], pt[1]);
validate(path);
} break;
case kRQuadToPath: {
SkPoint pt[2];
makePointArray(SK_ARRAY_COUNT(pt), pt);
path.rQuadTo(pt[0].fX, pt[0].fY, pt[1].fX, pt[1].fY);
validate(path);
} break;
case kConicToPath: {
SkPoint pt[2];
makePointArray(SK_ARRAY_COUNT(pt), pt);
SkScalar weight = makeScalar();
path.conicTo(pt[0], pt[1], weight);
validate(path);
} break;
case kRConicToPath: {
SkPoint pt[2];
makePointArray(SK_ARRAY_COUNT(pt), pt);
SkScalar weight = makeScalar();
path.rConicTo(pt[0].fX, pt[0].fY, pt[1].fX, pt[1].fY, weight);
validate(path);
} break;
case kCubicToPath: {
SkPoint pt[3];
makePointArray(SK_ARRAY_COUNT(pt), pt);
path.cubicTo(pt[0], pt[1], pt[2]);
validate(path);
} break;
case kRCubicToPath: {
SkPoint pt[3];
makePointArray(SK_ARRAY_COUNT(pt), pt);
path.rCubicTo(pt[0].fX, pt[0].fY, pt[1].fX, pt[1].fY, pt[2].fX, pt[2].fY);
validate(path);
} break;
case kArcToPath: {
SkPoint pt[2];
makePointArray(SK_ARRAY_COUNT(pt), pt);
SkScalar radius = makeScalar();
path.arcTo(pt[0], pt[1], radius);
validate(path);
} break;
case kArcTo2Path: {
SkRect oval = makeRect();
SkScalar startAngle = makeAngle();
SkScalar sweepAngle = makeAngle();
bool forceMoveTo = makeBool();
path.arcTo(oval, startAngle, sweepAngle, forceMoveTo);
validate(path);
} break;
case kClosePath:
path.close();
validate(path);
break;
}
}
}
return path;
}
uint32_t makeSegmentCount() {
return fRand.nextRangeU(1, fPathSegmentLimit);
}
RandomSetRRect makeSetRRectType() {
return (RandomSetRRect) fRand.nextRangeU(0, kRandomSetRRect_Last);
}
SkScalar makeScalar() {
SkScalar scalar;
scalar = fRand.nextRangeF(fFloatMin, fFloatMax);
return scalar;
}
void makeScalarArray(size_t arrayCount, SkScalar* array) {
for (size_t index = 0; index < arrayCount; ++index) {
array[index] = makeScalar();
}
}
void makeVectorArray(size_t arrayCount, SkVector* array) {
for (size_t index = 0; index < arrayCount; ++index) {
array[index] = makeVector();
}
}
SkVector makeVector() {
SkVector result;
makeScalarArray(2, &result.fX);
return result;
}
void validate(const SkPath& path) {
if (fValidate) {
SkDEBUGCODE(path.experimentalValidateRef());
}
}
SkRandom fRand;
SkMatrix fMatrix;
SkPath fClip;
SkPaint fPaint;
SkPath fPath;
SkScalar fFloatMin;
SkScalar fFloatMax;
uint32_t fPathContourCount;
int fPathDepth;
int fPathDepthLimit;
uint32_t fPathSegmentLimit;
int fAddCount;
bool fPrintName;
bool fValidate;
const char* fTab;
};
//////////////////////////////////////////////////////////////////////////////
static bool contains_only_moveTo(const SkPath& path) {
int verbCount = path.countVerbs();
if (verbCount == 0) {
return true;
}
SkTDArray<uint8_t> verbs;
verbs.setCount(verbCount);
SkDEBUGCODE(int getVerbResult = ) path.getVerbs(verbs.begin(), verbCount);
SkASSERT(getVerbResult == verbCount);
for (int index = 0; index < verbCount; ++index) {
if (verbs[index] != SkPath::kMove_Verb) {
return false;
}
}
return true;
}
class PathFuzzView : public SampleView {
public:
PathFuzzView() {
fDots = 0;
}
protected:
// overrides from SkEventSink
virtual bool onQuery(SkEvent* evt) {
if (SampleCode::TitleQ(*evt)) {
SampleCode::TitleR(evt, "PathFuzzer");
return true;
}
return this->INHERITED::onQuery(evt);
}
virtual void onDrawContent(SkCanvas* canvas) {
fuzzPath.randomize();
const SkPath& path = fuzzPath.getPath();
const SkPaint& paint = fuzzPath.getPaint();
const SkPath& clip = fuzzPath.getClip();
const SkMatrix& matrix = fuzzPath.getMatrix();
if (!contains_only_moveTo(clip)) {
canvas->clipPath(clip);
}
canvas->setMatrix(matrix);
canvas->drawPath(path, paint);
this->inval(NULL);
if (++fDots == 8000) {
SkDebugf("\n");
fDots = 0;
}
if ((fDots % 100) == 99) {
SkDebugf(".");
}
}
private:
FuzzPath fuzzPath;
int fDots;
typedef SkView INHERITED;
};
//////////////////////////////////////////////////////////////////////////////
static SkView* MyFactory() { return new PathFuzzView; }
static SkViewRegister reg(MyFactory);