skia2/tools/viewer/Viewer.cpp
Kevin Lubick 57c1541715 Remove old experiments
These are unowned and/or unused.

Change-Id: I2ca871be712a7bf990ff89acc23b6a519bb19374
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/517996
Reviewed-by: Brian Salomon <bsalomon@google.com>
Reviewed-by: Florin Malita <fmalita@google.com>
Commit-Queue: Kevin Lubick <kjlubick@google.com>
2022-03-08 19:07:00 +00:00

3124 lines
123 KiB
C++

/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "tools/viewer/Viewer.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkData.h"
#include "include/core/SkGraphics.h"
#include "include/core/SkPictureRecorder.h"
#include "include/core/SkStream.h"
#include "include/core/SkSurface.h"
#include "include/gpu/GrDirectContext.h"
#include "include/private/SkTPin.h"
#include "include/private/SkTo.h"
#include "include/utils/SkPaintFilterCanvas.h"
#include "src/core/SkAutoPixmapStorage.h"
#include "src/core/SkColorSpacePriv.h"
#include "src/core/SkGlyphRun.h"
#include "src/core/SkImagePriv.h"
#include "src/core/SkMD5.h"
#include "src/core/SkOSFile.h"
#include "src/core/SkReadBuffer.h"
#include "src/core/SkScan.h"
#include "src/core/SkStringUtils.h"
#include "src/core/SkSurfacePriv.h"
#include "src/core/SkTSort.h"
#include "src/core/SkTaskGroup.h"
#include "src/core/SkTextBlobPriv.h"
#include "src/core/SkVMBlitter.h"
#include "src/gpu/GrDirectContextPriv.h"
#include "src/gpu/GrGpu.h"
#include "src/gpu/GrPersistentCacheUtils.h"
#include "src/image/SkImage_Base.h"
#include "src/sksl/SkSLCompiler.h"
#include "src/utils/SkJSONWriter.h"
#include "src/utils/SkOSPath.h"
#include "src/utils/SkShaderUtils.h"
#include "tools/Resources.h"
#include "tools/RuntimeBlendUtils.h"
#include "tools/ToolUtils.h"
#include "tools/flags/CommandLineFlags.h"
#include "tools/flags/CommonFlags.h"
#include "tools/trace/EventTracingPriv.h"
#include "tools/viewer/BisectSlide.h"
#include "tools/viewer/GMSlide.h"
#include "tools/viewer/ImageSlide.h"
#include "tools/viewer/MSKPSlide.h"
#include "tools/viewer/ParticlesSlide.h"
#include "tools/viewer/SKPSlide.h"
#include "tools/viewer/SampleSlide.h"
#include "tools/viewer/SkSLDebuggerSlide.h"
#include "tools/viewer/SkSLSlide.h"
#include "tools/viewer/SlideDir.h"
#include "tools/viewer/SvgSlide.h"
#if SK_GPU_V1
#include "src/gpu/ops/AtlasPathRenderer.h"
#include "src/gpu/ops/TessellationPathRenderer.h"
#endif
#include <cstdlib>
#include <map>
#include "imgui.h"
#include "misc/cpp/imgui_stdlib.h" // For ImGui support of std::string
#ifdef SK_VULKAN
#include "spirv-tools/libspirv.hpp"
#endif
#if defined(SK_ENABLE_SKOTTIE)
#include "tools/viewer/SkottieSlide.h"
#endif
class CapturingShaderErrorHandler : public GrContextOptions::ShaderErrorHandler {
public:
void compileError(const char* shader, const char* errors) override {
fShaders.push_back(SkString(shader));
fErrors.push_back(SkString(errors));
}
void reset() {
fShaders.reset();
fErrors.reset();
}
SkTArray<SkString> fShaders;
SkTArray<SkString> fErrors;
};
static CapturingShaderErrorHandler gShaderErrorHandler;
GrContextOptions::ShaderErrorHandler* Viewer::ShaderErrorHandler() { return &gShaderErrorHandler; }
using namespace sk_app;
using SkSL::Compiler;
using OverrideFlag = SkSL::Compiler::OverrideFlag;
static std::map<GpuPathRenderers, std::string> gPathRendererNames;
Application* Application::Create(int argc, char** argv, void* platformData) {
return new Viewer(argc, argv, platformData);
}
static DEFINE_string(slide, "", "Start on this sample.");
static DEFINE_bool(list, false, "List samples?");
#ifdef SK_GL
#define GL_BACKEND_STR ", \"gl\""
#else
#define GL_BACKEND_STR
#endif
#ifdef SK_VULKAN
#define VK_BACKEND_STR ", \"vk\""
#else
#define VK_BACKEND_STR
#endif
#ifdef SK_METAL
#define MTL_BACKEND_STR ", \"mtl\""
#else
#define MTL_BACKEND_STR
#endif
#ifdef SK_DIRECT3D
#define D3D_BACKEND_STR ", \"d3d\""
#else
#define D3D_BACKEND_STR
#endif
#ifdef SK_DAWN
#define DAWN_BACKEND_STR ", \"dawn\""
#else
#define DAWN_BACKEND_STR
#endif
#define BACKENDS_STR_EVALUATOR(sw, gl, vk, mtl, d3d, dawn) sw gl vk mtl d3d dawn
#define BACKENDS_STR BACKENDS_STR_EVALUATOR( \
"\"sw\"", GL_BACKEND_STR, VK_BACKEND_STR, MTL_BACKEND_STR, D3D_BACKEND_STR, DAWN_BACKEND_STR)
static DEFINE_string2(backend, b, "sw", "Backend to use. Allowed values are " BACKENDS_STR ".");
static DEFINE_int(msaa, 1, "Number of subpixel samples. 0 for no HW antialiasing.");
static DEFINE_bool(dmsaa, false, "Use internal MSAA to render to non-MSAA surfaces?");
static DEFINE_string(bisect, "", "Path to a .skp or .svg file to bisect.");
static DEFINE_string2(file, f, "", "Open a single file for viewing.");
static DEFINE_string2(match, m, nullptr,
"[~][^]substring[$] [...] of name to run.\n"
"Multiple matches may be separated by spaces.\n"
"~ causes a matching name to always be skipped\n"
"^ requires the start of the name to match\n"
"$ requires the end of the name to match\n"
"^ and $ requires an exact match\n"
"If a name does not match any list entry,\n"
"it is skipped unless some list entry starts with ~");
#if defined(SK_BUILD_FOR_ANDROID)
# define PATH_PREFIX "/data/local/tmp/"
#else
# define PATH_PREFIX ""
#endif
static DEFINE_string(jpgs , PATH_PREFIX "jpgs" , "Directory to read jpgs from.");
static DEFINE_string(jxls , PATH_PREFIX "jxls" , "Directory to read jxls from.");
static DEFINE_string(skps , PATH_PREFIX "skps" , "Directory to read skps from.");
static DEFINE_string(mskps , PATH_PREFIX "mskps" , "Directory to read mskps from.");
static DEFINE_string(lotties, PATH_PREFIX "lotties", "Directory to read (Bodymovin) jsons from.");
#undef PATH_PREFIX
static DEFINE_string(svgs, "", "Directory to read SVGs from, or a single SVG file.");
static DEFINE_int_2(threads, j, -1,
"Run threadsafe tests on a threadpool with this many extra threads, "
"defaulting to one extra thread per core.");
static DEFINE_bool(redraw, false, "Toggle continuous redraw.");
static DEFINE_bool(offscreen, false, "Force rendering to an offscreen surface.");
static DEFINE_bool(skvm, false, "Force skvm blitters for raster.");
static DEFINE_bool(jit, true, "JIT SkVM?");
static DEFINE_bool(dylib, false, "JIT via dylib (much slower compile but easier to debug/profile)");
static DEFINE_bool(stats, false, "Display stats overlay on startup.");
static DEFINE_bool(binaryarchive, false, "Enable MTLBinaryArchive use (if available).");
#ifndef SK_GL
static_assert(false, "viewer requires GL backend for raster.")
#endif
const char* kBackendTypeStrings[sk_app::Window::kBackendTypeCount] = {
"OpenGL",
#if SK_ANGLE && defined(SK_BUILD_FOR_WIN)
"ANGLE",
#endif
#ifdef SK_DAWN
"Dawn",
#endif
#ifdef SK_VULKAN
"Vulkan",
#endif
#ifdef SK_METAL
"Metal",
#ifdef SK_GRAPHITE_ENABLED
"Metal (Graphite)",
#endif
#endif
#ifdef SK_DIRECT3D
"Direct3D",
#endif
"Raster"
};
static sk_app::Window::BackendType get_backend_type(const char* str) {
#ifdef SK_DAWN
if (0 == strcmp(str, "dawn")) {
return sk_app::Window::kDawn_BackendType;
} else
#endif
#ifdef SK_VULKAN
if (0 == strcmp(str, "vk")) {
return sk_app::Window::kVulkan_BackendType;
} else
#endif
#if SK_ANGLE && defined(SK_BUILD_FOR_WIN)
if (0 == strcmp(str, "angle")) {
return sk_app::Window::kANGLE_BackendType;
} else
#endif
#ifdef SK_METAL
if (0 == strcmp(str, "mtl")) {
return sk_app::Window::kMetal_BackendType;
} else
#ifdef SK_GRAPHITE_ENABLED
if (0 == strcmp(str, "grmtl")) {
return sk_app::Window::kGraphiteMetal_BackendType;
} else
#endif
#endif
#ifdef SK_DIRECT3D
if (0 == strcmp(str, "d3d")) {
return sk_app::Window::kDirect3D_BackendType;
} else
#endif
if (0 == strcmp(str, "gl")) {
return sk_app::Window::kNativeGL_BackendType;
} else if (0 == strcmp(str, "sw")) {
return sk_app::Window::kRaster_BackendType;
} else {
SkDebugf("Unknown backend type, %s, defaulting to sw.", str);
return sk_app::Window::kRaster_BackendType;
}
}
static SkColorSpacePrimaries gSrgbPrimaries = {
0.64f, 0.33f,
0.30f, 0.60f,
0.15f, 0.06f,
0.3127f, 0.3290f };
static SkColorSpacePrimaries gAdobePrimaries = {
0.64f, 0.33f,
0.21f, 0.71f,
0.15f, 0.06f,
0.3127f, 0.3290f };
static SkColorSpacePrimaries gP3Primaries = {
0.680f, 0.320f,
0.265f, 0.690f,
0.150f, 0.060f,
0.3127f, 0.3290f };
static SkColorSpacePrimaries gRec2020Primaries = {
0.708f, 0.292f,
0.170f, 0.797f,
0.131f, 0.046f,
0.3127f, 0.3290f };
struct NamedPrimaries {
const char* fName;
SkColorSpacePrimaries* fPrimaries;
} gNamedPrimaries[] = {
{ "sRGB", &gSrgbPrimaries },
{ "AdobeRGB", &gAdobePrimaries },
{ "P3", &gP3Primaries },
{ "Rec. 2020", &gRec2020Primaries },
};
static bool primaries_equal(const SkColorSpacePrimaries& a, const SkColorSpacePrimaries& b) {
return memcmp(&a, &b, sizeof(SkColorSpacePrimaries)) == 0;
}
static Window::BackendType backend_type_for_window(Window::BackendType backendType) {
// In raster mode, we still use GL for the window.
// This lets us render the GUI faster (and correct).
return Window::kRaster_BackendType == backendType ? Window::kNativeGL_BackendType : backendType;
}
class NullSlide : public Slide {
SkISize getDimensions() const override {
return SkISize::Make(640, 480);
}
void draw(SkCanvas* canvas) override {
canvas->clear(0xffff11ff);
}
};
static const char kName[] = "name";
static const char kValue[] = "value";
static const char kOptions[] = "options";
static const char kSlideStateName[] = "Slide";
static const char kBackendStateName[] = "Backend";
static const char kMSAAStateName[] = "MSAA";
static const char kPathRendererStateName[] = "Path renderer";
static const char kSoftkeyStateName[] = "Softkey";
static const char kSoftkeyHint[] = "Please select a softkey";
static const char kON[] = "ON";
static const char kRefreshStateName[] = "Refresh";
extern bool gUseSkVMBlitter;
extern bool gSkVMAllowJIT;
extern bool gSkVMJITViaDylib;
Viewer::Viewer(int argc, char** argv, void* platformData)
: fCurrentSlide(-1)
, fRefresh(false)
, fSaveToSKP(false)
, fShowSlideDimensions(false)
, fShowImGuiDebugWindow(false)
, fShowSlidePicker(false)
, fShowImGuiTestWindow(false)
, fShowHistogramWindow(false)
, fShowZoomWindow(false)
, fZoomWindowFixed(false)
, fZoomWindowLocation{0.0f, 0.0f}
, fLastImage(nullptr)
, fZoomUI(false)
, fBackendType(sk_app::Window::kNativeGL_BackendType)
, fColorMode(ColorMode::kLegacy)
, fColorSpacePrimaries(gSrgbPrimaries)
// Our UI can only tweak gamma (currently), so start out gamma-only
, fColorSpaceTransferFn(SkNamedTransferFn::k2Dot2)
, fApplyBackingScale(true)
, fZoomLevel(0.0f)
, fRotation(0.0f)
, fOffset{0.5f, 0.5f}
, fGestureDevice(GestureDevice::kNone)
, fTiled(false)
, fDrawTileBoundaries(false)
, fTileScale{0.25f, 0.25f}
, fPerspectiveMode(kPerspective_Off)
{
SkGraphics::Init();
gPathRendererNames[GpuPathRenderers::kDefault] = "Default Path Renderers";
gPathRendererNames[GpuPathRenderers::kAtlas] = "Atlas (tessellation)";
gPathRendererNames[GpuPathRenderers::kTessellation] = "Tessellation";
gPathRendererNames[GpuPathRenderers::kSmall] = "Small paths (cached sdf or alpha masks)";
gPathRendererNames[GpuPathRenderers::kTriangulating] = "Triangulating";
gPathRendererNames[GpuPathRenderers::kNone] = "Software masks";
SkDebugf("Command line arguments: ");
for (int i = 1; i < argc; ++i) {
SkDebugf("%s ", argv[i]);
}
SkDebugf("\n");
CommandLineFlags::Parse(argc, argv);
#ifdef SK_BUILD_FOR_ANDROID
SetResourcePath("/data/local/tmp/resources");
#endif
gUseSkVMBlitter = FLAGS_skvm;
gSkVMAllowJIT = FLAGS_jit;
gSkVMJITViaDylib = FLAGS_dylib;
CommonFlags::SetDefaultFontMgr();
initializeEventTracingForTools();
static SkTaskGroup::Enabler kTaskGroupEnabler(FLAGS_threads);
fBackendType = get_backend_type(FLAGS_backend[0]);
fWindow = Window::CreateNativeWindow(platformData);
DisplayParams displayParams;
displayParams.fMSAASampleCount = FLAGS_msaa;
displayParams.fEnableBinaryArchive = FLAGS_binaryarchive;
CommonFlags::SetCtxOptions(&displayParams.fGrContextOptions);
displayParams.fGrContextOptions.fPersistentCache = &fPersistentCache;
displayParams.fGrContextOptions.fShaderCacheStrategy =
GrContextOptions::ShaderCacheStrategy::kSkSL;
displayParams.fGrContextOptions.fShaderErrorHandler = &gShaderErrorHandler;
displayParams.fGrContextOptions.fSuppressPrints = true;
if (FLAGS_dmsaa) {
displayParams.fSurfaceProps = SkSurfaceProps(
displayParams.fSurfaceProps.flags() | SkSurfaceProps::kDynamicMSAA_Flag,
displayParams.fSurfaceProps.pixelGeometry());
}
fWindow->setRequestedDisplayParams(displayParams);
fDisplay = fWindow->getRequestedDisplayParams();
fRefresh = FLAGS_redraw;
fImGuiLayer.setScaleFactor(fWindow->scaleFactor());
fStatsLayer.setDisplayScale((fZoomUI ? 2.0f : 1.0f) * fWindow->scaleFactor());
// Configure timers
fStatsLayer.setActive(FLAGS_stats);
fAnimateTimer = fStatsLayer.addTimer("Animate", SK_ColorMAGENTA, 0xffff66ff);
fPaintTimer = fStatsLayer.addTimer("Paint", SK_ColorGREEN);
fFlushTimer = fStatsLayer.addTimer("Flush", SK_ColorRED, 0xffff6666);
// register callbacks
fCommands.attach(fWindow);
fWindow->pushLayer(this);
fWindow->pushLayer(&fStatsLayer);
fWindow->pushLayer(&fImGuiLayer);
// add key-bindings
fCommands.addCommand(' ', "GUI", "Toggle Debug GUI", [this]() {
this->fShowImGuiDebugWindow = !this->fShowImGuiDebugWindow;
fWindow->inval();
});
// Command to jump directly to the slide picker and give it focus
fCommands.addCommand('/', "GUI", "Jump to slide picker", [this]() {
this->fShowImGuiDebugWindow = true;
this->fShowSlidePicker = true;
fWindow->inval();
});
// Alias that to Backspace, to match SampleApp
fCommands.addCommand(skui::Key::kBack, "Backspace", "GUI", "Jump to slide picker", [this]() {
this->fShowImGuiDebugWindow = true;
this->fShowSlidePicker = true;
fWindow->inval();
});
fCommands.addCommand('g', "GUI", "Toggle GUI Demo", [this]() {
this->fShowImGuiTestWindow = !this->fShowImGuiTestWindow;
fWindow->inval();
});
fCommands.addCommand('z', "GUI", "Toggle zoom window", [this]() {
this->fShowZoomWindow = !this->fShowZoomWindow;
fWindow->inval();
});
fCommands.addCommand('Z', "GUI", "Toggle zoom window state", [this]() {
this->fZoomWindowFixed = !this->fZoomWindowFixed;
fWindow->inval();
});
fCommands.addCommand('v', "Swapchain", "Toggle vsync on/off", [this]() {
DisplayParams params = fWindow->getRequestedDisplayParams();
params.fDisableVsync = !params.fDisableVsync;
fWindow->setRequestedDisplayParams(params);
this->updateTitle();
fWindow->inval();
});
fCommands.addCommand('V', "Swapchain", "Toggle delayed acquire on/off (Metal only)", [this]() {
DisplayParams params = fWindow->getRequestedDisplayParams();
params.fDelayDrawableAcquisition = !params.fDelayDrawableAcquisition;
fWindow->setRequestedDisplayParams(params);
this->updateTitle();
fWindow->inval();
});
fCommands.addCommand('r', "Redraw", "Toggle redraw", [this]() {
fRefresh = !fRefresh;
fWindow->inval();
});
fCommands.addCommand('s', "Overlays", "Toggle stats display", [this]() {
fStatsLayer.setActive(!fStatsLayer.getActive());
fWindow->inval();
});
fCommands.addCommand('0', "Overlays", "Reset stats", [this]() {
fStatsLayer.resetMeasurements();
this->updateTitle();
fWindow->inval();
});
fCommands.addCommand('C', "GUI", "Toggle color histogram", [this]() {
this->fShowHistogramWindow = !this->fShowHistogramWindow;
fWindow->inval();
});
fCommands.addCommand('c', "Modes", "Cycle color mode", [this]() {
switch (fColorMode) {
case ColorMode::kLegacy:
this->setColorMode(ColorMode::kColorManaged8888);
break;
case ColorMode::kColorManaged8888:
this->setColorMode(ColorMode::kColorManagedF16);
break;
case ColorMode::kColorManagedF16:
this->setColorMode(ColorMode::kColorManagedF16Norm);
break;
case ColorMode::kColorManagedF16Norm:
this->setColorMode(ColorMode::kLegacy);
break;
}
});
fCommands.addCommand('w', "Modes", "Toggle wireframe", [this]() {
DisplayParams params = fWindow->getRequestedDisplayParams();
params.fGrContextOptions.fWireframeMode = !params.fGrContextOptions.fWireframeMode;
fWindow->setRequestedDisplayParams(params);
fWindow->inval();
});
fCommands.addCommand('w', "Modes", "Toggle reduced shaders", [this]() {
DisplayParams params = fWindow->getRequestedDisplayParams();
params.fGrContextOptions.fReducedShaderVariations =
!params.fGrContextOptions.fReducedShaderVariations;
fWindow->setRequestedDisplayParams(params);
fWindow->inval();
});
fCommands.addCommand(skui::Key::kRight, "Right", "Navigation", "Next slide", [this]() {
this->setCurrentSlide(fCurrentSlide < fSlides.count() - 1 ? fCurrentSlide + 1 : 0);
});
fCommands.addCommand(skui::Key::kLeft, "Left", "Navigation", "Previous slide", [this]() {
this->setCurrentSlide(fCurrentSlide > 0 ? fCurrentSlide - 1 : fSlides.count() - 1);
});
fCommands.addCommand(skui::Key::kUp, "Up", "Transform", "Zoom in", [this]() {
this->changeZoomLevel(1.f / 32.f);
fWindow->inval();
});
fCommands.addCommand(skui::Key::kDown, "Down", "Transform", "Zoom out", [this]() {
this->changeZoomLevel(-1.f / 32.f);
fWindow->inval();
});
fCommands.addCommand('d', "Modes", "Change rendering backend", [this]() {
sk_app::Window::BackendType newBackend = (sk_app::Window::BackendType)(
(fBackendType + 1) % sk_app::Window::kBackendTypeCount);
// Switching to and from Vulkan is problematic on Linux so disabled for now
#if defined(SK_BUILD_FOR_UNIX) && defined(SK_VULKAN)
if (newBackend == sk_app::Window::kVulkan_BackendType) {
newBackend = (sk_app::Window::BackendType)((newBackend + 1) %
sk_app::Window::kBackendTypeCount);
} else if (fBackendType == sk_app::Window::kVulkan_BackendType) {
newBackend = sk_app::Window::kVulkan_BackendType;
}
#endif
this->setBackend(newBackend);
});
fCommands.addCommand('K', "IO", "Save slide to SKP", [this]() {
fSaveToSKP = true;
fWindow->inval();
});
fCommands.addCommand('&', "Overlays", "Show slide dimensios", [this]() {
fShowSlideDimensions = !fShowSlideDimensions;
fWindow->inval();
});
fCommands.addCommand('G', "Modes", "Geometry", [this]() {
DisplayParams params = fWindow->getRequestedDisplayParams();
uint32_t flags = params.fSurfaceProps.flags();
SkPixelGeometry defaultPixelGeometry = fDisplay.fSurfaceProps.pixelGeometry();
if (!fDisplayOverrides.fSurfaceProps.fPixelGeometry) {
fDisplayOverrides.fSurfaceProps.fPixelGeometry = true;
params.fSurfaceProps = SkSurfaceProps(flags, kUnknown_SkPixelGeometry);
} else {
switch (params.fSurfaceProps.pixelGeometry()) {
case kUnknown_SkPixelGeometry:
params.fSurfaceProps = SkSurfaceProps(flags, kRGB_H_SkPixelGeometry);
break;
case kRGB_H_SkPixelGeometry:
params.fSurfaceProps = SkSurfaceProps(flags, kBGR_H_SkPixelGeometry);
break;
case kBGR_H_SkPixelGeometry:
params.fSurfaceProps = SkSurfaceProps(flags, kRGB_V_SkPixelGeometry);
break;
case kRGB_V_SkPixelGeometry:
params.fSurfaceProps = SkSurfaceProps(flags, kBGR_V_SkPixelGeometry);
break;
case kBGR_V_SkPixelGeometry:
params.fSurfaceProps = SkSurfaceProps(flags, defaultPixelGeometry);
fDisplayOverrides.fSurfaceProps.fPixelGeometry = false;
break;
}
}
fWindow->setRequestedDisplayParams(params);
this->updateTitle();
fWindow->inval();
});
fCommands.addCommand('H', "Font", "Hinting mode", [this]() {
if (!fFontOverrides.fHinting) {
fFontOverrides.fHinting = true;
fFont.setHinting(SkFontHinting::kNone);
} else {
switch (fFont.getHinting()) {
case SkFontHinting::kNone:
fFont.setHinting(SkFontHinting::kSlight);
break;
case SkFontHinting::kSlight:
fFont.setHinting(SkFontHinting::kNormal);
break;
case SkFontHinting::kNormal:
fFont.setHinting(SkFontHinting::kFull);
break;
case SkFontHinting::kFull:
fFont.setHinting(SkFontHinting::kNone);
fFontOverrides.fHinting = false;
break;
}
}
this->updateTitle();
fWindow->inval();
});
fCommands.addCommand('A', "Paint", "Antialias Mode", [this]() {
if (!fPaintOverrides.fAntiAlias) {
fPaintOverrides.fAntiAliasState = SkPaintFields::AntiAliasState::Alias;
fPaintOverrides.fAntiAlias = true;
fPaint.setAntiAlias(false);
gSkUseAnalyticAA = gSkForceAnalyticAA = false;
} else {
fPaint.setAntiAlias(true);
switch (fPaintOverrides.fAntiAliasState) {
case SkPaintFields::AntiAliasState::Alias:
fPaintOverrides.fAntiAliasState = SkPaintFields::AntiAliasState::Normal;
gSkUseAnalyticAA = gSkForceAnalyticAA = false;
break;
case SkPaintFields::AntiAliasState::Normal:
fPaintOverrides.fAntiAliasState = SkPaintFields::AntiAliasState::AnalyticAAEnabled;
gSkUseAnalyticAA = true;
gSkForceAnalyticAA = false;
break;
case SkPaintFields::AntiAliasState::AnalyticAAEnabled:
fPaintOverrides.fAntiAliasState = SkPaintFields::AntiAliasState::AnalyticAAForced;
gSkUseAnalyticAA = gSkForceAnalyticAA = true;
break;
case SkPaintFields::AntiAliasState::AnalyticAAForced:
fPaintOverrides.fAntiAliasState = SkPaintFields::AntiAliasState::Alias;
fPaintOverrides.fAntiAlias = false;
gSkUseAnalyticAA = fPaintOverrides.fOriginalSkUseAnalyticAA;
gSkForceAnalyticAA = fPaintOverrides.fOriginalSkForceAnalyticAA;
break;
}
}
this->updateTitle();
fWindow->inval();
});
fCommands.addCommand('D', "Modes", "DFT", [this]() {
DisplayParams params = fWindow->getRequestedDisplayParams();
uint32_t flags = params.fSurfaceProps.flags();
flags ^= SkSurfaceProps::kUseDeviceIndependentFonts_Flag;
params.fSurfaceProps = SkSurfaceProps(flags, params.fSurfaceProps.pixelGeometry());
fWindow->setRequestedDisplayParams(params);
this->updateTitle();
fWindow->inval();
});
fCommands.addCommand('L', "Font", "Subpixel Antialias Mode", [this]() {
if (!fFontOverrides.fEdging) {
fFontOverrides.fEdging = true;
fFont.setEdging(SkFont::Edging::kAlias);
} else {
switch (fFont.getEdging()) {
case SkFont::Edging::kAlias:
fFont.setEdging(SkFont::Edging::kAntiAlias);
break;
case SkFont::Edging::kAntiAlias:
fFont.setEdging(SkFont::Edging::kSubpixelAntiAlias);
break;
case SkFont::Edging::kSubpixelAntiAlias:
fFont.setEdging(SkFont::Edging::kAlias);
fFontOverrides.fEdging = false;
break;
}
}
this->updateTitle();
fWindow->inval();
});
fCommands.addCommand('S', "Font", "Subpixel Position Mode", [this]() {
if (!fFontOverrides.fSubpixel) {
fFontOverrides.fSubpixel = true;
fFont.setSubpixel(false);
} else {
if (!fFont.isSubpixel()) {
fFont.setSubpixel(true);
} else {
fFontOverrides.fSubpixel = false;
}
}
this->updateTitle();
fWindow->inval();
});
fCommands.addCommand('B', "Font", "Baseline Snapping", [this]() {
if (!fFontOverrides.fBaselineSnap) {
fFontOverrides.fBaselineSnap = true;
fFont.setBaselineSnap(false);
} else {
if (!fFont.isBaselineSnap()) {
fFont.setBaselineSnap(true);
} else {
fFontOverrides.fBaselineSnap = false;
}
}
this->updateTitle();
fWindow->inval();
});
fCommands.addCommand('p', "Transform", "Toggle Perspective Mode", [this]() {
fPerspectiveMode = (kPerspective_Real == fPerspectiveMode) ? kPerspective_Fake
: kPerspective_Real;
this->updateTitle();
fWindow->inval();
});
fCommands.addCommand('P', "Transform", "Toggle Perspective", [this]() {
fPerspectiveMode = (kPerspective_Off == fPerspectiveMode) ? kPerspective_Real
: kPerspective_Off;
this->updateTitle();
fWindow->inval();
});
fCommands.addCommand('a', "Transform", "Toggle Animation", [this]() {
fAnimTimer.togglePauseResume();
});
fCommands.addCommand('u', "GUI", "Zoom UI", [this]() {
fZoomUI = !fZoomUI;
fStatsLayer.setDisplayScale((fZoomUI ? 2.0f : 1.0f) * fWindow->scaleFactor());
fWindow->inval();
});
fCommands.addCommand('$', "ViaSerialize", "Toggle ViaSerialize", [this]() {
fDrawViaSerialize = !fDrawViaSerialize;
this->updateTitle();
fWindow->inval();
});
fCommands.addCommand('!', "SkVM", "Toggle SkVM blitter", [this]() {
gUseSkVMBlitter = !gUseSkVMBlitter;
this->updateTitle();
fWindow->inval();
});
fCommands.addCommand('@', "SkVM", "Toggle SkVM JIT", [this]() {
gSkVMAllowJIT = !gSkVMAllowJIT;
this->updateTitle();
fWindow->inval();
});
// set up slides
this->initSlides();
if (FLAGS_list) {
this->listNames();
}
fPerspectivePoints[0].set(0, 0);
fPerspectivePoints[1].set(1, 0);
fPerspectivePoints[2].set(0, 1);
fPerspectivePoints[3].set(1, 1);
fAnimTimer.run();
auto gamutImage = GetResourceAsImage("images/gamut.png");
if (gamutImage) {
fImGuiGamutPaint.setShader(gamutImage->makeShader(SkSamplingOptions(SkFilterMode::kLinear)));
}
fImGuiGamutPaint.setColor(SK_ColorWHITE);
fWindow->attach(backend_type_for_window(fBackendType));
this->setCurrentSlide(this->startupSlide());
}
void Viewer::initSlides() {
using SlideFactory = sk_sp<Slide>(*)(const SkString& name, const SkString& path);
static const struct {
const char* fExtension;
const char* fDirName;
const CommandLineFlags::StringArray& fFlags;
const SlideFactory fFactory;
} gExternalSlidesInfo[] = {
{ ".mskp", "mskp-dir", FLAGS_mskps,
[](const SkString& name, const SkString& path) -> sk_sp<Slide> {
return sk_make_sp<MSKPSlide>(name, path);}
},
{ ".skp", "skp-dir", FLAGS_skps,
[](const SkString& name, const SkString& path) -> sk_sp<Slide> {
return sk_make_sp<SKPSlide>(name, path);}
},
{ ".jpg", "jpg-dir", FLAGS_jpgs,
[](const SkString& name, const SkString& path) -> sk_sp<Slide> {
return sk_make_sp<ImageSlide>(name, path);}
},
{ ".jxl", "jxl-dir", FLAGS_jxls,
[](const SkString& name, const SkString& path) -> sk_sp<Slide> {
return sk_make_sp<ImageSlide>(name, path);}
},
#if defined(SK_ENABLE_SKOTTIE)
{ ".json", "skottie-dir", FLAGS_lotties,
[](const SkString& name, const SkString& path) -> sk_sp<Slide> {
return sk_make_sp<SkottieSlide>(name, path);}
},
#endif
#if defined(SK_ENABLE_SVG)
{ ".svg", "svg-dir", FLAGS_svgs,
[](const SkString& name, const SkString& path) -> sk_sp<Slide> {
return sk_make_sp<SvgSlide>(name, path);}
},
#endif
};
SkTArray<sk_sp<Slide>> dirSlides;
const auto addSlide =
[&](const SkString& name, const SkString& path, const SlideFactory& fact) {
if (CommandLineFlags::ShouldSkip(FLAGS_match, name.c_str())) {
return;
}
if (auto slide = fact(name, path)) {
dirSlides.push_back(slide);
fSlides.push_back(std::move(slide));
}
};
if (!FLAGS_file.isEmpty()) {
// single file mode
const SkString file(FLAGS_file[0]);
if (sk_exists(file.c_str(), kRead_SkFILE_Flag)) {
for (const auto& sinfo : gExternalSlidesInfo) {
if (file.endsWith(sinfo.fExtension)) {
addSlide(SkOSPath::Basename(file.c_str()), file, sinfo.fFactory);
return;
}
}
fprintf(stderr, "Unsupported file type \"%s\"\n", file.c_str());
} else {
fprintf(stderr, "Cannot read \"%s\"\n", file.c_str());
}
return;
}
// Bisect slide.
if (!FLAGS_bisect.isEmpty()) {
sk_sp<BisectSlide> bisect = BisectSlide::Create(FLAGS_bisect[0]);
if (bisect && !CommandLineFlags::ShouldSkip(FLAGS_match, bisect->getName().c_str())) {
if (FLAGS_bisect.count() >= 2) {
for (const char* ch = FLAGS_bisect[1]; *ch; ++ch) {
bisect->onChar(*ch);
}
}
fSlides.push_back(std::move(bisect));
}
}
// GMs
int firstGM = fSlides.count();
for (skiagm::GMFactory gmFactory : skiagm::GMRegistry::Range()) {
std::unique_ptr<skiagm::GM> gm = gmFactory();
if (!CommandLineFlags::ShouldSkip(FLAGS_match, gm->getName())) {
auto slide = sk_make_sp<GMSlide>(std::move(gm));
fSlides.push_back(std::move(slide));
}
}
auto orderBySlideName = [](sk_sp<Slide> a, sk_sp<Slide> b) {
return SK_strcasecmp(a->getName().c_str(), b->getName().c_str()) < 0;
};
std::sort(fSlides.begin() + firstGM, fSlides.end(), orderBySlideName);
// samples
int firstSample = fSlides.count();
for (const SampleFactory factory : SampleRegistry::Range()) {
auto slide = sk_make_sp<SampleSlide>(factory);
if (!CommandLineFlags::ShouldSkip(FLAGS_match, slide->getName().c_str())) {
fSlides.push_back(slide);
}
}
std::sort(fSlides.begin() + firstSample, fSlides.end(), orderBySlideName);
// Particle demo
{
// TODO: Convert this to a sample
auto slide = sk_make_sp<ParticlesSlide>();
if (!CommandLineFlags::ShouldSkip(FLAGS_match, slide->getName().c_str())) {
fSlides.push_back(std::move(slide));
}
}
// Runtime shader editor
{
auto slide = sk_make_sp<SkSLSlide>();
if (!CommandLineFlags::ShouldSkip(FLAGS_match, slide->getName().c_str())) {
fSlides.push_back(std::move(slide));
}
}
// Runtime shader debugger
{
auto slide = sk_make_sp<SkSLDebuggerSlide>();
if (!CommandLineFlags::ShouldSkip(FLAGS_match, slide->getName().c_str())) {
fSlides.push_back(std::move(slide));
}
}
for (const auto& info : gExternalSlidesInfo) {
for (const auto& flag : info.fFlags) {
if (SkStrEndsWith(flag.c_str(), info.fExtension)) {
// single file
addSlide(SkOSPath::Basename(flag.c_str()), flag, info.fFactory);
} else {
// directory
SkString name;
SkTArray<SkString> sortedFilenames;
SkOSFile::Iter it(flag.c_str(), info.fExtension);
while (it.next(&name)) {
sortedFilenames.push_back(name);
}
if (sortedFilenames.count()) {
SkTQSort(sortedFilenames.begin(), sortedFilenames.end(),
[](const SkString& a, const SkString& b) {
return strcmp(a.c_str(), b.c_str()) < 0;
});
}
for (const SkString& filename : sortedFilenames) {
addSlide(filename, SkOSPath::Join(flag.c_str(), filename.c_str()),
info.fFactory);
}
}
if (!dirSlides.empty()) {
fSlides.push_back(
sk_make_sp<SlideDir>(SkStringPrintf("%s[%s]", info.fDirName, flag.c_str()),
std::move(dirSlides)));
dirSlides.reset(); // NOLINT(bugprone-use-after-move)
}
}
}
if (!fSlides.count()) {
auto slide = sk_make_sp<NullSlide>();
fSlides.push_back(std::move(slide));
}
}
Viewer::~Viewer() {
for(auto& slide : fSlides) {
slide->gpuTeardown();
}
fWindow->detach();
delete fWindow;
}
struct SkPaintTitleUpdater {
SkPaintTitleUpdater(SkString* title) : fTitle(title), fCount(0) {}
void append(const char* s) {
if (fCount == 0) {
fTitle->append(" {");
} else {
fTitle->append(", ");
}
fTitle->append(s);
++fCount;
}
void done() {
if (fCount > 0) {
fTitle->append("}");
}
}
SkString* fTitle;
int fCount;
};
void Viewer::updateTitle() {
if (!fWindow) {
return;
}
if (fWindow->sampleCount() < 1) {
return; // Surface hasn't been created yet.
}
SkString title("Viewer: ");
title.append(fSlides[fCurrentSlide]->getName());
if (gSkUseAnalyticAA) {
if (gSkForceAnalyticAA) {
title.append(" <FAAA>");
} else {
title.append(" <AAA>");
}
}
if (fDrawViaSerialize) {
title.append(" <serialize>");
}
if (gUseSkVMBlitter) {
title.append(" <SkVMBlitter>");
}
if (!gSkVMAllowJIT) {
title.append(" <SkVM interpreter>");
}
SkPaintTitleUpdater paintTitle(&title);
auto paintFlag = [this, &paintTitle](bool SkPaintFields::* flag,
bool (SkPaint::* isFlag)() const,
const char* on, const char* off)
{
if (fPaintOverrides.*flag) {
paintTitle.append((fPaint.*isFlag)() ? on : off);
}
};
auto fontFlag = [this, &paintTitle](bool SkFontFields::* flag, bool (SkFont::* isFlag)() const,
const char* on, const char* off)
{
if (fFontOverrides.*flag) {
paintTitle.append((fFont.*isFlag)() ? on : off);
}
};
paintFlag(&SkPaintFields::fAntiAlias, &SkPaint::isAntiAlias, "Antialias", "Alias");
paintFlag(&SkPaintFields::fDither, &SkPaint::isDither, "DITHER", "No Dither");
fontFlag(&SkFontFields::fForceAutoHinting, &SkFont::isForceAutoHinting,
"Force Autohint", "No Force Autohint");
fontFlag(&SkFontFields::fEmbolden, &SkFont::isEmbolden, "Fake Bold", "No Fake Bold");
fontFlag(&SkFontFields::fBaselineSnap, &SkFont::isBaselineSnap, "BaseSnap", "No BaseSnap");
fontFlag(&SkFontFields::fLinearMetrics, &SkFont::isLinearMetrics,
"Linear Metrics", "Non-Linear Metrics");
fontFlag(&SkFontFields::fEmbeddedBitmaps, &SkFont::isEmbeddedBitmaps,
"Bitmap Text", "No Bitmap Text");
fontFlag(&SkFontFields::fSubpixel, &SkFont::isSubpixel, "Subpixel Text", "Pixel Text");
if (fFontOverrides.fEdging) {
switch (fFont.getEdging()) {
case SkFont::Edging::kAlias:
paintTitle.append("Alias Text");
break;
case SkFont::Edging::kAntiAlias:
paintTitle.append("Antialias Text");
break;
case SkFont::Edging::kSubpixelAntiAlias:
paintTitle.append("Subpixel Antialias Text");
break;
}
}
if (fFontOverrides.fHinting) {
switch (fFont.getHinting()) {
case SkFontHinting::kNone:
paintTitle.append("No Hinting");
break;
case SkFontHinting::kSlight:
paintTitle.append("Slight Hinting");
break;
case SkFontHinting::kNormal:
paintTitle.append("Normal Hinting");
break;
case SkFontHinting::kFull:
paintTitle.append("Full Hinting");
break;
}
}
paintTitle.done();
switch (fColorMode) {
case ColorMode::kLegacy:
title.append(" Legacy 8888");
break;
case ColorMode::kColorManaged8888:
title.append(" ColorManaged 8888");
break;
case ColorMode::kColorManagedF16:
title.append(" ColorManaged F16");
break;
case ColorMode::kColorManagedF16Norm:
title.append(" ColorManaged F16 Norm");
break;
}
if (ColorMode::kLegacy != fColorMode) {
int curPrimaries = -1;
for (size_t i = 0; i < SK_ARRAY_COUNT(gNamedPrimaries); ++i) {
if (primaries_equal(*gNamedPrimaries[i].fPrimaries, fColorSpacePrimaries)) {
curPrimaries = i;
break;
}
}
title.appendf(" %s Gamma %f",
curPrimaries >= 0 ? gNamedPrimaries[curPrimaries].fName : "Custom",
fColorSpaceTransferFn.g);
}
const DisplayParams& params = fWindow->getRequestedDisplayParams();
if (fDisplayOverrides.fSurfaceProps.fPixelGeometry) {
switch (params.fSurfaceProps.pixelGeometry()) {
case kUnknown_SkPixelGeometry:
title.append( " Flat");
break;
case kRGB_H_SkPixelGeometry:
title.append( " RGB");
break;
case kBGR_H_SkPixelGeometry:
title.append( " BGR");
break;
case kRGB_V_SkPixelGeometry:
title.append( " RGBV");
break;
case kBGR_V_SkPixelGeometry:
title.append( " BGRV");
break;
}
}
if (params.fSurfaceProps.isUseDeviceIndependentFonts()) {
title.append(" DFT");
}
title.append(" [");
title.append(kBackendTypeStrings[fBackendType]);
int msaa = fWindow->sampleCount();
if (msaa > 1) {
title.appendf(" MSAA: %i", msaa);
}
title.append("]");
GpuPathRenderers pr = fWindow->getRequestedDisplayParams().fGrContextOptions.fGpuPathRenderers;
if (GpuPathRenderers::kDefault != pr) {
title.appendf(" [Path renderer: %s]", gPathRendererNames[pr].c_str());
}
if (kPerspective_Real == fPerspectiveMode) {
title.append(" Perpsective (Real)");
} else if (kPerspective_Fake == fPerspectiveMode) {
title.append(" Perspective (Fake)");
}
fWindow->setTitle(title.c_str());
}
int Viewer::startupSlide() const {
if (!FLAGS_slide.isEmpty()) {
int count = fSlides.count();
for (int i = 0; i < count; i++) {
if (fSlides[i]->getName().equals(FLAGS_slide[0])) {
return i;
}
}
fprintf(stderr, "Unknown slide \"%s\"\n", FLAGS_slide[0]);
this->listNames();
}
return 0;
}
void Viewer::listNames() const {
SkDebugf("All Slides:\n");
for (const auto& slide : fSlides) {
SkDebugf(" %s\n", slide->getName().c_str());
}
}
void Viewer::setCurrentSlide(int slide) {
SkASSERT(slide >= 0 && slide < fSlides.count());
if (slide == fCurrentSlide) {
return;
}
if (fCurrentSlide >= 0) {
fSlides[fCurrentSlide]->unload();
}
SkScalar scaleFactor = 1.0;
if (fApplyBackingScale) {
scaleFactor = fWindow->scaleFactor();
}
fSlides[slide]->load(SkIntToScalar(fWindow->width()) / scaleFactor,
SkIntToScalar(fWindow->height()) / scaleFactor);
fCurrentSlide = slide;
this->setupCurrentSlide();
}
void Viewer::setupCurrentSlide() {
if (fCurrentSlide >= 0) {
// prepare dimensions for image slides
fGesture.resetTouchState();
fDefaultMatrix.reset();
const SkISize slideSize = fSlides[fCurrentSlide]->getDimensions();
const SkRect slideBounds = SkRect::MakeIWH(slideSize.width(), slideSize.height());
const SkRect windowRect = SkRect::MakeIWH(fWindow->width(), fWindow->height());
// Start with a matrix that scales the slide to the available screen space
if (fWindow->scaleContentToFit()) {
if (windowRect.width() > 0 && windowRect.height() > 0) {
fDefaultMatrix = SkMatrix::RectToRect(slideBounds, windowRect,
SkMatrix::kStart_ScaleToFit);
}
}
// Prevent the user from dragging content so far outside the window they can't find it again
fGesture.setTransLimit(slideBounds, windowRect, this->computePreTouchMatrix());
this->updateTitle();
this->updateUIState();
fStatsLayer.resetMeasurements();
fWindow->inval();
}
}
#define MAX_ZOOM_LEVEL 8.0f
#define MIN_ZOOM_LEVEL -8.0f
void Viewer::changeZoomLevel(float delta) {
fZoomLevel += delta;
fZoomLevel = SkTPin(fZoomLevel, MIN_ZOOM_LEVEL, MAX_ZOOM_LEVEL);
this->preTouchMatrixChanged();
}
void Viewer::preTouchMatrixChanged() {
// Update the trans limit as the transform changes.
const SkISize slideSize = fSlides[fCurrentSlide]->getDimensions();
const SkRect slideBounds = SkRect::MakeIWH(slideSize.width(), slideSize.height());
const SkRect windowRect = SkRect::MakeIWH(fWindow->width(), fWindow->height());
fGesture.setTransLimit(slideBounds, windowRect, this->computePreTouchMatrix());
}
SkMatrix Viewer::computePerspectiveMatrix() {
SkScalar w = fWindow->width(), h = fWindow->height();
SkPoint orthoPts[4] = { { 0, 0 }, { w, 0 }, { 0, h }, { w, h } };
SkPoint perspPts[4] = {
{ fPerspectivePoints[0].fX * w, fPerspectivePoints[0].fY * h },
{ fPerspectivePoints[1].fX * w, fPerspectivePoints[1].fY * h },
{ fPerspectivePoints[2].fX * w, fPerspectivePoints[2].fY * h },
{ fPerspectivePoints[3].fX * w, fPerspectivePoints[3].fY * h }
};
SkMatrix m;
m.setPolyToPoly(orthoPts, perspPts, 4);
return m;
}
SkMatrix Viewer::computePreTouchMatrix() {
SkMatrix m = fDefaultMatrix;
SkScalar zoomScale = exp(fZoomLevel);
if (fApplyBackingScale) {
zoomScale *= fWindow->scaleFactor();
}
m.preTranslate((fOffset.x() - 0.5f) * 2.0f, (fOffset.y() - 0.5f) * 2.0f);
m.preScale(zoomScale, zoomScale);
const SkISize slideSize = fSlides[fCurrentSlide]->getDimensions();
m.preRotate(fRotation, slideSize.width() * 0.5f, slideSize.height() * 0.5f);
if (kPerspective_Real == fPerspectiveMode) {
SkMatrix persp = this->computePerspectiveMatrix();
m.postConcat(persp);
}
return m;
}
SkMatrix Viewer::computeMatrix() {
SkMatrix m = fGesture.localM();
m.preConcat(fGesture.globalM());
m.preConcat(this->computePreTouchMatrix());
return m;
}
void Viewer::setBackend(sk_app::Window::BackendType backendType) {
fPersistentCache.reset();
fCachedShaders.reset();
fBackendType = backendType;
// The active context is going away in 'detach'
for(auto& slide : fSlides) {
slide->gpuTeardown();
}
fWindow->detach();
#if defined(SK_BUILD_FOR_WIN)
// Switching between OpenGL, Vulkan, and ANGLE in the same window is problematic at this point
// on Windows, so we just delete the window and recreate it.
DisplayParams params = fWindow->getRequestedDisplayParams();
delete fWindow;
fWindow = Window::CreateNativeWindow(nullptr);
// re-register callbacks
fCommands.attach(fWindow);
fWindow->pushLayer(this);
fWindow->pushLayer(&fStatsLayer);
fWindow->pushLayer(&fImGuiLayer);
// Don't allow the window to re-attach. If we're in MSAA mode, the params we grabbed above
// will still include our correct sample count. But the re-created fWindow will lose that
// information. On Windows, we need to re-create the window when changing sample count,
// so we'll incorrectly detect that situation, then re-initialize the window in GL mode,
// rendering this tear-down step pointless (and causing the Vulkan window context to fail
// as if we had never changed windows at all).
fWindow->setRequestedDisplayParams(params, false);
#endif
fWindow->attach(backend_type_for_window(fBackendType));
}
void Viewer::setColorMode(ColorMode colorMode) {
fColorMode = colorMode;
this->updateTitle();
fWindow->inval();
}
class OveridePaintFilterCanvas : public SkPaintFilterCanvas {
public:
OveridePaintFilterCanvas(SkCanvas* canvas,
SkPaint* paint, Viewer::SkPaintFields* pfields,
SkFont* font, Viewer::SkFontFields* ffields)
: SkPaintFilterCanvas(canvas)
, fPaint(paint)
, fPaintOverrides(pfields)
, fFont(font)
, fFontOverrides(ffields) {
}
const SkTextBlob* filterTextBlob(const SkPaint& paint,
const SkTextBlob* blob,
sk_sp<SkTextBlob>* cache) {
bool blobWillChange = false;
for (SkTextBlobRunIterator it(blob); !it.done(); it.next()) {
SkTCopyOnFirstWrite<SkFont> filteredFont(it.font());
bool shouldDraw = this->filterFont(&filteredFont);
if (it.font() != *filteredFont || !shouldDraw) {
blobWillChange = true;
break;
}
}
if (!blobWillChange) {
return blob;
}
SkTextBlobBuilder builder;
for (SkTextBlobRunIterator it(blob); !it.done(); it.next()) {
SkTCopyOnFirstWrite<SkFont> filteredFont(it.font());
bool shouldDraw = this->filterFont(&filteredFont);
if (!shouldDraw) {
continue;
}
SkFont font = *filteredFont;
const SkTextBlobBuilder::RunBuffer& runBuffer
= it.positioning() == SkTextBlobRunIterator::kDefault_Positioning
? builder.allocRunText(font, it.glyphCount(), it.offset().x(),it.offset().y(),
it.textSize())
: it.positioning() == SkTextBlobRunIterator::kHorizontal_Positioning
? builder.allocRunTextPosH(font, it.glyphCount(), it.offset().y(),
it.textSize())
: it.positioning() == SkTextBlobRunIterator::kFull_Positioning
? builder.allocRunTextPos(font, it.glyphCount(), it.textSize())
: it.positioning() == SkTextBlobRunIterator::kRSXform_Positioning
? builder.allocRunTextRSXform(font, it.glyphCount(), it.textSize())
: (SkASSERT_RELEASE(false), SkTextBlobBuilder::RunBuffer());
uint32_t glyphCount = it.glyphCount();
if (it.glyphs()) {
size_t glyphSize = sizeof(decltype(*it.glyphs()));
memcpy(runBuffer.glyphs, it.glyphs(), glyphCount * glyphSize);
}
if (it.pos()) {
size_t posSize = sizeof(decltype(*it.pos()));
unsigned posPerGlyph = it.scalarsPerGlyph();
memcpy(runBuffer.pos, it.pos(), glyphCount * posPerGlyph * posSize);
}
if (it.text()) {
size_t textSize = sizeof(decltype(*it.text()));
uint32_t textCount = it.textSize();
memcpy(runBuffer.utf8text, it.text(), textCount * textSize);
}
if (it.clusters()) {
size_t clusterSize = sizeof(decltype(*it.clusters()));
memcpy(runBuffer.clusters, it.clusters(), glyphCount * clusterSize);
}
}
*cache = builder.make();
return cache->get();
}
void onDrawTextBlob(const SkTextBlob* blob, SkScalar x, SkScalar y,
const SkPaint& paint) override {
sk_sp<SkTextBlob> cache;
this->SkPaintFilterCanvas::onDrawTextBlob(
this->filterTextBlob(paint, blob, &cache), x, y, paint);
}
void onDrawGlyphRunList(const SkGlyphRunList& glyphRunList, const SkPaint& paint) override {
sk_sp<SkTextBlob> cache;
sk_sp<SkTextBlob> blob = glyphRunList.makeBlob();
this->filterTextBlob(paint, blob.get(), &cache);
if (!cache) {
this->SkPaintFilterCanvas::onDrawGlyphRunList(glyphRunList, paint);
return;
}
SkGlyphRunBuilder builder;
const SkGlyphRunList& filtered = builder.blobToGlyphRunList(*cache, glyphRunList.origin());
this->SkPaintFilterCanvas::onDrawGlyphRunList(filtered, paint);
}
bool filterFont(SkTCopyOnFirstWrite<SkFont>* font) const {
if (fFontOverrides->fTypeface) {
font->writable()->setTypeface(fFont->refTypeface());
}
if (fFontOverrides->fSize) {
font->writable()->setSize(fFont->getSize());
}
if (fFontOverrides->fScaleX) {
font->writable()->setScaleX(fFont->getScaleX());
}
if (fFontOverrides->fSkewX) {
font->writable()->setSkewX(fFont->getSkewX());
}
if (fFontOverrides->fHinting) {
font->writable()->setHinting(fFont->getHinting());
}
if (fFontOverrides->fEdging) {
font->writable()->setEdging(fFont->getEdging());
}
if (fFontOverrides->fSubpixel) {
font->writable()->setSubpixel(fFont->isSubpixel());
}
if (fFontOverrides->fForceAutoHinting) {
font->writable()->setForceAutoHinting(fFont->isForceAutoHinting());
}
if (fFontOverrides->fEmbeddedBitmaps) {
font->writable()->setEmbeddedBitmaps(fFont->isEmbeddedBitmaps());
}
if (fFontOverrides->fLinearMetrics) {
font->writable()->setLinearMetrics(fFont->isLinearMetrics());
}
if (fFontOverrides->fEmbolden) {
font->writable()->setEmbolden(fFont->isEmbolden());
}
if (fFontOverrides->fBaselineSnap) {
font->writable()->setBaselineSnap(fFont->isBaselineSnap());
}
return true; // we, currently, never elide a draw
}
bool onFilter(SkPaint& paint) const override {
if (fPaintOverrides->fPathEffect) {
paint.setPathEffect(fPaint->refPathEffect());
}
if (fPaintOverrides->fShader) {
paint.setShader(fPaint->refShader());
}
if (fPaintOverrides->fMaskFilter) {
paint.setMaskFilter(fPaint->refMaskFilter());
}
if (fPaintOverrides->fColorFilter) {
paint.setColorFilter(fPaint->refColorFilter());
}
if (fPaintOverrides->fImageFilter) {
paint.setImageFilter(fPaint->refImageFilter());
}
if (fPaintOverrides->fColor) {
paint.setColor4f(fPaint->getColor4f());
}
if (fPaintOverrides->fStrokeWidth) {
paint.setStrokeWidth(fPaint->getStrokeWidth());
}
if (fPaintOverrides->fMiterLimit) {
paint.setStrokeMiter(fPaint->getStrokeMiter());
}
if (fPaintOverrides->fBlendMode) {
paint.setBlendMode(fPaint->getBlendMode_or(SkBlendMode::kSrc));
}
if (fPaintOverrides->fAntiAlias) {
paint.setAntiAlias(fPaint->isAntiAlias());
}
if (fPaintOverrides->fDither) {
paint.setDither(fPaint->isDither());
}
if (fPaintOverrides->fForceRuntimeBlend) {
if (std::optional<SkBlendMode> mode = paint.asBlendMode()) {
paint.setBlender(GetRuntimeBlendForBlendMode(*mode));
}
}
if (fPaintOverrides->fCapType) {
paint.setStrokeCap(fPaint->getStrokeCap());
}
if (fPaintOverrides->fJoinType) {
paint.setStrokeJoin(fPaint->getStrokeJoin());
}
if (fPaintOverrides->fStyle) {
paint.setStyle(fPaint->getStyle());
}
return true; // we, currently, never elide a draw
}
SkPaint* fPaint;
Viewer::SkPaintFields* fPaintOverrides;
SkFont* fFont;
Viewer::SkFontFields* fFontOverrides;
};
void Viewer::drawSlide(SkSurface* surface) {
if (fCurrentSlide < 0) {
return;
}
SkAutoCanvasRestore autorestore(surface->getCanvas(), false);
// By default, we render directly into the window's surface/canvas
SkSurface* slideSurface = surface;
SkCanvas* slideCanvas = surface->getCanvas();
fLastImage.reset();
// If we're in any of the color managed modes, construct the color space we're going to use
sk_sp<SkColorSpace> colorSpace = nullptr;
if (ColorMode::kLegacy != fColorMode) {
skcms_Matrix3x3 toXYZ;
SkAssertResult(fColorSpacePrimaries.toXYZD50(&toXYZ));
colorSpace = SkColorSpace::MakeRGB(fColorSpaceTransferFn, toXYZ);
}
if (fSaveToSKP) {
SkPictureRecorder recorder;
SkCanvas* recorderCanvas = recorder.beginRecording(
SkRect::Make(fSlides[fCurrentSlide]->getDimensions()));
fSlides[fCurrentSlide]->draw(recorderCanvas);
sk_sp<SkPicture> picture(recorder.finishRecordingAsPicture());
SkFILEWStream stream("sample_app.skp");
picture->serialize(&stream);
fSaveToSKP = false;
}
// Grab some things we'll need to make surfaces (for tiling or general offscreen rendering)
SkColorType colorType;
switch (fColorMode) {
case ColorMode::kLegacy:
case ColorMode::kColorManaged8888:
colorType = kN32_SkColorType;
break;
case ColorMode::kColorManagedF16:
colorType = kRGBA_F16_SkColorType;
break;
case ColorMode::kColorManagedF16Norm:
colorType = kRGBA_F16Norm_SkColorType;
break;
}
auto make_surface = [=](int w, int h) {
SkSurfaceProps props(fWindow->getRequestedDisplayParams().fSurfaceProps);
slideCanvas->getProps(&props);
SkImageInfo info = SkImageInfo::Make(w, h, colorType, kPremul_SkAlphaType, colorSpace);
return Window::kRaster_BackendType == this->fBackendType
? SkSurface::MakeRaster(info, &props)
: slideCanvas->makeSurface(info, &props);
};
// We need to render offscreen if we're...
// ... in fake perspective or zooming (so we have a snapped copy of the results)
// ... in any raster mode, because the window surface is actually GL
// ... in any color managed mode, because we always make the window surface with no color space
// ... or if the user explicitly requested offscreen rendering
sk_sp<SkSurface> offscreenSurface = nullptr;
if (kPerspective_Fake == fPerspectiveMode ||
fShowZoomWindow ||
fShowHistogramWindow ||
Window::kRaster_BackendType == fBackendType ||
colorSpace != nullptr ||
FLAGS_offscreen) {
offscreenSurface = make_surface(fWindow->width(), fWindow->height());
slideSurface = offscreenSurface.get();
slideCanvas = offscreenSurface->getCanvas();
}
SkPictureRecorder recorder;
SkCanvas* recorderRestoreCanvas = nullptr;
if (fDrawViaSerialize) {
recorderRestoreCanvas = slideCanvas;
slideCanvas = recorder.beginRecording(
SkRect::Make(fSlides[fCurrentSlide]->getDimensions()));
}
int count = slideCanvas->save();
slideCanvas->clear(SK_ColorWHITE);
// Time the painting logic of the slide
fStatsLayer.beginTiming(fPaintTimer);
if (fTiled) {
int tileW = SkScalarCeilToInt(fWindow->width() * fTileScale.width());
int tileH = SkScalarCeilToInt(fWindow->height() * fTileScale.height());
for (int y = 0; y < fWindow->height(); y += tileH) {
for (int x = 0; x < fWindow->width(); x += tileW) {
SkAutoCanvasRestore acr(slideCanvas, true);
slideCanvas->clipRect(SkRect::MakeXYWH(x, y, tileW, tileH));
fSlides[fCurrentSlide]->draw(slideCanvas);
}
}
// Draw borders between tiles
if (fDrawTileBoundaries) {
SkPaint border;
border.setColor(0x60FF00FF);
border.setStyle(SkPaint::kStroke_Style);
for (int y = 0; y < fWindow->height(); y += tileH) {
for (int x = 0; x < fWindow->width(); x += tileW) {
slideCanvas->drawRect(SkRect::MakeXYWH(x, y, tileW, tileH), border);
}
}
}
} else {
slideCanvas->concat(this->computeMatrix());
if (kPerspective_Real == fPerspectiveMode) {
slideCanvas->clipRect(SkRect::MakeWH(fWindow->width(), fWindow->height()));
}
if (fPaintOverrides.overridesSomething() || fFontOverrides.overridesSomething()) {
OveridePaintFilterCanvas filterCanvas(slideCanvas,
&fPaint, &fPaintOverrides,
&fFont, &fFontOverrides);
fSlides[fCurrentSlide]->draw(&filterCanvas);
} else {
fSlides[fCurrentSlide]->draw(slideCanvas);
}
}
fStatsLayer.endTiming(fPaintTimer);
slideCanvas->restoreToCount(count);
if (recorderRestoreCanvas) {
sk_sp<SkPicture> picture(recorder.finishRecordingAsPicture());
auto data = picture->serialize();
slideCanvas = recorderRestoreCanvas;
slideCanvas->drawPicture(SkPicture::MakeFromData(data.get()));
}
// Force a flush so we can time that, too
fStatsLayer.beginTiming(fFlushTimer);
slideSurface->flushAndSubmit();
fStatsLayer.endTiming(fFlushTimer);
// If we rendered offscreen, snap an image and push the results to the window's canvas
if (offscreenSurface) {
fLastImage = offscreenSurface->makeImageSnapshot();
SkCanvas* canvas = surface->getCanvas();
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc);
SkSamplingOptions sampling;
int prePerspectiveCount = canvas->save();
if (kPerspective_Fake == fPerspectiveMode) {
sampling = SkSamplingOptions({1.0f/3, 1.0f/3});
canvas->clear(SK_ColorWHITE);
canvas->concat(this->computePerspectiveMatrix());
}
canvas->drawImage(fLastImage, 0, 0, sampling, &paint);
canvas->restoreToCount(prePerspectiveCount);
}
if (fShowSlideDimensions) {
SkCanvas* canvas = surface->getCanvas();
SkAutoCanvasRestore acr(canvas, true);
canvas->concat(this->computeMatrix());
SkRect r = SkRect::Make(fSlides[fCurrentSlide]->getDimensions());
SkPaint paint;
paint.setColor(0x40FFFF00);
canvas->drawRect(r, paint);
}
}
void Viewer::onBackendCreated() {
this->setupCurrentSlide();
fWindow->show();
}
void Viewer::onPaint(SkSurface* surface) {
this->drawSlide(surface);
fCommands.drawHelp(surface->getCanvas());
this->drawImGui();
fLastImage.reset();
if (auto direct = fWindow->directContext()) {
// Clean out cache items that haven't been used in more than 10 seconds.
direct->performDeferredCleanup(std::chrono::seconds(10));
}
}
void Viewer::onResize(int width, int height) {
if (fCurrentSlide >= 0) {
SkScalar scaleFactor = 1.0;
if (fApplyBackingScale) {
scaleFactor = fWindow->scaleFactor();
}
fSlides[fCurrentSlide]->resize(width / scaleFactor, height / scaleFactor);
}
}
SkPoint Viewer::mapEvent(float x, float y) {
const auto m = this->computeMatrix();
SkMatrix inv;
SkAssertResult(m.invert(&inv));
return inv.mapXY(x, y);
}
bool Viewer::onTouch(intptr_t owner, skui::InputState state, float x, float y) {
if (GestureDevice::kMouse == fGestureDevice) {
return false;
}
const auto slidePt = this->mapEvent(x, y);
if (fSlides[fCurrentSlide]->onMouse(slidePt.x(), slidePt.y(), state, skui::ModifierKey::kNone)) {
fWindow->inval();
return true;
}
void* castedOwner = reinterpret_cast<void*>(owner);
switch (state) {
case skui::InputState::kUp: {
fGesture.touchEnd(castedOwner);
#if defined(SK_BUILD_FOR_IOS)
// TODO: move IOS swipe detection higher up into the platform code
SkPoint dir;
if (fGesture.isFling(&dir)) {
// swiping left or right
if (SkTAbs(dir.fX) > SkTAbs(dir.fY)) {
if (dir.fX < 0) {
this->setCurrentSlide(fCurrentSlide < fSlides.count() - 1 ?
fCurrentSlide + 1 : 0);
} else {
this->setCurrentSlide(fCurrentSlide > 0 ?
fCurrentSlide - 1 : fSlides.count() - 1);
}
}
fGesture.reset();
}
#endif
break;
}
case skui::InputState::kDown: {
fGesture.touchBegin(castedOwner, x, y);
break;
}
case skui::InputState::kMove: {
fGesture.touchMoved(castedOwner, x, y);
break;
}
default: {
// kLeft and kRight are only for swipes
SkASSERT(false);
break;
}
}
fGestureDevice = fGesture.isBeingTouched() ? GestureDevice::kTouch : GestureDevice::kNone;
fWindow->inval();
return true;
}
bool Viewer::onMouse(int x, int y, skui::InputState state, skui::ModifierKey modifiers) {
if (GestureDevice::kTouch == fGestureDevice) {
return false;
}
const auto slidePt = this->mapEvent(x, y);
if (fSlides[fCurrentSlide]->onMouse(slidePt.x(), slidePt.y(), state, modifiers)) {
fWindow->inval();
return true;
}
switch (state) {
case skui::InputState::kUp: {
fGesture.touchEnd(nullptr);
break;
}
case skui::InputState::kDown: {
fGesture.touchBegin(nullptr, x, y);
break;
}
case skui::InputState::kMove: {
fGesture.touchMoved(nullptr, x, y);
break;
}
default: {
SkASSERT(false); // shouldn't see kRight or kLeft here
break;
}
}
fGestureDevice = fGesture.isBeingTouched() ? GestureDevice::kMouse : GestureDevice::kNone;
if (state != skui::InputState::kMove || fGesture.isBeingTouched()) {
fWindow->inval();
}
return true;
}
bool Viewer::onFling(skui::InputState state) {
if (skui::InputState::kRight == state) {
this->setCurrentSlide(fCurrentSlide > 0 ? fCurrentSlide - 1 : fSlides.count() - 1);
return true;
} else if (skui::InputState::kLeft == state) {
this->setCurrentSlide(fCurrentSlide < fSlides.count() - 1 ? fCurrentSlide + 1 : 0);
return true;
}
return false;
}
bool Viewer::onPinch(skui::InputState state, float scale, float x, float y) {
switch (state) {
case skui::InputState::kDown:
fGesture.startZoom();
return true;
break;
case skui::InputState::kMove:
fGesture.updateZoom(scale, x, y, x, y);
return true;
break;
case skui::InputState::kUp:
fGesture.endZoom();
return true;
break;
default:
SkASSERT(false);
break;
}
return false;
}
static void ImGui_Primaries(SkColorSpacePrimaries* primaries, SkPaint* gamutPaint) {
// The gamut image covers a (0.8 x 0.9) shaped region
ImGui::DragCanvas dc(primaries, { 0.0f, 0.9f }, { 0.8f, 0.0f });
// Background image. Only draw a subset of the image, to avoid the regions less than zero.
// Simplifes re-mapping math, clipping behavior, and increases resolution in the useful area.
// Magic numbers are pixel locations of the origin and upper-right corner.
dc.fDrawList->AddImage(gamutPaint, dc.fPos,
ImVec2(dc.fPos.x + dc.fSize.x, dc.fPos.y + dc.fSize.y),
ImVec2(242, 61), ImVec2(1897, 1922));
dc.dragPoint((SkPoint*)(&primaries->fRX), true, 0xFF000040);
dc.dragPoint((SkPoint*)(&primaries->fGX), true, 0xFF004000);
dc.dragPoint((SkPoint*)(&primaries->fBX), true, 0xFF400000);
dc.dragPoint((SkPoint*)(&primaries->fWX), true);
dc.fDrawList->AddPolyline(dc.fScreenPoints.begin(), 3, 0xFFFFFFFF, true, 1.5f);
}
static bool ImGui_DragLocation(SkPoint* pt) {
ImGui::DragCanvas dc(pt);
dc.fillColor(IM_COL32(0, 0, 0, 128));
dc.dragPoint(pt);
return dc.fDragging;
}
static bool ImGui_DragQuad(SkPoint* pts) {
ImGui::DragCanvas dc(pts);
dc.fillColor(IM_COL32(0, 0, 0, 128));
for (int i = 0; i < 4; ++i) {
dc.dragPoint(pts + i);
}
dc.fDrawList->AddLine(dc.fScreenPoints[0], dc.fScreenPoints[1], 0xFFFFFFFF);
dc.fDrawList->AddLine(dc.fScreenPoints[1], dc.fScreenPoints[3], 0xFFFFFFFF);
dc.fDrawList->AddLine(dc.fScreenPoints[3], dc.fScreenPoints[2], 0xFFFFFFFF);
dc.fDrawList->AddLine(dc.fScreenPoints[2], dc.fScreenPoints[0], 0xFFFFFFFF);
return dc.fDragging;
}
static std::string build_sksl_highlight_shader() {
return std::string("out half4 sk_FragColor;\n"
"void main() { sk_FragColor = half4(1, 0, 1, 0.5); }");
}
static std::string build_metal_highlight_shader(const std::string& inShader) {
// Metal fragment shaders need a lot of non-trivial boilerplate that we don't want to recompute
// here. So keep all shader code, but right before `return *_out;`, swap out the sk_FragColor.
size_t pos = inShader.rfind("return *_out;\n");
if (pos == std::string::npos) {
return inShader;
}
std::string replacementShader = inShader;
replacementShader.insert(pos, "_out->sk_FragColor = float4(1.0, 0.0, 1.0, 0.5); ");
return replacementShader;
}
static std::string build_glsl_highlight_shader(const GrShaderCaps& shaderCaps) {
const char* versionDecl = shaderCaps.versionDeclString();
std::string highlight = versionDecl ? versionDecl : "";
if (shaderCaps.usesPrecisionModifiers()) {
highlight.append("precision mediump float;\n");
}
SkSL::String::appendf(&highlight, "out vec4 sk_FragColor;\n"
"void main() { sk_FragColor = vec4(1, 0, 1, 0.5); }");
return highlight;
}
static skvm::Program build_skvm_highlight_program(SkColorType ct, int nargs) {
// Code here is heavily tied to (and inspired by) SkVMBlitter::BuildProgram
skvm::Builder b;
// All VM blitters start with two arguments (uniforms, dst surface)
SkASSERT(nargs >= 2);
(void)b.uniform();
skvm::Ptr dst_ptr = b.varying(SkColorTypeBytesPerPixel(ct));
// Depending on coverage and shader, there can be additional arguments.
// Make sure that we append the right number, so that we don't assert when
// the CPU backend tries to run this program.
for (int i = 2; i < nargs; ++i) {
(void)b.uniform();
}
skvm::Color magenta = {b.splat(1.0f), b.splat(0.0f), b.splat(1.0f), b.splat(0.5f)};
skvm::PixelFormat dstFormat = skvm::SkColorType_to_PixelFormat(ct);
store(dstFormat, dst_ptr, magenta);
return b.done();
}
void Viewer::drawImGui() {
// Support drawing the ImGui demo window. Superfluous, but gives a good idea of what's possible
if (fShowImGuiTestWindow) {
ImGui::ShowDemoWindow(&fShowImGuiTestWindow);
}
if (fShowImGuiDebugWindow) {
// We have some dynamic content that sizes to fill available size. If the scroll bar isn't
// always visible, we can end up in a layout feedback loop.
ImGui::SetNextWindowSize(ImVec2(400, 400), ImGuiCond_FirstUseEver);
DisplayParams params = fWindow->getRequestedDisplayParams();
bool displayParamsChanged = false; // heavy-weight, might recreate entire context
bool uiParamsChanged = false; // light weight, just triggers window invalidation
auto ctx = fWindow->directContext();
if (ImGui::Begin("Tools", &fShowImGuiDebugWindow,
ImGuiWindowFlags_AlwaysVerticalScrollbar)) {
if (ImGui::CollapsingHeader("Backend")) {
int newBackend = static_cast<int>(fBackendType);
ImGui::RadioButton("Raster", &newBackend, sk_app::Window::kRaster_BackendType);
ImGui::SameLine();
ImGui::RadioButton("OpenGL", &newBackend, sk_app::Window::kNativeGL_BackendType);
#if SK_ANGLE && defined(SK_BUILD_FOR_WIN)
ImGui::SameLine();
ImGui::RadioButton("ANGLE", &newBackend, sk_app::Window::kANGLE_BackendType);
#endif
#if defined(SK_DAWN)
ImGui::SameLine();
ImGui::RadioButton("Dawn", &newBackend, sk_app::Window::kDawn_BackendType);
#endif
#if defined(SK_VULKAN) && !defined(SK_BUILD_FOR_MAC)
ImGui::SameLine();
ImGui::RadioButton("Vulkan", &newBackend, sk_app::Window::kVulkan_BackendType);
#endif
#if defined(SK_METAL)
ImGui::SameLine();
ImGui::RadioButton("Metal", &newBackend, sk_app::Window::kMetal_BackendType);
#if defined(SK_GRAPHITE_ENABLED)
ImGui::SameLine();
ImGui::RadioButton("Metal (Graphite)", &newBackend,
sk_app::Window::kGraphiteMetal_BackendType);
#endif
#endif
#if defined(SK_DIRECT3D)
ImGui::SameLine();
ImGui::RadioButton("Direct3D", &newBackend, sk_app::Window::kDirect3D_BackendType);
#endif
if (newBackend != fBackendType) {
fDeferredActions.push_back([=]() {
this->setBackend(static_cast<sk_app::Window::BackendType>(newBackend));
});
}
bool* wire = &params.fGrContextOptions.fWireframeMode;
if (ctx && ImGui::Checkbox("Wireframe Mode", wire)) {
displayParamsChanged = true;
}
bool* reducedShaders = &params.fGrContextOptions.fReducedShaderVariations;
if (ctx && ImGui::Checkbox("Reduced shaders", reducedShaders)) {
displayParamsChanged = true;
}
if (ctx) {
// Determine the context's max sample count for MSAA radio buttons.
int sampleCount = fWindow->sampleCount();
int maxMSAA = (fBackendType != sk_app::Window::kRaster_BackendType) ?
ctx->maxSurfaceSampleCountForColorType(kRGBA_8888_SkColorType) :
1;
// Only display the MSAA radio buttons when there are options above 1x MSAA.
if (maxMSAA >= 4) {
ImGui::Text("MSAA: ");
for (int curMSAA = 1; curMSAA <= maxMSAA; curMSAA *= 2) {
// 2x MSAA works, but doesn't offer much of a visual improvement, so we
// don't show it in the list.
if (curMSAA == 2) {
continue;
}
ImGui::SameLine();
ImGui::RadioButton(SkStringPrintf("%d", curMSAA).c_str(),
&sampleCount, curMSAA);
}
}
if (sampleCount != params.fMSAASampleCount) {
params.fMSAASampleCount = sampleCount;
displayParamsChanged = true;
}
}
int pixelGeometryIdx = 0;
if (fDisplayOverrides.fSurfaceProps.fPixelGeometry) {
pixelGeometryIdx = params.fSurfaceProps.pixelGeometry() + 1;
}
if (ImGui::Combo("Pixel Geometry", &pixelGeometryIdx,
"Default\0Flat\0RGB\0BGR\0RGBV\0BGRV\0\0"))
{
uint32_t flags = params.fSurfaceProps.flags();
if (pixelGeometryIdx == 0) {
fDisplayOverrides.fSurfaceProps.fPixelGeometry = false;
SkPixelGeometry pixelGeometry = fDisplay.fSurfaceProps.pixelGeometry();
params.fSurfaceProps = SkSurfaceProps(flags, pixelGeometry);
} else {
fDisplayOverrides.fSurfaceProps.fPixelGeometry = true;
SkPixelGeometry pixelGeometry = SkTo<SkPixelGeometry>(pixelGeometryIdx - 1);
params.fSurfaceProps = SkSurfaceProps(flags, pixelGeometry);
}
displayParamsChanged = true;
}
bool useDFT = params.fSurfaceProps.isUseDeviceIndependentFonts();
if (ImGui::Checkbox("DFT", &useDFT)) {
uint32_t flags = params.fSurfaceProps.flags();
if (useDFT) {
flags |= SkSurfaceProps::kUseDeviceIndependentFonts_Flag;
} else {
flags &= ~SkSurfaceProps::kUseDeviceIndependentFonts_Flag;
}
SkPixelGeometry pixelGeometry = params.fSurfaceProps.pixelGeometry();
params.fSurfaceProps = SkSurfaceProps(flags, pixelGeometry);
displayParamsChanged = true;
}
if (ImGui::TreeNode("Path Renderers")) {
GpuPathRenderers prevPr = params.fGrContextOptions.fGpuPathRenderers;
auto prButton = [&](GpuPathRenderers x) {
if (ImGui::RadioButton(gPathRendererNames[x].c_str(), prevPr == x)) {
if (x != params.fGrContextOptions.fGpuPathRenderers) {
params.fGrContextOptions.fGpuPathRenderers = x;
displayParamsChanged = true;
}
}
};
if (!ctx) {
ImGui::RadioButton("Software", true);
} else {
prButton(GpuPathRenderers::kDefault);
#if SK_GPU_V1
if (fWindow->sampleCount() > 1 || FLAGS_dmsaa) {
const auto* caps = ctx->priv().caps();
if (skgpu::v1::AtlasPathRenderer::IsSupported(ctx)) {
prButton(GpuPathRenderers::kAtlas);
}
if (skgpu::v1::TessellationPathRenderer::IsSupported(*caps)) {
prButton(GpuPathRenderers::kTessellation);
}
}
#endif
if (1 == fWindow->sampleCount()) {
prButton(GpuPathRenderers::kSmall);
}
prButton(GpuPathRenderers::kTriangulating);
prButton(GpuPathRenderers::kNone);
}
ImGui::TreePop();
}
}
if (ImGui::CollapsingHeader("Tiling")) {
ImGui::Checkbox("Enable", &fTiled);
ImGui::Checkbox("Draw Boundaries", &fDrawTileBoundaries);
ImGui::SliderFloat("Horizontal", &fTileScale.fWidth, 0.1f, 1.0f);
ImGui::SliderFloat("Vertical", &fTileScale.fHeight, 0.1f, 1.0f);
}
if (ImGui::CollapsingHeader("Transform")) {
if (ImGui::Checkbox("Apply Backing Scale", &fApplyBackingScale)) {
this->preTouchMatrixChanged();
this->onResize(fWindow->width(), fWindow->height());
// This changes how we manipulate the canvas transform, it's not changing the
// window's actual parameters.
uiParamsChanged = true;
}
float zoom = fZoomLevel;
if (ImGui::SliderFloat("Zoom", &zoom, MIN_ZOOM_LEVEL, MAX_ZOOM_LEVEL)) {
fZoomLevel = zoom;
this->preTouchMatrixChanged();
uiParamsChanged = true;
}
float deg = fRotation;
if (ImGui::SliderFloat("Rotate", &deg, -30, 360, "%.3f deg")) {
fRotation = deg;
this->preTouchMatrixChanged();
uiParamsChanged = true;
}
if (ImGui::CollapsingHeader("Subpixel offset", ImGuiTreeNodeFlags_NoTreePushOnOpen)) {
if (ImGui_DragLocation(&fOffset)) {
this->preTouchMatrixChanged();
uiParamsChanged = true;
}
} else if (fOffset != SkVector{0.5f, 0.5f}) {
this->preTouchMatrixChanged();
uiParamsChanged = true;
fOffset = {0.5f, 0.5f};
}
int perspectiveMode = static_cast<int>(fPerspectiveMode);
if (ImGui::Combo("Perspective", &perspectiveMode, "Off\0Real\0Fake\0\0")) {
fPerspectiveMode = static_cast<PerspectiveMode>(perspectiveMode);
this->preTouchMatrixChanged();
uiParamsChanged = true;
}
if (perspectiveMode != kPerspective_Off && ImGui_DragQuad(fPerspectivePoints)) {
this->preTouchMatrixChanged();
uiParamsChanged = true;
}
}
if (ImGui::CollapsingHeader("Paint")) {
int aliasIdx = 0;
if (fPaintOverrides.fAntiAlias) {
aliasIdx = SkTo<int>(fPaintOverrides.fAntiAliasState) + 1;
}
if (ImGui::Combo("Anti-Alias", &aliasIdx,
"Default\0Alias\0Normal\0AnalyticAAEnabled\0AnalyticAAForced\0\0"))
{
gSkUseAnalyticAA = fPaintOverrides.fOriginalSkUseAnalyticAA;
gSkForceAnalyticAA = fPaintOverrides.fOriginalSkForceAnalyticAA;
if (aliasIdx == 0) {
fPaintOverrides.fAntiAliasState = SkPaintFields::AntiAliasState::Alias;
fPaintOverrides.fAntiAlias = false;
} else {
fPaintOverrides.fAntiAlias = true;
fPaintOverrides.fAntiAliasState = SkTo<SkPaintFields::AntiAliasState>(aliasIdx-1);
fPaint.setAntiAlias(aliasIdx > 1);
switch (fPaintOverrides.fAntiAliasState) {
case SkPaintFields::AntiAliasState::Alias:
break;
case SkPaintFields::AntiAliasState::Normal:
break;
case SkPaintFields::AntiAliasState::AnalyticAAEnabled:
gSkUseAnalyticAA = true;
gSkForceAnalyticAA = false;
break;
case SkPaintFields::AntiAliasState::AnalyticAAForced:
gSkUseAnalyticAA = gSkForceAnalyticAA = true;
break;
}
}
uiParamsChanged = true;
}
auto paintFlag = [this, &uiParamsChanged](const char* label, const char* items,
bool SkPaintFields::* flag,
bool (SkPaint::* isFlag)() const,
void (SkPaint::* setFlag)(bool) )
{
int itemIndex = 0;
if (fPaintOverrides.*flag) {
itemIndex = (fPaint.*isFlag)() ? 2 : 1;
}
if (ImGui::Combo(label, &itemIndex, items)) {
if (itemIndex == 0) {
fPaintOverrides.*flag = false;
} else {
fPaintOverrides.*flag = true;
(fPaint.*setFlag)(itemIndex == 2);
}
uiParamsChanged = true;
}
};
paintFlag("Dither",
"Default\0No Dither\0Dither\0\0",
&SkPaintFields::fDither,
&SkPaint::isDither, &SkPaint::setDither);
int styleIdx = 0;
if (fPaintOverrides.fStyle) {
styleIdx = SkTo<int>(fPaint.getStyle()) + 1;
}
if (ImGui::Combo("Style", &styleIdx,
"Default\0Fill\0Stroke\0Stroke and Fill\0\0"))
{
if (styleIdx == 0) {
fPaintOverrides.fStyle = false;
fPaint.setStyle(SkPaint::kFill_Style);
} else {
fPaint.setStyle(SkTo<SkPaint::Style>(styleIdx - 1));
fPaintOverrides.fStyle = true;
}
uiParamsChanged = true;
}
ImGui::Checkbox("Force Runtime Blends", &fPaintOverrides.fForceRuntimeBlend);
ImGui::Checkbox("Override Stroke Width", &fPaintOverrides.fStrokeWidth);
if (fPaintOverrides.fStrokeWidth) {
float width = fPaint.getStrokeWidth();
if (ImGui::SliderFloat("Stroke Width", &width, 0, 20)) {
fPaint.setStrokeWidth(width);
uiParamsChanged = true;
}
}
ImGui::Checkbox("Override Miter Limit", &fPaintOverrides.fMiterLimit);
if (fPaintOverrides.fMiterLimit) {
float miterLimit = fPaint.getStrokeMiter();
if (ImGui::SliderFloat("Miter Limit", &miterLimit, 0, 20)) {
fPaint.setStrokeMiter(miterLimit);
uiParamsChanged = true;
}
}
int capIdx = 0;
if (fPaintOverrides.fCapType) {
capIdx = SkTo<int>(fPaint.getStrokeCap()) + 1;
}
if (ImGui::Combo("Cap Type", &capIdx,
"Default\0Butt\0Round\0Square\0\0"))
{
if (capIdx == 0) {
fPaintOverrides.fCapType = false;
fPaint.setStrokeCap(SkPaint::kDefault_Cap);
} else {
fPaint.setStrokeCap(SkTo<SkPaint::Cap>(capIdx - 1));
fPaintOverrides.fCapType = true;
}
uiParamsChanged = true;
}
int joinIdx = 0;
if (fPaintOverrides.fJoinType) {
joinIdx = SkTo<int>(fPaint.getStrokeJoin()) + 1;
}
if (ImGui::Combo("Join Type", &joinIdx,
"Default\0Miter\0Round\0Bevel\0\0"))
{
if (joinIdx == 0) {
fPaintOverrides.fJoinType = false;
fPaint.setStrokeJoin(SkPaint::kDefault_Join);
} else {
fPaint.setStrokeJoin(SkTo<SkPaint::Join>(joinIdx - 1));
fPaintOverrides.fJoinType = true;
}
uiParamsChanged = true;
}
}
if (ImGui::CollapsingHeader("Font")) {
int hintingIdx = 0;
if (fFontOverrides.fHinting) {
hintingIdx = SkTo<int>(fFont.getHinting()) + 1;
}
if (ImGui::Combo("Hinting", &hintingIdx,
"Default\0None\0Slight\0Normal\0Full\0\0"))
{
if (hintingIdx == 0) {
fFontOverrides.fHinting = false;
fFont.setHinting(SkFontHinting::kNone);
} else {
fFont.setHinting(SkTo<SkFontHinting>(hintingIdx - 1));
fFontOverrides.fHinting = true;
}
uiParamsChanged = true;
}
auto fontFlag = [this, &uiParamsChanged](const char* label, const char* items,
bool SkFontFields::* flag,
bool (SkFont::* isFlag)() const,
void (SkFont::* setFlag)(bool) )
{
int itemIndex = 0;
if (fFontOverrides.*flag) {
itemIndex = (fFont.*isFlag)() ? 2 : 1;
}
if (ImGui::Combo(label, &itemIndex, items)) {
if (itemIndex == 0) {
fFontOverrides.*flag = false;
} else {
fFontOverrides.*flag = true;
(fFont.*setFlag)(itemIndex == 2);
}
uiParamsChanged = true;
}
};
fontFlag("Fake Bold Glyphs",
"Default\0No Fake Bold\0Fake Bold\0\0",
&SkFontFields::fEmbolden,
&SkFont::isEmbolden, &SkFont::setEmbolden);
fontFlag("Baseline Snapping",
"Default\0No Baseline Snapping\0Baseline Snapping\0\0",
&SkFontFields::fBaselineSnap,
&SkFont::isBaselineSnap, &SkFont::setBaselineSnap);
fontFlag("Linear Text",
"Default\0No Linear Text\0Linear Text\0\0",
&SkFontFields::fLinearMetrics,
&SkFont::isLinearMetrics, &SkFont::setLinearMetrics);
fontFlag("Subpixel Position Glyphs",
"Default\0Pixel Text\0Subpixel Text\0\0",
&SkFontFields::fSubpixel,
&SkFont::isSubpixel, &SkFont::setSubpixel);
fontFlag("Embedded Bitmap Text",
"Default\0No Embedded Bitmaps\0Embedded Bitmaps\0\0",
&SkFontFields::fEmbeddedBitmaps,
&SkFont::isEmbeddedBitmaps, &SkFont::setEmbeddedBitmaps);
fontFlag("Force Auto-Hinting",
"Default\0No Force Auto-Hinting\0Force Auto-Hinting\0\0",
&SkFontFields::fForceAutoHinting,
&SkFont::isForceAutoHinting, &SkFont::setForceAutoHinting);
int edgingIdx = 0;
if (fFontOverrides.fEdging) {
edgingIdx = SkTo<int>(fFont.getEdging()) + 1;
}
if (ImGui::Combo("Edging", &edgingIdx,
"Default\0Alias\0Antialias\0Subpixel Antialias\0\0"))
{
if (edgingIdx == 0) {
fFontOverrides.fEdging = false;
fFont.setEdging(SkFont::Edging::kAlias);
} else {
fFont.setEdging(SkTo<SkFont::Edging>(edgingIdx-1));
fFontOverrides.fEdging = true;
}
uiParamsChanged = true;
}
ImGui::Checkbox("Override Size", &fFontOverrides.fSize);
if (fFontOverrides.fSize) {
ImGui::DragFloat2("TextRange", fFontOverrides.fSizeRange,
0.001f, -10.0f, 300.0f, "%.6f", ImGuiSliderFlags_Logarithmic);
float textSize = fFont.getSize();
if (ImGui::DragFloat("TextSize", &textSize, 0.001f,
fFontOverrides.fSizeRange[0],
fFontOverrides.fSizeRange[1],
"%.6f", ImGuiSliderFlags_Logarithmic))
{
fFont.setSize(textSize);
uiParamsChanged = true;
}
}
ImGui::Checkbox("Override ScaleX", &fFontOverrides.fScaleX);
if (fFontOverrides.fScaleX) {
float scaleX = fFont.getScaleX();
if (ImGui::SliderFloat("ScaleX", &scaleX, MIN_ZOOM_LEVEL, MAX_ZOOM_LEVEL)) {
fFont.setScaleX(scaleX);
uiParamsChanged = true;
}
}
ImGui::Checkbox("Override SkewX", &fFontOverrides.fSkewX);
if (fFontOverrides.fSkewX) {
float skewX = fFont.getSkewX();
if (ImGui::SliderFloat("SkewX", &skewX, MIN_ZOOM_LEVEL, MAX_ZOOM_LEVEL)) {
fFont.setSkewX(skewX);
uiParamsChanged = true;
}
}
}
{
SkMetaData controls;
if (fSlides[fCurrentSlide]->onGetControls(&controls)) {
if (ImGui::CollapsingHeader("Current Slide")) {
SkMetaData::Iter iter(controls);
const char* name;
SkMetaData::Type type;
int count;
while ((name = iter.next(&type, &count)) != nullptr) {
if (type == SkMetaData::kScalar_Type) {
float val[3];
SkASSERT(count == 3);
controls.findScalars(name, &count, val);
if (ImGui::SliderFloat(name, &val[0], val[1], val[2])) {
controls.setScalars(name, 3, val);
}
} else if (type == SkMetaData::kBool_Type) {
bool val;
SkASSERT(count == 1);
controls.findBool(name, &val);
if (ImGui::Checkbox(name, &val)) {
controls.setBool(name, val);
}
}
}
fSlides[fCurrentSlide]->onSetControls(controls);
}
}
}
if (fShowSlidePicker) {
ImGui::SetNextTreeNodeOpen(true);
}
if (ImGui::CollapsingHeader("Slide")) {
static ImGuiTextFilter filter;
static ImVector<const char*> filteredSlideNames;
static ImVector<int> filteredSlideIndices;
if (fShowSlidePicker) {
ImGui::SetKeyboardFocusHere();
fShowSlidePicker = false;
}
filter.Draw();
filteredSlideNames.clear();
filteredSlideIndices.clear();
int filteredIndex = 0;
for (int i = 0; i < fSlides.count(); ++i) {
const char* slideName = fSlides[i]->getName().c_str();
if (filter.PassFilter(slideName) || i == fCurrentSlide) {
if (i == fCurrentSlide) {
filteredIndex = filteredSlideIndices.size();
}
filteredSlideNames.push_back(slideName);
filteredSlideIndices.push_back(i);
}
}
if (ImGui::ListBox("", &filteredIndex, filteredSlideNames.begin(),
filteredSlideNames.size(), 20)) {
this->setCurrentSlide(filteredSlideIndices[filteredIndex]);
}
}
if (ImGui::CollapsingHeader("Color Mode")) {
ColorMode newMode = fColorMode;
auto cmButton = [&](ColorMode mode, const char* label) {
if (ImGui::RadioButton(label, mode == fColorMode)) {
newMode = mode;
}
};
cmButton(ColorMode::kLegacy, "Legacy 8888");
cmButton(ColorMode::kColorManaged8888, "Color Managed 8888");
cmButton(ColorMode::kColorManagedF16, "Color Managed F16");
cmButton(ColorMode::kColorManagedF16Norm, "Color Managed F16 Norm");
if (newMode != fColorMode) {
this->setColorMode(newMode);
}
// Pick from common gamuts:
int primariesIdx = 4; // Default: Custom
for (size_t i = 0; i < SK_ARRAY_COUNT(gNamedPrimaries); ++i) {
if (primaries_equal(*gNamedPrimaries[i].fPrimaries, fColorSpacePrimaries)) {
primariesIdx = i;
break;
}
}
// Let user adjust the gamma
ImGui::SliderFloat("Gamma", &fColorSpaceTransferFn.g, 0.5f, 3.5f);
if (ImGui::Combo("Primaries", &primariesIdx,
"sRGB\0AdobeRGB\0P3\0Rec. 2020\0Custom\0\0")) {
if (primariesIdx >= 0 && primariesIdx <= 3) {
fColorSpacePrimaries = *gNamedPrimaries[primariesIdx].fPrimaries;
}
}
if (ImGui::Button("Spin")) {
float rx = fColorSpacePrimaries.fRX,
ry = fColorSpacePrimaries.fRY;
fColorSpacePrimaries.fRX = fColorSpacePrimaries.fGX;
fColorSpacePrimaries.fRY = fColorSpacePrimaries.fGY;
fColorSpacePrimaries.fGX = fColorSpacePrimaries.fBX;
fColorSpacePrimaries.fGY = fColorSpacePrimaries.fBY;
fColorSpacePrimaries.fBX = rx;
fColorSpacePrimaries.fBY = ry;
}
// Allow direct editing of gamut
ImGui_Primaries(&fColorSpacePrimaries, &fImGuiGamutPaint);
}
if (ImGui::CollapsingHeader("Animation")) {
bool isPaused = AnimTimer::kPaused_State == fAnimTimer.state();
if (ImGui::Checkbox("Pause", &isPaused)) {
fAnimTimer.togglePauseResume();
}
float speed = fAnimTimer.getSpeed();
if (ImGui::DragFloat("Speed", &speed, 0.1f)) {
fAnimTimer.setSpeed(speed);
}
}
if (ImGui::CollapsingHeader("Shaders")) {
bool sksl = params.fGrContextOptions.fShaderCacheStrategy ==
GrContextOptions::ShaderCacheStrategy::kSkSL;
#if defined(SK_VULKAN)
const bool isVulkan = fBackendType == sk_app::Window::kVulkan_BackendType;
#else
const bool isVulkan = false;
#endif
// To re-load shaders from the currently active programs, we flush all
// caches on one frame, then set a flag to poll the cache on the next frame.
static bool gLoadPending = false;
if (gLoadPending) {
auto collectShaders = [this](sk_sp<const SkData> key, sk_sp<SkData> data,
const SkString& description, int hitCount) {
CachedShader& entry(fCachedShaders.push_back());
entry.fKey = key;
SkMD5 hash;
hash.write(key->bytes(), key->size());
SkMD5::Digest digest = hash.finish();
for (int i = 0; i < 16; ++i) {
entry.fKeyString.appendf("%02x", digest.data[i]);
}
entry.fKeyDescription = description;
SkReadBuffer reader(data->data(), data->size());
entry.fShaderType = GrPersistentCacheUtils::GetType(&reader);
GrPersistentCacheUtils::UnpackCachedShaders(&reader, entry.fShader,
entry.fInputs,
kGrShaderTypeCount);
};
fCachedShaders.reset();
fPersistentCache.foreach(collectShaders);
gLoadPending = false;
#if defined(SK_VULKAN)
if (isVulkan && !sksl) {
spvtools::SpirvTools tools(SPV_ENV_VULKAN_1_0);
for (auto& entry : fCachedShaders) {
for (int i = 0; i < kGrShaderTypeCount; ++i) {
const std::string& spirv(entry.fShader[i]);
std::string disasm;
tools.Disassemble((const uint32_t*)spirv.c_str(), spirv.size() / 4,
&disasm);
entry.fShader[i].assign(disasm);
}
}
}
#endif
}
// Defer actually doing the View/Apply logic so that we can trigger an Apply when we
// start or finish hovering on a tree node in the list below:
bool doView = ImGui::Button("View"); ImGui::SameLine();
bool doApply = ImGui::Button("Apply Changes"); ImGui::SameLine();
bool doDump = ImGui::Button("Dump SkSL to resources/sksl/");
int newOptLevel = fOptLevel;
ImGui::RadioButton("SkSL", &newOptLevel, kShaderOptLevel_Source);
ImGui::SameLine();
ImGui::RadioButton("Compile", &newOptLevel, kShaderOptLevel_Compile);
ImGui::SameLine();
ImGui::RadioButton("Optimize", &newOptLevel, kShaderOptLevel_Optimize);
ImGui::SameLine();
ImGui::RadioButton("Inline", &newOptLevel, kShaderOptLevel_Inline);
// If we are changing the compile mode, we want to reset the cache and redo
// everything.
if (doDump || newOptLevel != fOptLevel) {
sksl = doDump || (newOptLevel == kShaderOptLevel_Source);
fOptLevel = (ShaderOptLevel)newOptLevel;
switch (fOptLevel) {
case kShaderOptLevel_Source:
Compiler::EnableOptimizer(OverrideFlag::kDefault);
Compiler::EnableInliner(OverrideFlag::kDefault);
break;
case kShaderOptLevel_Compile:
Compiler::EnableOptimizer(OverrideFlag::kOff);
Compiler::EnableInliner(OverrideFlag::kOff);
break;
case kShaderOptLevel_Optimize:
Compiler::EnableOptimizer(OverrideFlag::kOn);
Compiler::EnableInliner(OverrideFlag::kOff);
break;
case kShaderOptLevel_Inline:
Compiler::EnableOptimizer(OverrideFlag::kOn);
Compiler::EnableInliner(OverrideFlag::kOn);
break;
}
params.fGrContextOptions.fShaderCacheStrategy =
sksl ? GrContextOptions::ShaderCacheStrategy::kSkSL
: GrContextOptions::ShaderCacheStrategy::kBackendSource;
displayParamsChanged = true;
doView = true;
fDeferredActions.push_back([=]() {
// Reset the cache.
fPersistentCache.reset();
// Dump the cache once we have drawn a frame with it.
if (doDump) {
fDeferredActions.push_back([this]() {
this->dumpShadersToResources();
});
}
});
}
ImGui::BeginChild("##ScrollingRegion");
for (auto& entry : fCachedShaders) {
bool inTreeNode = ImGui::TreeNode(entry.fKeyString.c_str());
bool hovered = ImGui::IsItemHovered();
if (hovered != entry.fHovered) {
// Force an Apply to patch the highlight shader in/out
entry.fHovered = hovered;
doApply = true;
}
if (inTreeNode) {
auto stringBox = [](const char* label, std::string* str) {
// Full width, and not too much space for each shader
int lines = std::count(str->begin(), str->end(), '\n') + 2;
ImVec2 boxSize(-1.0f, ImGui::GetTextLineHeight() * std::min(lines, 30));
ImGui::InputTextMultiline(label, str, boxSize);
};
if (ImGui::TreeNode("Key")) {
ImGui::TextWrapped("%s", entry.fKeyDescription.c_str());
ImGui::TreePop();
}
stringBox("##VP", &entry.fShader[kVertex_GrShaderType]);
stringBox("##FP", &entry.fShader[kFragment_GrShaderType]);
ImGui::TreePop();
}
}
ImGui::EndChild();
if (doView) {
fPersistentCache.reset();
ctx->priv().getGpu()->resetShaderCacheForTesting();
gLoadPending = true;
}
// We don't support updating SPIRV shaders. We could re-assemble them (with edits),
// but I'm not sure anyone wants to do that.
if (isVulkan && !sksl) {
doApply = false;
}
if (doApply) {
fPersistentCache.reset();
ctx->priv().getGpu()->resetShaderCacheForTesting();
for (auto& entry : fCachedShaders) {
std::string backup = entry.fShader[kFragment_GrShaderType];
if (entry.fHovered) {
// The hovered item (if any) gets a special shader to make it
// identifiable.
std::string& fragShader = entry.fShader[kFragment_GrShaderType];
switch (entry.fShaderType) {
case SkSetFourByteTag('S', 'K', 'S', 'L'): {
fragShader = build_sksl_highlight_shader();
break;
}
case SkSetFourByteTag('G', 'L', 'S', 'L'): {
fragShader = build_glsl_highlight_shader(
*ctx->priv().caps()->shaderCaps());
break;
}
case SkSetFourByteTag('M', 'S', 'L', ' '): {
fragShader = build_metal_highlight_shader(fragShader);
break;
}
}
}
auto data = GrPersistentCacheUtils::PackCachedShaders(entry.fShaderType,
entry.fShader,
entry.fInputs,
kGrShaderTypeCount);
fPersistentCache.store(*entry.fKey, *data, entry.fKeyDescription);
entry.fShader[kFragment_GrShaderType] = backup;
}
}
}
if (ImGui::CollapsingHeader("SkVM")) {
auto* cache = SkVMBlitter::TryAcquireProgramCache();
SkASSERT(cache);
if (ImGui::Button("Clear")) {
cache->reset();
fDisassemblyCache.reset();
}
// First, go through the cache and restore the original program if we were hovering
if (!fHoveredProgram.empty()) {
auto restoreHoveredProgram = [this](const SkVMBlitter::Key* key,
skvm::Program* program) {
if (*key == fHoveredKey) {
*program = std::move(fHoveredProgram);
fHoveredProgram = {};
}
};
cache->foreach(restoreHoveredProgram);
}
// Now iterate again, and dump any expanded program. If any program is hovered,
// patch it, and remember the original (so it can be restored next frame).
auto showVMEntry = [this](const SkVMBlitter::Key* key, skvm::Program* program) {
SkString keyString = SkVMBlitter::DebugName(*key);
bool inTreeNode = ImGui::TreeNode(keyString.c_str());
bool hovered = ImGui::IsItemHovered();
if (inTreeNode) {
auto stringBox = [](const char* label, std::string* str) {
int lines = std::count(str->begin(), str->end(), '\n') + 2;
ImVec2 boxSize(-1.0f, ImGui::GetTextLineHeight() * std::min(lines, 30));
ImGui::InputTextMultiline(label, str, boxSize);
};
SkDynamicMemoryWStream stream;
program->dump(&stream);
auto dumpData = stream.detachAsData();
std::string dumpString((const char*)dumpData->data(), dumpData->size());
stringBox("##VM", &dumpString);
#if defined(SKVM_JIT)
std::string* asmString = fDisassemblyCache.find(*key);
if (!asmString) {
program->disassemble(&stream);
auto asmData = stream.detachAsData();
asmString = fDisassemblyCache.set(
*key,
std::string((const char*)asmData->data(), asmData->size()));
}
stringBox("##ASM", asmString);
#endif
ImGui::TreePop();
}
if (hovered) {
// Generate a new blitter that just draws magenta
skvm::Program highlightProgram = build_skvm_highlight_program(
static_cast<SkColorType>(key->colorType), program->nargs());
fHoveredKey = *key;
fHoveredProgram = std::move(*program);
*program = std::move(highlightProgram);
}
};
cache->foreach(showVMEntry);
SkVMBlitter::ReleaseProgramCache();
}
}
if (displayParamsChanged || uiParamsChanged) {
fDeferredActions.push_back([=]() {
if (displayParamsChanged) {
fWindow->setRequestedDisplayParams(params);
}
fWindow->inval();
this->updateTitle();
});
}
ImGui::End();
}
if (gShaderErrorHandler.fErrors.count()) {
ImGui::SetNextWindowSize(ImVec2(400, 400), ImGuiCond_FirstUseEver);
ImGui::Begin("Shader Errors", nullptr, ImGuiWindowFlags_NoFocusOnAppearing);
for (int i = 0; i < gShaderErrorHandler.fErrors.count(); ++i) {
ImGui::TextWrapped("%s", gShaderErrorHandler.fErrors[i].c_str());
std::string sksl(gShaderErrorHandler.fShaders[i].c_str());
SkShaderUtils::VisitLineByLine(sksl, [](int lineNumber, const char* lineText) {
ImGui::TextWrapped("%4i\t%s\n", lineNumber, lineText);
});
}
ImGui::End();
gShaderErrorHandler.reset();
}
if (fShowZoomWindow && fLastImage) {
ImGui::SetNextWindowSize(ImVec2(200, 200), ImGuiCond_FirstUseEver);
if (ImGui::Begin("Zoom", &fShowZoomWindow)) {
static int zoomFactor = 8;
if (ImGui::Button("<<")) {
zoomFactor = std::max(zoomFactor / 2, 4);
}
ImGui::SameLine(); ImGui::Text("%2d", zoomFactor); ImGui::SameLine();
if (ImGui::Button(">>")) {
zoomFactor = std::min(zoomFactor * 2, 32);
}
if (!fZoomWindowFixed) {
ImVec2 mousePos = ImGui::GetMousePos();
fZoomWindowLocation = SkPoint::Make(mousePos.x, mousePos.y);
}
SkScalar x = fZoomWindowLocation.x();
SkScalar y = fZoomWindowLocation.y();
int xInt = SkScalarRoundToInt(x);
int yInt = SkScalarRoundToInt(y);
ImVec2 avail = ImGui::GetContentRegionAvail();
uint32_t pixel = 0;
SkImageInfo info = SkImageInfo::MakeN32Premul(1, 1);
auto dContext = fWindow->directContext();
if (fLastImage->readPixels(dContext, info, &pixel, info.minRowBytes(), xInt, yInt)) {
ImGui::SameLine();
ImGui::Text("(X, Y): %d, %d RGBA: %X %X %X %X",
xInt, yInt,
SkGetPackedR32(pixel), SkGetPackedG32(pixel),
SkGetPackedB32(pixel), SkGetPackedA32(pixel));
}
fImGuiLayer.skiaWidget(avail, [=, lastImage = fLastImage](SkCanvas* c) {
// Translate so the region of the image that's under the mouse cursor is centered
// in the zoom canvas:
c->scale(zoomFactor, zoomFactor);
c->translate(avail.x * 0.5f / zoomFactor - x - 0.5f,
avail.y * 0.5f / zoomFactor - y - 0.5f);
c->drawImage(lastImage, 0, 0);
SkPaint outline;
outline.setStyle(SkPaint::kStroke_Style);
c->drawRect(SkRect::MakeXYWH(x, y, 1, 1), outline);
});
}
ImGui::End();
}
if (fShowHistogramWindow && fLastImage) {
ImGui::SetNextWindowSize(ImVec2(450, 500));
ImGui::SetNextWindowBgAlpha(0.5f);
if (ImGui::Begin("Color Histogram (R,G,B)", &fShowHistogramWindow)) {
const auto info = SkImageInfo::MakeN32Premul(fWindow->width(), fWindow->height());
SkAutoPixmapStorage pixmap;
pixmap.alloc(info);
if (fLastImage->readPixels(fWindow->directContext(), info, pixmap.writable_addr(),
info.minRowBytes(), 0, 0)) {
std::vector<float> r(256), g(256), b(256);
for (int y = 0; y < info.height(); ++y) {
for (int x = 0; x < info.width(); ++x) {
const auto pmc = *pixmap.addr32(x, y);
r[SkGetPackedR32(pmc)]++;
g[SkGetPackedG32(pmc)]++;
b[SkGetPackedB32(pmc)]++;
}
}
ImGui::PushItemWidth(-1);
ImGui::PlotHistogram("R", r.data(), r.size(), 0, nullptr,
FLT_MAX, FLT_MAX, ImVec2(0, 150));
ImGui::PlotHistogram("G", g.data(), g.size(), 0, nullptr,
FLT_MAX, FLT_MAX, ImVec2(0, 150));
ImGui::PlotHistogram("B", b.data(), b.size(), 0, nullptr,
FLT_MAX, FLT_MAX, ImVec2(0, 150));
ImGui::PopItemWidth();
}
}
ImGui::End();
}
}
void Viewer::dumpShadersToResources() {
// Sort the list of cached shaders so we can maintain some minimal level of consistency.
// It doesn't really matter, but it will keep files from switching places unpredictably.
std::vector<const CachedShader*> shaders;
shaders.reserve(fCachedShaders.size());
for (const CachedShader& shader : fCachedShaders) {
shaders.push_back(&shader);
}
std::sort(shaders.begin(), shaders.end(), [](const CachedShader* a, const CachedShader* b) {
return std::tie(a->fShader[kFragment_GrShaderType], a->fShader[kVertex_GrShaderType]) <
std::tie(b->fShader[kFragment_GrShaderType], b->fShader[kVertex_GrShaderType]);
});
// Make the resources/sksl/SlideName/ directory.
SkString directory = SkStringPrintf("%ssksl/%s",
GetResourcePath().c_str(),
fSlides[fCurrentSlide]->getName().c_str());
if (!sk_mkdir(directory.c_str())) {
SkDEBUGFAILF("Unable to create directory '%s'", directory.c_str());
return;
}
int index = 0;
for (const auto& entry : shaders) {
SkString vertPath = SkStringPrintf("%s/Vertex_%02d.vert", directory.c_str(), index);
FILE* vertFile = sk_fopen(vertPath.c_str(), kWrite_SkFILE_Flag);
if (vertFile) {
const std::string& vertText = entry->fShader[kVertex_GrShaderType];
SkAssertResult(sk_fwrite(vertText.c_str(), vertText.size(), vertFile));
sk_fclose(vertFile);
} else {
SkDEBUGFAILF("Unable to write shader to path '%s'", vertPath.c_str());
}
SkString fragPath = SkStringPrintf("%s/Fragment_%02d.frag", directory.c_str(), index);
FILE* fragFile = sk_fopen(fragPath.c_str(), kWrite_SkFILE_Flag);
if (fragFile) {
const std::string& fragText = entry->fShader[kFragment_GrShaderType];
SkAssertResult(sk_fwrite(fragText.c_str(), fragText.size(), fragFile));
sk_fclose(fragFile);
} else {
SkDEBUGFAILF("Unable to write shader to path '%s'", fragPath.c_str());
}
++index;
}
}
void Viewer::onIdle() {
SkTArray<std::function<void()>> actionsToRun;
actionsToRun.swap(fDeferredActions);
for (const auto& fn : actionsToRun) {
fn();
}
fStatsLayer.beginTiming(fAnimateTimer);
fAnimTimer.updateTime();
bool animateWantsInval = fSlides[fCurrentSlide]->animate(fAnimTimer.nanos());
fStatsLayer.endTiming(fAnimateTimer);
ImGuiIO& io = ImGui::GetIO();
// ImGui always has at least one "active" window, which is the default "Debug" window. It may
// not be visible, though. So we need to redraw if there is at least one visible window, or
// more than one active window. Newly created windows are active but not visible for one frame
// while they determine their layout and sizing.
if (animateWantsInval || fStatsLayer.getActive() || fRefresh ||
io.MetricsActiveWindows > 1 || io.MetricsRenderWindows > 0) {
fWindow->inval();
}
}
template <typename OptionsFunc>
static void WriteStateObject(SkJSONWriter& writer, const char* name, const char* value,
OptionsFunc&& optionsFunc) {
writer.beginObject();
{
writer.appendString(kName , name);
writer.appendString(kValue, value);
writer.beginArray(kOptions);
{
optionsFunc(writer);
}
writer.endArray();
}
writer.endObject();
}
void Viewer::updateUIState() {
if (!fWindow) {
return;
}
if (fWindow->sampleCount() < 1) {
return; // Surface hasn't been created yet.
}
SkDynamicMemoryWStream memStream;
SkJSONWriter writer(&memStream);
writer.beginArray();
// Slide state
WriteStateObject(writer, kSlideStateName, fSlides[fCurrentSlide]->getName().c_str(),
[this](SkJSONWriter& writer) {
for(const auto& slide : fSlides) {
writer.appendString(slide->getName().c_str());
}
});
// Backend state
WriteStateObject(writer, kBackendStateName, kBackendTypeStrings[fBackendType],
[](SkJSONWriter& writer) {
for (const auto& str : kBackendTypeStrings) {
writer.appendString(str);
}
});
// MSAA state
const auto countString = SkStringPrintf("%d", fWindow->sampleCount());
WriteStateObject(writer, kMSAAStateName, countString.c_str(),
[this](SkJSONWriter& writer) {
writer.appendS32(0);
if (sk_app::Window::kRaster_BackendType == fBackendType) {
return;
}
for (int msaa : {4, 8, 16}) {
writer.appendS32(msaa);
}
});
// Path renderer state
GpuPathRenderers pr = fWindow->getRequestedDisplayParams().fGrContextOptions.fGpuPathRenderers;
WriteStateObject(writer, kPathRendererStateName, gPathRendererNames[pr].c_str(),
[this](SkJSONWriter& writer) {
auto ctx = fWindow->directContext();
if (!ctx) {
writer.appendString("Software");
} else {
writer.appendString(gPathRendererNames[GpuPathRenderers::kDefault].c_str());
#if SK_GPU_V1
if (fWindow->sampleCount() > 1 || FLAGS_dmsaa) {
const auto* caps = ctx->priv().caps();
if (skgpu::v1::AtlasPathRenderer::IsSupported(ctx)) {
writer.appendString(
gPathRendererNames[GpuPathRenderers::kAtlas].c_str());
}
if (skgpu::v1::TessellationPathRenderer::IsSupported(*caps)) {
writer.appendString(
gPathRendererNames[GpuPathRenderers::kTessellation].c_str());
}
}
#endif
if (1 == fWindow->sampleCount()) {
writer.appendString(gPathRendererNames[GpuPathRenderers::kSmall].c_str());
}
writer.appendString(gPathRendererNames[GpuPathRenderers::kTriangulating].c_str());
writer.appendString(gPathRendererNames[GpuPathRenderers::kNone].c_str());
}
});
// Softkey state
WriteStateObject(writer, kSoftkeyStateName, kSoftkeyHint,
[this](SkJSONWriter& writer) {
writer.appendString(kSoftkeyHint);
for (const auto& softkey : fCommands.getCommandsAsSoftkeys()) {
writer.appendString(softkey.c_str());
}
});
writer.endArray();
writer.flush();
auto data = memStream.detachAsData();
// TODO: would be cool to avoid this copy
const SkString cstring(static_cast<const char*>(data->data()), data->size());
fWindow->setUIState(cstring.c_str());
}
void Viewer::onUIStateChanged(const SkString& stateName, const SkString& stateValue) {
// For those who will add more features to handle the state change in this function:
// After the change, please call updateUIState no notify the frontend (e.g., Android app).
// For example, after slide change, updateUIState is called inside setupCurrentSlide;
// after backend change, updateUIState is called in this function.
if (stateName.equals(kSlideStateName)) {
for (int i = 0; i < fSlides.count(); ++i) {
if (fSlides[i]->getName().equals(stateValue)) {
this->setCurrentSlide(i);
return;
}
}
SkDebugf("Slide not found: %s", stateValue.c_str());
} else if (stateName.equals(kBackendStateName)) {
for (int i = 0; i < sk_app::Window::kBackendTypeCount; i++) {
if (stateValue.equals(kBackendTypeStrings[i])) {
if (fBackendType != i) {
fBackendType = (sk_app::Window::BackendType)i;
for(auto& slide : fSlides) {
slide->gpuTeardown();
}
fWindow->detach();
fWindow->attach(backend_type_for_window(fBackendType));
}
break;
}
}
} else if (stateName.equals(kMSAAStateName)) {
DisplayParams params = fWindow->getRequestedDisplayParams();
int sampleCount = atoi(stateValue.c_str());
if (sampleCount != params.fMSAASampleCount) {
params.fMSAASampleCount = sampleCount;
fWindow->setRequestedDisplayParams(params);
fWindow->inval();
this->updateTitle();
this->updateUIState();
}
} else if (stateName.equals(kPathRendererStateName)) {
DisplayParams params = fWindow->getRequestedDisplayParams();
for (const auto& pair : gPathRendererNames) {
if (pair.second == stateValue.c_str()) {
if (params.fGrContextOptions.fGpuPathRenderers != pair.first) {
params.fGrContextOptions.fGpuPathRenderers = pair.first;
fWindow->setRequestedDisplayParams(params);
fWindow->inval();
this->updateTitle();
this->updateUIState();
}
break;
}
}
} else if (stateName.equals(kSoftkeyStateName)) {
if (!stateValue.equals(kSoftkeyHint)) {
fCommands.onSoftkey(stateValue);
this->updateUIState(); // This is still needed to reset the value to kSoftkeyHint
}
} else if (stateName.equals(kRefreshStateName)) {
// This state is actually NOT in the UI state.
// We use this to allow Android to quickly set bool fRefresh.
fRefresh = stateValue.equals(kON);
} else {
SkDebugf("Unknown stateName: %s", stateName.c_str());
}
}
bool Viewer::onKey(skui::Key key, skui::InputState state, skui::ModifierKey modifiers) {
return fCommands.onKey(key, state, modifiers);
}
bool Viewer::onChar(SkUnichar c, skui::ModifierKey modifiers) {
if (fSlides[fCurrentSlide]->onChar(c)) {
fWindow->inval();
return true;
} else {
return fCommands.onChar(c, modifiers);
}
}