108bbe2522
The optimizer can now turn the expression `half4(1).xyz` into `half3(1)`, or `half4(1).w` into `1`. This is actually a somewhat common case when inlining chains of fragment processors, as inputs are often overridden to `half4(1)` or `half4(0)`. This optimization also applies to more complex cases, e.g.: `half2(anyFunc(sqrt(2))).yxyx` --> `half4(anyFunc(sqrt(2)))` Since the interior of the constructor is always evaluated once in either case, it does not actually matter what the constructor contains. Change-Id: I8d5f358502eaa8e35d4968e74fbd6b0ce2ab6365 Bug: skia:10954 Reviewed-on: https://skia-review.googlesource.com/c/skia/+/335818 Commit-Queue: John Stiles <johnstiles@google.com> Reviewed-by: Ethan Nicholas <ethannicholas@google.com> Auto-Submit: John Stiles <johnstiles@google.com>
678 lines
27 KiB
C++
678 lines
27 KiB
C++
/*
|
|
* Copyright 2016 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "src/sksl/SkSLCFGGenerator.h"
|
|
|
|
#include "src/sksl/ir/SkSLBinaryExpression.h"
|
|
#include "src/sksl/ir/SkSLConstructor.h"
|
|
#include "src/sksl/ir/SkSLDoStatement.h"
|
|
#include "src/sksl/ir/SkSLExpressionStatement.h"
|
|
#include "src/sksl/ir/SkSLExternalFunctionCall.h"
|
|
#include "src/sksl/ir/SkSLFieldAccess.h"
|
|
#include "src/sksl/ir/SkSLForStatement.h"
|
|
#include "src/sksl/ir/SkSLFunctionCall.h"
|
|
#include "src/sksl/ir/SkSLIfStatement.h"
|
|
#include "src/sksl/ir/SkSLIndexExpression.h"
|
|
#include "src/sksl/ir/SkSLPostfixExpression.h"
|
|
#include "src/sksl/ir/SkSLPrefixExpression.h"
|
|
#include "src/sksl/ir/SkSLReturnStatement.h"
|
|
#include "src/sksl/ir/SkSLSwitchStatement.h"
|
|
#include "src/sksl/ir/SkSLSwizzle.h"
|
|
#include "src/sksl/ir/SkSLTernaryExpression.h"
|
|
#include "src/sksl/ir/SkSLWhileStatement.h"
|
|
|
|
namespace SkSL {
|
|
|
|
void BasicBlock::Node::setExpression(std::unique_ptr<Expression> expr, ProgramUsage* usage) {
|
|
SkASSERT(!this->isStatement());
|
|
usage->remove(fExpression->get());
|
|
*fExpression = std::move(expr);
|
|
}
|
|
|
|
void BasicBlock::Node::setStatement(std::unique_ptr<Statement> stmt, ProgramUsage* usage) {
|
|
SkASSERT(!this->isExpression());
|
|
// See comment in header - we assume that stmt was already counted in usage (it was a subset
|
|
// of fStatement). There is no way to verify that, unfortunately.
|
|
usage->remove(fStatement->get());
|
|
*fStatement = std::move(stmt);
|
|
}
|
|
|
|
BlockId CFG::newBlock() {
|
|
BlockId result = fBlocks.size();
|
|
fBlocks.emplace_back();
|
|
if (fBlocks.size() > 1) {
|
|
this->addExit(fCurrent, result);
|
|
}
|
|
fCurrent = result;
|
|
return result;
|
|
}
|
|
|
|
BlockId CFG::newIsolatedBlock() {
|
|
BlockId result = fBlocks.size();
|
|
fBlocks.emplace_back();
|
|
return result;
|
|
}
|
|
|
|
void CFG::addExit(BlockId from, BlockId to) {
|
|
BasicBlock::ExitArray& exits = fBlocks[from].fExits;
|
|
if (std::find(exits.begin(), exits.end(), to) == exits.end()) {
|
|
exits.push_back(to);
|
|
}
|
|
if (from == 0 || fBlocks[from].fIsReachable) {
|
|
fBlocks[to].fIsReachable = true;
|
|
}
|
|
}
|
|
|
|
#ifdef SK_DEBUG
|
|
void CFG::dump() const {
|
|
for (size_t i = 0; i < fBlocks.size(); i++) {
|
|
printf("Block %zu\n-------\n", i);
|
|
fBlocks[i].dump();
|
|
}
|
|
}
|
|
|
|
void BasicBlock::dump() const {
|
|
printf("Before: [");
|
|
const char* separator = "";
|
|
fBefore.foreach([&](const Variable* var, std::unique_ptr<Expression>* expr) {
|
|
printf("%s%s = %s", separator,
|
|
var->description().c_str(),
|
|
expr ? (*expr)->description().c_str() : "<undefined>");
|
|
separator = ", ";
|
|
});
|
|
printf("]\nIs Reachable: [%s]\n", fIsReachable ? "yes" : "no");
|
|
for (size_t j = 0; j < fNodes.size(); j++) {
|
|
const BasicBlock::Node& n = fNodes[j];
|
|
printf("Node %zu (%p): %s\n", j, &n, n.description().c_str());
|
|
}
|
|
printf("Exits: [");
|
|
separator = "";
|
|
for (BlockId b : fExits) {
|
|
printf("%s%zu", separator, b);
|
|
separator = ", ";
|
|
}
|
|
printf("]\n\n");
|
|
}
|
|
#endif
|
|
|
|
bool BasicBlock::tryRemoveExpressionBefore(std::vector<BasicBlock::Node>::iterator* iter,
|
|
Expression* e) {
|
|
if (e->is<TernaryExpression>()) {
|
|
return false;
|
|
}
|
|
bool result;
|
|
if ((*iter)->isExpression()) {
|
|
SkASSERT((*iter)->expression()->get() != e);
|
|
Expression* old = (*iter)->expression()->get();
|
|
do {
|
|
if ((*iter) == fNodes.begin()) {
|
|
return false;
|
|
}
|
|
--(*iter);
|
|
} while (!(*iter)->isExpression() || (*iter)->expression()->get() != e);
|
|
|
|
result = this->tryRemoveExpression(iter);
|
|
|
|
while (!(*iter)->isExpression() || (*iter)->expression()->get() != old) {
|
|
SkASSERT(*iter != fNodes.end());
|
|
++(*iter);
|
|
}
|
|
} else {
|
|
Statement* old = (*iter)->statement()->get();
|
|
do {
|
|
if ((*iter) == fNodes.begin()) {
|
|
return false;
|
|
}
|
|
--(*iter);
|
|
} while (!(*iter)->isExpression() || (*iter)->expression()->get() != e);
|
|
|
|
result = this->tryRemoveExpression(iter);
|
|
|
|
while (!(*iter)->isStatement() || (*iter)->statement()->get() != old) {
|
|
SkASSERT(*iter != fNodes.end());
|
|
++(*iter);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
bool BasicBlock::tryRemoveLValueBefore(std::vector<BasicBlock::Node>::iterator* iter,
|
|
Expression* lvalue) {
|
|
switch (lvalue->kind()) {
|
|
case Expression::Kind::kExternalValue: // fall through
|
|
case Expression::Kind::kVariableReference:
|
|
return true;
|
|
case Expression::Kind::kSwizzle:
|
|
return this->tryRemoveLValueBefore(iter, lvalue->as<Swizzle>().base().get());
|
|
case Expression::Kind::kFieldAccess:
|
|
return this->tryRemoveLValueBefore(iter, lvalue->as<FieldAccess>().base().get());
|
|
case Expression::Kind::kIndex: {
|
|
IndexExpression& indexExpr = lvalue->as<IndexExpression>();
|
|
if (!this->tryRemoveLValueBefore(iter, indexExpr.base().get())) {
|
|
return false;
|
|
}
|
|
return this->tryRemoveExpressionBefore(iter, indexExpr.index().get());
|
|
}
|
|
case Expression::Kind::kTernary: {
|
|
TernaryExpression& ternary = lvalue->as<TernaryExpression>();
|
|
if (!this->tryRemoveExpressionBefore(iter, ternary.test().get())) {
|
|
return false;
|
|
}
|
|
if (!this->tryRemoveLValueBefore(iter, ternary.ifTrue().get())) {
|
|
return false;
|
|
}
|
|
return this->tryRemoveLValueBefore(iter, ternary.ifFalse().get());
|
|
}
|
|
default:
|
|
#ifdef SK_DEBUG
|
|
ABORT("invalid lvalue: %s\n", lvalue->description().c_str());
|
|
#endif
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool BasicBlock::tryRemoveExpression(std::vector<BasicBlock::Node>::iterator* iter) {
|
|
Expression* expr = (*iter)->expression()->get();
|
|
switch (expr->kind()) {
|
|
case Expression::Kind::kBinary: {
|
|
BinaryExpression& b = expr->as<BinaryExpression>();
|
|
if (b.getOperator() == Token::Kind::TK_EQ) {
|
|
if (!this->tryRemoveLValueBefore(iter, b.left().get())) {
|
|
return false;
|
|
}
|
|
} else if (!this->tryRemoveExpressionBefore(iter, b.left().get())) {
|
|
return false;
|
|
}
|
|
if (!this->tryRemoveExpressionBefore(iter, b.right().get())) {
|
|
return false;
|
|
}
|
|
SkASSERT((*iter)->expression()->get() == expr);
|
|
*iter = fNodes.erase(*iter);
|
|
return true;
|
|
}
|
|
case Expression::Kind::kTernary: {
|
|
// ternaries cross basic block boundaries, must regenerate the CFG to remove it
|
|
return false;
|
|
}
|
|
case Expression::Kind::kFieldAccess: {
|
|
FieldAccess& f = expr->as<FieldAccess>();
|
|
if (!this->tryRemoveExpressionBefore(iter, f.base().get())) {
|
|
return false;
|
|
}
|
|
*iter = fNodes.erase(*iter);
|
|
return true;
|
|
}
|
|
case Expression::Kind::kSwizzle: {
|
|
Swizzle& s = expr->as<Swizzle>();
|
|
if (s.base() && !this->tryRemoveExpressionBefore(iter, s.base().get())) {
|
|
return false;
|
|
}
|
|
*iter = fNodes.erase(*iter);
|
|
return true;
|
|
}
|
|
case Expression::Kind::kIndex: {
|
|
IndexExpression& idx = expr->as<IndexExpression>();
|
|
if (!this->tryRemoveExpressionBefore(iter, idx.base().get())) {
|
|
return false;
|
|
}
|
|
if (!this->tryRemoveExpressionBefore(iter, idx.index().get())) {
|
|
return false;
|
|
}
|
|
*iter = fNodes.erase(*iter);
|
|
return true;
|
|
}
|
|
case Expression::Kind::kConstructor: {
|
|
Constructor& c = expr->as<Constructor>();
|
|
for (auto& arg : c.arguments()) {
|
|
if (!this->tryRemoveExpressionBefore(iter, arg.get())) {
|
|
return false;
|
|
}
|
|
SkASSERT((*iter)->expression()->get() == expr);
|
|
}
|
|
*iter = fNodes.erase(*iter);
|
|
return true;
|
|
}
|
|
case Expression::Kind::kFunctionCall: {
|
|
FunctionCall& f = expr->as<FunctionCall>();
|
|
for (auto& arg : f.arguments()) {
|
|
if (!this->tryRemoveExpressionBefore(iter, arg.get())) {
|
|
return false;
|
|
}
|
|
SkASSERT((*iter)->expression()->get() == expr);
|
|
}
|
|
*iter = fNodes.erase(*iter);
|
|
return true;
|
|
}
|
|
case Expression::Kind::kPrefix:
|
|
if (!this->tryRemoveExpressionBefore(iter,
|
|
expr->as<PrefixExpression>().operand().get())) {
|
|
return false;
|
|
}
|
|
*iter = fNodes.erase(*iter);
|
|
return true;
|
|
case Expression::Kind::kPostfix:
|
|
if (!this->tryRemoveExpressionBefore(iter,
|
|
expr->as<PostfixExpression>().operand().get())) {
|
|
return false;
|
|
}
|
|
*iter = fNodes.erase(*iter);
|
|
return true;
|
|
case Expression::Kind::kBoolLiteral: // fall through
|
|
case Expression::Kind::kFloatLiteral: // fall through
|
|
case Expression::Kind::kIntLiteral: // fall through
|
|
case Expression::Kind::kSetting: // fall through
|
|
case Expression::Kind::kVariableReference:
|
|
*iter = fNodes.erase(*iter);
|
|
return true;
|
|
default:
|
|
#ifdef SK_DEBUG
|
|
ABORT("unhandled expression: %s\n", expr->description().c_str());
|
|
#endif
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool BasicBlock::tryInsertExpression(std::vector<BasicBlock::Node>::iterator* iter,
|
|
std::unique_ptr<Expression>* expr) {
|
|
switch ((*expr)->kind()) {
|
|
case Expression::Kind::kBinary: {
|
|
BinaryExpression& b = expr->get()->as<BinaryExpression>();
|
|
if (!this->tryInsertExpression(iter, &b.right())) {
|
|
return false;
|
|
}
|
|
|
|
++(*iter);
|
|
if (!this->tryInsertExpression(iter, &b.left())) {
|
|
return false;
|
|
}
|
|
++(*iter);
|
|
*iter = fNodes.insert(*iter,
|
|
BasicBlock::MakeExpression(expr, /*constantPropagation=*/true));
|
|
return true;
|
|
}
|
|
case Expression::Kind::kBoolLiteral: // fall through
|
|
case Expression::Kind::kFloatLiteral: // fall through
|
|
case Expression::Kind::kIntLiteral: // fall through
|
|
case Expression::Kind::kVariableReference: {
|
|
*iter = fNodes.insert(*iter,
|
|
BasicBlock::MakeExpression(expr, /*constantPropagation=*/true));
|
|
return true;
|
|
}
|
|
case Expression::Kind::kConstructor: {
|
|
Constructor& c = expr->get()->as<Constructor>();
|
|
for (auto& arg : c.arguments()) {
|
|
if (!this->tryInsertExpression(iter, &arg)) {
|
|
return false;
|
|
}
|
|
++(*iter);
|
|
}
|
|
*iter = fNodes.insert(*iter,
|
|
BasicBlock::MakeExpression(expr, /*constantPropagation=*/true));
|
|
return true;
|
|
}
|
|
case Expression::Kind::kSwizzle: {
|
|
Swizzle& s = expr->get()->as<Swizzle>();
|
|
if (!this->tryInsertExpression(iter, &s.base())) {
|
|
return false;
|
|
}
|
|
++(*iter);
|
|
*iter = fNodes.insert(*iter,
|
|
BasicBlock::MakeExpression(expr, /*constantPropagation=*/true));
|
|
return true;
|
|
}
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void CFGGenerator::addExpression(CFG& cfg, std::unique_ptr<Expression>* e, bool constantPropagate) {
|
|
SkASSERT(e);
|
|
switch ((*e)->kind()) {
|
|
case Expression::Kind::kBinary: {
|
|
BinaryExpression& b = e->get()->as<BinaryExpression>();
|
|
Token::Kind op = b.getOperator();
|
|
switch (op) {
|
|
case Token::Kind::TK_LOGICALAND: // fall through
|
|
case Token::Kind::TK_LOGICALOR: {
|
|
// this isn't as precise as it could be -- we don't bother to track that if we
|
|
// early exit from a logical and/or, we know which branch of an 'if' we're going
|
|
// to hit -- but it won't make much difference in practice.
|
|
this->addExpression(cfg, &b.left(), constantPropagate);
|
|
BlockId start = cfg.fCurrent;
|
|
cfg.newBlock();
|
|
this->addExpression(cfg, &b.right(), constantPropagate);
|
|
cfg.newBlock();
|
|
cfg.addExit(start, cfg.fCurrent);
|
|
cfg.currentBlock().fNodes.push_back(
|
|
BasicBlock::MakeExpression(e, constantPropagate));
|
|
break;
|
|
}
|
|
case Token::Kind::TK_EQ: {
|
|
this->addExpression(cfg, &b.right(), constantPropagate);
|
|
this->addLValue(cfg, &b.left());
|
|
cfg.currentBlock().fNodes.push_back(
|
|
BasicBlock::MakeExpression(e, constantPropagate));
|
|
break;
|
|
}
|
|
default:
|
|
this->addExpression(cfg, &b.left(),
|
|
!Compiler::IsAssignment(b.getOperator()));
|
|
this->addExpression(cfg, &b.right(), constantPropagate);
|
|
cfg.currentBlock().fNodes.push_back(
|
|
BasicBlock::MakeExpression(e, constantPropagate));
|
|
}
|
|
break;
|
|
}
|
|
case Expression::Kind::kConstructor: {
|
|
Constructor& c = e->get()->as<Constructor>();
|
|
for (auto& arg : c.arguments()) {
|
|
this->addExpression(cfg, &arg, constantPropagate);
|
|
}
|
|
cfg.currentBlock().fNodes.push_back(BasicBlock::MakeExpression(e, constantPropagate));
|
|
break;
|
|
}
|
|
case Expression::Kind::kExternalFunctionCall: {
|
|
ExternalFunctionCall& c = e->get()->as<ExternalFunctionCall>();
|
|
for (auto& arg : c.arguments()) {
|
|
this->addExpression(cfg, &arg, constantPropagate);
|
|
}
|
|
cfg.currentBlock().fNodes.push_back(BasicBlock::MakeExpression(e, constantPropagate));
|
|
break;
|
|
}
|
|
case Expression::Kind::kFunctionCall: {
|
|
FunctionCall& c = e->get()->as<FunctionCall>();
|
|
for (auto& arg : c.arguments()) {
|
|
this->addExpression(cfg, &arg, constantPropagate);
|
|
}
|
|
cfg.currentBlock().fNodes.push_back(BasicBlock::MakeExpression(e, constantPropagate));
|
|
break;
|
|
}
|
|
case Expression::Kind::kFieldAccess: {
|
|
this->addExpression(cfg, &e->get()->as<FieldAccess>().base(), constantPropagate);
|
|
cfg.currentBlock().fNodes.push_back(BasicBlock::MakeExpression(e, constantPropagate));
|
|
break;
|
|
}
|
|
case Expression::Kind::kIndex: {
|
|
IndexExpression& indexExpr = e->get()->as<IndexExpression>();
|
|
|
|
this->addExpression(cfg, &indexExpr.base(), constantPropagate);
|
|
this->addExpression(cfg, &indexExpr.index(), constantPropagate);
|
|
cfg.currentBlock().fNodes.push_back(BasicBlock::MakeExpression(e, constantPropagate));
|
|
break;
|
|
}
|
|
case Expression::Kind::kPrefix: {
|
|
PrefixExpression& p = e->get()->as<PrefixExpression>();
|
|
this->addExpression(cfg, &p.operand(), constantPropagate &&
|
|
p.getOperator() != Token::Kind::TK_PLUSPLUS &&
|
|
p.getOperator() != Token::Kind::TK_MINUSMINUS);
|
|
cfg.currentBlock().fNodes.push_back(BasicBlock::MakeExpression(e, constantPropagate));
|
|
break;
|
|
}
|
|
case Expression::Kind::kPostfix:
|
|
this->addExpression(cfg, &e->get()->as<PostfixExpression>().operand(), false);
|
|
cfg.currentBlock().fNodes.push_back(BasicBlock::MakeExpression(e, constantPropagate));
|
|
break;
|
|
case Expression::Kind::kSwizzle:
|
|
this->addExpression(cfg, &e->get()->as<Swizzle>().base(), constantPropagate);
|
|
cfg.currentBlock().fNodes.push_back(BasicBlock::MakeExpression(e, constantPropagate));
|
|
break;
|
|
case Expression::Kind::kBoolLiteral: // fall through
|
|
case Expression::Kind::kExternalValue: // fall through
|
|
case Expression::Kind::kFloatLiteral: // fall through
|
|
case Expression::Kind::kIntLiteral: // fall through
|
|
case Expression::Kind::kNullLiteral: // fall through
|
|
case Expression::Kind::kSetting: // fall through
|
|
case Expression::Kind::kVariableReference:
|
|
cfg.currentBlock().fNodes.push_back(BasicBlock::MakeExpression(e, constantPropagate));
|
|
break;
|
|
case Expression::Kind::kTernary: {
|
|
TernaryExpression& t = e->get()->as<TernaryExpression>();
|
|
this->addExpression(cfg, &t.test(), constantPropagate);
|
|
cfg.currentBlock().fNodes.push_back(BasicBlock::MakeExpression(e, constantPropagate));
|
|
BlockId start = cfg.fCurrent;
|
|
cfg.newBlock();
|
|
this->addExpression(cfg, &t.ifTrue(), constantPropagate);
|
|
BlockId next = cfg.newBlock();
|
|
cfg.fCurrent = start;
|
|
cfg.newBlock();
|
|
this->addExpression(cfg, &t.ifFalse(), constantPropagate);
|
|
cfg.addExit(cfg.fCurrent, next);
|
|
cfg.fCurrent = next;
|
|
break;
|
|
}
|
|
case Expression::Kind::kFunctionReference: // fall through
|
|
case Expression::Kind::kTypeReference: // fall through
|
|
case Expression::Kind::kDefined:
|
|
SkASSERT(false);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// adds expressions that are evaluated as part of resolving an lvalue
|
|
void CFGGenerator::addLValue(CFG& cfg, std::unique_ptr<Expression>* e) {
|
|
switch ((*e)->kind()) {
|
|
case Expression::Kind::kFieldAccess:
|
|
this->addLValue(cfg, &e->get()->as<FieldAccess>().base());
|
|
break;
|
|
case Expression::Kind::kIndex: {
|
|
IndexExpression& indexExpr = e->get()->as<IndexExpression>();
|
|
this->addLValue(cfg, &indexExpr.base());
|
|
this->addExpression(cfg, &indexExpr.index(), /*constantPropagate=*/true);
|
|
break;
|
|
}
|
|
case Expression::Kind::kSwizzle:
|
|
this->addLValue(cfg, &e->get()->as<Swizzle>().base());
|
|
break;
|
|
case Expression::Kind::kExternalValue: // fall through
|
|
case Expression::Kind::kVariableReference:
|
|
break;
|
|
case Expression::Kind::kTernary: {
|
|
TernaryExpression& ternary = e->get()->as<TernaryExpression>();
|
|
this->addExpression(cfg, &ternary.test(), /*constantPropagate=*/true);
|
|
// Technically we will of course only evaluate one or the other, but if the test turns
|
|
// out to be constant, the ternary will get collapsed down to just one branch anyway. So
|
|
// it should be ok to pretend that we always evaluate both branches here.
|
|
this->addLValue(cfg, &ternary.ifTrue());
|
|
this->addLValue(cfg, &ternary.ifFalse());
|
|
break;
|
|
}
|
|
default:
|
|
// not an lvalue, can't happen
|
|
SkASSERT(false);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static bool is_true(Expression& expr) {
|
|
return expr.is<BoolLiteral>() && expr.as<BoolLiteral>().value();
|
|
}
|
|
|
|
void CFGGenerator::addStatement(CFG& cfg, std::unique_ptr<Statement>* s) {
|
|
switch ((*s)->kind()) {
|
|
case Statement::Kind::kBlock: {
|
|
Block& block = (*s)->as<Block>();
|
|
for (std::unique_ptr<Statement>& child : block.children()) {
|
|
addStatement(cfg, &child);
|
|
}
|
|
break;
|
|
}
|
|
case Statement::Kind::kIf: {
|
|
IfStatement& ifs = (*s)->as<IfStatement>();
|
|
this->addExpression(cfg, &ifs.test(), /*constantPropagate=*/true);
|
|
cfg.currentBlock().fNodes.push_back(BasicBlock::MakeStatement(s));
|
|
BlockId start = cfg.fCurrent;
|
|
cfg.newBlock();
|
|
this->addStatement(cfg, &ifs.ifTrue());
|
|
BlockId next = cfg.newBlock();
|
|
if (ifs.ifFalse()) {
|
|
cfg.fCurrent = start;
|
|
cfg.newBlock();
|
|
this->addStatement(cfg, &ifs.ifFalse());
|
|
cfg.addExit(cfg.fCurrent, next);
|
|
cfg.fCurrent = next;
|
|
} else {
|
|
cfg.addExit(start, next);
|
|
}
|
|
break;
|
|
}
|
|
case Statement::Kind::kExpression: {
|
|
this->addExpression(cfg, &(*s)->as<ExpressionStatement>().expression(),
|
|
/*constantPropagate=*/true);
|
|
cfg.currentBlock().fNodes.push_back(BasicBlock::MakeStatement(s));
|
|
break;
|
|
}
|
|
case Statement::Kind::kVarDeclaration: {
|
|
VarDeclaration& vd = (*s)->as<VarDeclaration>();
|
|
if (vd.value()) {
|
|
this->addExpression(cfg, &vd.value(), /*constantPropagate=*/true);
|
|
}
|
|
cfg.currentBlock().fNodes.push_back(BasicBlock::MakeStatement(s));
|
|
break;
|
|
}
|
|
case Statement::Kind::kDiscard:
|
|
cfg.currentBlock().fNodes.push_back(BasicBlock::MakeStatement(s));
|
|
cfg.fCurrent = cfg.newIsolatedBlock();
|
|
break;
|
|
case Statement::Kind::kReturn: {
|
|
ReturnStatement& r = (*s)->as<ReturnStatement>();
|
|
if (r.expression()) {
|
|
this->addExpression(cfg, &r.expression(), /*constantPropagate=*/true);
|
|
}
|
|
cfg.currentBlock().fNodes.push_back(BasicBlock::MakeStatement(s));
|
|
cfg.fCurrent = cfg.newIsolatedBlock();
|
|
break;
|
|
}
|
|
case Statement::Kind::kBreak:
|
|
cfg.currentBlock().fNodes.push_back(BasicBlock::MakeStatement(s));
|
|
cfg.addExit(cfg.fCurrent, fLoopExits.top());
|
|
cfg.fCurrent = cfg.newIsolatedBlock();
|
|
break;
|
|
case Statement::Kind::kContinue:
|
|
cfg.currentBlock().fNodes.push_back(BasicBlock::MakeStatement(s));
|
|
cfg.addExit(cfg.fCurrent, fLoopContinues.top());
|
|
cfg.fCurrent = cfg.newIsolatedBlock();
|
|
break;
|
|
case Statement::Kind::kWhile: {
|
|
WhileStatement& w = (*s)->as<WhileStatement>();
|
|
BlockId loopStart = cfg.newBlock();
|
|
fLoopContinues.push(loopStart);
|
|
BlockId loopExit = cfg.newIsolatedBlock();
|
|
fLoopExits.push(loopExit);
|
|
this->addExpression(cfg, &w.test(), /*constantPropagate=*/true);
|
|
BlockId test = cfg.fCurrent;
|
|
if (!is_true(*w.test())) {
|
|
cfg.addExit(test, loopExit);
|
|
}
|
|
cfg.newBlock();
|
|
this->addStatement(cfg, &w.statement());
|
|
cfg.addExit(cfg.fCurrent, loopStart);
|
|
fLoopContinues.pop();
|
|
fLoopExits.pop();
|
|
cfg.fCurrent = loopExit;
|
|
break;
|
|
}
|
|
case Statement::Kind::kDo: {
|
|
DoStatement& d = (*s)->as<DoStatement>();
|
|
BlockId loopStart = cfg.newBlock();
|
|
fLoopContinues.push(loopStart);
|
|
BlockId loopExit = cfg.newIsolatedBlock();
|
|
fLoopExits.push(loopExit);
|
|
this->addStatement(cfg, &d.statement());
|
|
this->addExpression(cfg, &d.test(), /*constantPropagate=*/true);
|
|
cfg.addExit(cfg.fCurrent, loopExit);
|
|
cfg.addExit(cfg.fCurrent, loopStart);
|
|
fLoopContinues.pop();
|
|
fLoopExits.pop();
|
|
cfg.fCurrent = loopExit;
|
|
break;
|
|
}
|
|
case Statement::Kind::kFor: {
|
|
ForStatement& f = (*s)->as<ForStatement>();
|
|
if (f.initializer()) {
|
|
this->addStatement(cfg, &f.initializer());
|
|
}
|
|
BlockId loopStart = cfg.newBlock();
|
|
BlockId next = cfg.newIsolatedBlock();
|
|
fLoopContinues.push(next);
|
|
BlockId loopExit = cfg.newIsolatedBlock();
|
|
fLoopExits.push(loopExit);
|
|
if (f.test()) {
|
|
this->addExpression(cfg, &f.test(), /*constantPropagate=*/true);
|
|
// this isn't quite right; we should have an exit from here to the loop exit, and
|
|
// remove the exit from the loop body to the loop exit. Structuring it like this
|
|
// forces the optimizer to believe that the loop body is always executed at least
|
|
// once. While not strictly correct, this avoids incorrect "variable not assigned"
|
|
// errors on variables which are assigned within the loop. The correct solution to
|
|
// this is to analyze the loop to see whether or not at least one iteration is
|
|
// guaranteed to happen, but for the time being we take the easy way out.
|
|
}
|
|
cfg.newBlock();
|
|
this->addStatement(cfg, &f.statement());
|
|
cfg.addExit(cfg.fCurrent, next);
|
|
cfg.fCurrent = next;
|
|
if (f.next()) {
|
|
this->addExpression(cfg, &f.next(), /*constantPropagate=*/true);
|
|
}
|
|
cfg.addExit(cfg.fCurrent, loopStart);
|
|
cfg.addExit(cfg.fCurrent, loopExit);
|
|
fLoopContinues.pop();
|
|
fLoopExits.pop();
|
|
cfg.fCurrent = loopExit;
|
|
break;
|
|
}
|
|
case Statement::Kind::kSwitch: {
|
|
SwitchStatement& ss = (*s)->as<SwitchStatement>();
|
|
this->addExpression(cfg, &ss.value(), /*constantPropagate=*/true);
|
|
cfg.currentBlock().fNodes.push_back(BasicBlock::MakeStatement(s));
|
|
BlockId start = cfg.fCurrent;
|
|
BlockId switchExit = cfg.newIsolatedBlock();
|
|
fLoopExits.push(switchExit);
|
|
for (auto& c : ss.cases()) {
|
|
cfg.newBlock();
|
|
cfg.addExit(start, cfg.fCurrent);
|
|
if (c->value()) {
|
|
// technically this should go in the start block, but it doesn't actually matter
|
|
// because it must be constant. Not worth running two loops for.
|
|
this->addExpression(cfg, &c->value(), /*constantPropagate=*/true);
|
|
}
|
|
for (auto& caseStatement : c->statements()) {
|
|
this->addStatement(cfg, &caseStatement);
|
|
}
|
|
}
|
|
cfg.addExit(cfg.fCurrent, switchExit);
|
|
// note that unlike GLSL, our grammar requires the default case to be last
|
|
if (ss.cases().empty() || ss.cases().back()->value()) {
|
|
// switch does not have a default clause, mark that it can skip straight to the end
|
|
cfg.addExit(start, switchExit);
|
|
}
|
|
fLoopExits.pop();
|
|
cfg.fCurrent = switchExit;
|
|
break;
|
|
}
|
|
case Statement::Kind::kInlineMarker:
|
|
case Statement::Kind::kNop:
|
|
break;
|
|
default:
|
|
#ifdef SK_DEBUG
|
|
ABORT("unsupported statement: %s\n", (*s)->description().c_str());
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
|
|
CFG CFGGenerator::getCFG(FunctionDefinition& f) {
|
|
CFG result;
|
|
result.fStart = result.newBlock();
|
|
result.fCurrent = result.fStart;
|
|
this->addStatement(result, &f.body());
|
|
result.newBlock();
|
|
result.fExit = result.fCurrent;
|
|
return result;
|
|
}
|
|
|
|
} // namespace SkSL
|