skia2/tests/ChecksumTest.cpp

121 lines
4.8 KiB
C++

/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Test.h"
#include "SkChecksum.h"
#include "SkConsistentChecksum.h"
namespace skiatest {
class ChecksumTestClass : public Test {
public:
static Test* Factory(void*) {return SkNEW(ChecksumTestClass); }
protected:
virtual void onGetName(SkString* name) { name->set("Checksum"); }
virtual void onRun(Reporter* reporter) {
this->fReporter = reporter;
RunTest();
}
private:
enum Algorithm {
kSkChecksum,
kSkConsistentChecksum
};
// Call Compute(data, size) on the appropriate checksum algorithm,
// depending on this->fWhichAlgorithm.
uint32_t ComputeChecksum(uint32_t* data, size_t size) {
// Our checksum algorithms require 32-bit aligned data.
// If either of these tests fail, then the algorithm
// doesn't have a chance.
REPORTER_ASSERT_MESSAGE(fReporter,
reinterpret_cast<uintptr_t>(data) % 4 == 0,
"test data pointer is not 32-bit aligned");
REPORTER_ASSERT_MESSAGE(fReporter, SkIsAlign4(size),
"test data size is not 32-bit aligned");
switch(fWhichAlgorithm) {
case kSkChecksum:
return SkChecksum::Compute(data, size);
case kSkConsistentChecksum:
return SkConsistentChecksum::Compute(data, size);
default:
SkString message("fWhichAlgorithm has unknown value ");
message.appendf("%d", fWhichAlgorithm);
fReporter->reportFailed(message);
}
// we never get here
return 0;
}
// Confirm that the checksum algorithm (specified by fWhichAlgorithm)
// generates the same results if called twice over the same data.
void TestChecksumSelfConsistency(size_t buf_size) {
SkAutoMalloc storage(buf_size);
uint32_t* ptr = (uint32_t*)storage.get();
char* cptr = (char*)ptr;
sk_bzero(ptr, buf_size);
uint32_t prev = 0;
// assert that as we change values (from 0 to non-zero) in
// our buffer, we get a different value
for (size_t i = 0; i < buf_size; ++i) {
cptr[i] = (i & 0x7f) + 1; // need some non-zero value here
// Try checksums of different-sized chunks, but always
// 32-bit aligned and big enough to contain all the
// nonzero bytes.
size_t checksum_size = (((i/4)+1)*4);
REPORTER_ASSERT(fReporter, checksum_size <= buf_size);
uint32_t curr = ComputeChecksum(ptr, checksum_size);
REPORTER_ASSERT(fReporter, prev != curr);
uint32_t again = ComputeChecksum(ptr, checksum_size);
REPORTER_ASSERT(fReporter, again == curr);
prev = curr;
}
}
// Return the checksum of a portion of this static test data
// (8 bytes repeated twice): "1234567812345678"
uint32_t GetTestDataChecksum(size_t offset, size_t len) {
static char testbytes[] = "1234567812345678";
uint32_t* ptr = reinterpret_cast<uint32_t*>(testbytes);
return ComputeChecksum(ptr, len);
}
void RunTest() {
// Test self-consistency of checksum algorithms.
fWhichAlgorithm = kSkChecksum;
REPORTER_ASSERT(fReporter,
GetTestDataChecksum(0, 8) ==
GetTestDataChecksum(8, 8));
TestChecksumSelfConsistency(128);
fWhichAlgorithm = kSkConsistentChecksum;
REPORTER_ASSERT(fReporter,
GetTestDataChecksum(0, 8) ==
GetTestDataChecksum(8, 8));
TestChecksumSelfConsistency(128);
// Test checksum results that should be consistent across
// versions and platforms.
fWhichAlgorithm = kSkChecksum;
REPORTER_ASSERT(fReporter, ComputeChecksum(NULL, 0) == 0);
fWhichAlgorithm = kSkConsistentChecksum;
REPORTER_ASSERT(fReporter, ComputeChecksum(NULL, 0) == 0);
REPORTER_ASSERT(fReporter, GetTestDataChecksum(0, 8) == 0xa12fac2c);
REPORTER_ASSERT(fReporter, GetTestDataChecksum(8, 8) == 0xa12fac2c);
REPORTER_ASSERT(fReporter, GetTestDataChecksum(8, 4) == 0x34333231);
}
Reporter* fReporter;
Algorithm fWhichAlgorithm;
};
static TestRegistry gReg(ChecksumTestClass::Factory);
}