skia2/tests/GLProgramsTest.cpp
2015-01-21 11:52:36 -08:00

372 lines
13 KiB
C++

/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
// This is a GPU-backend specific test. It relies on static intializers to work
#include "SkTypes.h"
#if SK_SUPPORT_GPU && SK_ALLOW_STATIC_GLOBAL_INITIALIZERS
#include "GrContextFactory.h"
#include "GrInvariantOutput.h"
#include "GrOptDrawState.h"
#include "GrTest.h"
#include "GrXferProcessor.h"
#include "SkChecksum.h"
#include "SkRandom.h"
#include "Test.h"
#include "effects/GrConfigConversionEffect.h"
#include "effects/GrPorterDuffXferProcessor.h"
#include "gl/GrGLGpu.h"
#include "gl/GrGLPathRendering.h"
#include "gl/builders/GrGLProgramBuilder.h"
/*
* A dummy processor which just tries to insert a massive key and verify that it can retrieve the
* whole thing correctly
*/
static const uint32_t kMaxKeySize = 1024;
class GLBigKeyProcessor : public GrGLFragmentProcessor {
public:
GLBigKeyProcessor(const GrProcessor&) {}
virtual void emitCode(GrGLFPBuilder* builder,
const GrFragmentProcessor& fp,
const char* outputColor,
const char* inputColor,
const TransformedCoordsArray&,
const TextureSamplerArray&) {}
static void GenKey(const GrProcessor& processor, const GrGLCaps&, GrProcessorKeyBuilder* b) {
for (uint32_t i = 0; i < kMaxKeySize; i++) {
b->add32(i);
}
}
private:
typedef GrGLFragmentProcessor INHERITED;
};
class BigKeyProcessor : public GrFragmentProcessor {
public:
static GrFragmentProcessor* Create() {
GR_CREATE_STATIC_PROCESSOR(gBigKeyProcessor, BigKeyProcessor, ())
return SkRef(gBigKeyProcessor);
}
const char* name() const SK_OVERRIDE { return "Big Ole Key"; }
virtual void getGLProcessorKey(const GrGLCaps& caps,
GrProcessorKeyBuilder* b) const SK_OVERRIDE {
GLBigKeyProcessor::GenKey(*this, caps, b);
}
GrGLFragmentProcessor* createGLInstance() const SK_OVERRIDE {
return SkNEW_ARGS(GLBigKeyProcessor, (*this));
}
private:
BigKeyProcessor() {
this->initClassID<BigKeyProcessor>();
}
bool onIsEqual(const GrFragmentProcessor&) const SK_OVERRIDE { return true; }
void onComputeInvariantOutput(GrInvariantOutput* inout) const SK_OVERRIDE { }
GR_DECLARE_FRAGMENT_PROCESSOR_TEST;
typedef GrFragmentProcessor INHERITED;
};
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(BigKeyProcessor);
GrFragmentProcessor* BigKeyProcessor::TestCreate(SkRandom*,
GrContext*,
const GrDrawTargetCaps&,
GrTexture*[]) {
return BigKeyProcessor::Create();
}
/*
* Begin test code
*/
static const int kRenderTargetHeight = 1;
static const int kRenderTargetWidth = 1;
static GrRenderTarget* random_render_target(GrContext* context,
const GrCacheID& cacheId,
SkRandom* random) {
// setup render target
GrTextureParams params;
GrSurfaceDesc texDesc;
texDesc.fWidth = kRenderTargetWidth;
texDesc.fHeight = kRenderTargetHeight;
texDesc.fFlags = kRenderTarget_GrSurfaceFlag;
texDesc.fConfig = kRGBA_8888_GrPixelConfig;
texDesc.fOrigin = random->nextBool() == true ? kTopLeft_GrSurfaceOrigin :
kBottomLeft_GrSurfaceOrigin;
SkAutoTUnref<GrTexture> texture(context->findAndRefTexture(texDesc, cacheId, &params));
if (!texture) {
texture.reset(context->createTexture(&params, texDesc, cacheId, 0, 0));
if (!texture) {
return NULL;
}
}
return SkRef(texture->asRenderTarget());
}
static void set_random_xpf(GrContext* context, const GrDrawTargetCaps& caps, GrDrawState* ds,
SkRandom* random, GrTexture* dummyTextures[]) {
SkAutoTUnref<const GrXPFactory> xpf(
GrProcessorTestFactory<GrXPFactory>::CreateStage(random, context, caps, dummyTextures));
SkASSERT(xpf);
ds->setXPFactory(xpf.get());
}
static const GrGeometryProcessor* get_random_gp(GrContext* context,
const GrDrawTargetCaps& caps,
SkRandom* random,
GrTexture* dummyTextures[]) {
return GrProcessorTestFactory<GrGeometryProcessor>::CreateStage(random,
context,
caps,
dummyTextures);
}
static void set_random_color_coverage_stages(GrGLGpu* gpu,
GrDrawState* ds,
int maxStages,
bool usePathRendering,
SkRandom* random,
GrTexture* dummyTextures[]) {
int numProcs = random->nextULessThan(maxStages + 1);
int numColorProcs = random->nextULessThan(numProcs + 1);
int currTextureCoordSet = 0;
for (int s = 0; s < numProcs;) {
SkAutoTUnref<const GrFragmentProcessor> fp(
GrProcessorTestFactory<GrFragmentProcessor>::CreateStage(random,
gpu->getContext(),
*gpu->caps(),
dummyTextures));
SkASSERT(fp);
// If adding this effect would exceed the max texture coord set count then generate a
// new random effect.
if (usePathRendering && gpu->glPathRendering()->texturingMode() ==
GrGLPathRendering::FixedFunction_TexturingMode) {;
int numTransforms = fp->numTransforms();
if (currTextureCoordSet + numTransforms >
gpu->glCaps().maxFixedFunctionTextureCoords()) {
continue;
}
currTextureCoordSet += numTransforms;
}
// finally add the stage to the correct pipeline in the drawstate
if (s < numColorProcs) {
ds->addColorProcessor(fp);
} else {
ds->addCoverageProcessor(fp);
}
++s;
}
}
static void set_random_state(GrDrawState* ds, SkRandom* random) {
int state = 0;
for (int i = 1; i <= GrDrawState::kLast_StateBit; i <<= 1) {
state |= random->nextBool() * i;
}
ds->enableState(state);
}
// right now, the only thing we seem to care about in drawState's stencil is 'doesWrite()'
static void set_random_stencil(GrDrawState* ds, SkRandom* random) {
GR_STATIC_CONST_SAME_STENCIL(kDoesWriteStencil,
kReplace_StencilOp,
kReplace_StencilOp,
kAlways_StencilFunc,
0xffff,
0xffff,
0xffff);
GR_STATIC_CONST_SAME_STENCIL(kDoesNotWriteStencil,
kKeep_StencilOp,
kKeep_StencilOp,
kNever_StencilFunc,
0xffff,
0xffff,
0xffff);
if (random->nextBool()) {
ds->setStencil(kDoesWriteStencil);
} else {
ds->setStencil(kDoesNotWriteStencil);
}
}
bool GrDrawTarget::programUnitTest(int maxStages) {
GrGLGpu* gpu = static_cast<GrGLGpu*>(fContext->getGpu());
// setup dummy textures
GrSurfaceDesc dummyDesc;
dummyDesc.fFlags = kRenderTarget_GrSurfaceFlag;
dummyDesc.fConfig = kSkia8888_GrPixelConfig;
dummyDesc.fWidth = 34;
dummyDesc.fHeight = 18;
SkAutoTUnref<GrTexture> dummyTexture1(gpu->createTexture(dummyDesc, false, NULL, 0));
dummyDesc.fFlags = kNone_GrSurfaceFlags;
dummyDesc.fConfig = kAlpha_8_GrPixelConfig;
dummyDesc.fWidth = 16;
dummyDesc.fHeight = 22;
SkAutoTUnref<GrTexture> dummyTexture2(gpu->createTexture(dummyDesc, false, NULL, 0));
if (!dummyTexture1 || ! dummyTexture2) {
SkDebugf("Could not allocate dummy textures");
return false;
}
GrTexture* dummyTextures[] = {dummyTexture1.get(), dummyTexture2.get()};
// dummy scissor state
GrScissorState scissor;
// Setup texture cache id key
const GrCacheID::Domain glProgramsDomain = GrCacheID::GenerateDomain();
GrCacheID::Key key;
memset(&key, 0, sizeof(key));
key.fData32[0] = kRenderTargetWidth;
key.fData32[1] = kRenderTargetHeight;
GrCacheID glProgramsCacheID(glProgramsDomain, key);
// setup clip
SkRect screen = SkRect::MakeWH(SkIntToScalar(kRenderTargetWidth),
SkIntToScalar(kRenderTargetHeight));
SkClipStack stack;
stack.clipDevRect(screen, SkRegion::kReplace_Op, false);
// wrap the SkClipStack in a GrClipData
GrClipData clipData;
clipData.fClipStack = &stack;
this->setClip(&clipData);
SkRandom random;
static const int NUM_TESTS = 512;
for (int t = 0; t < NUM_TESTS;) {
// setup random render target(can fail)
SkAutoTUnref<GrRenderTarget> rt(random_render_target(fContext, glProgramsCacheID, &random));
if (!rt.get()) {
SkDebugf("Could not allocate render target");
return false;
}
GrDrawState ds;
ds.setRenderTarget(rt.get());
// if path rendering we have to setup a couple of things like the draw type
bool usePathRendering = gpu->glCaps().pathRenderingSupport() && random.nextBool();
// twiddle drawstate knobs randomly
bool hasGeometryProcessor = !usePathRendering;
SkAutoTUnref<const GrGeometryProcessor> gp;
SkAutoTUnref<const GrPathProcessor> pathProc;
if (hasGeometryProcessor) {
gp.reset(get_random_gp(fContext, gpu->glCaps(), &random, dummyTextures));
} else {
pathProc.reset(GrPathProcessor::Create(GrColor_WHITE));
}
set_random_color_coverage_stages(gpu,
&ds,
maxStages - hasGeometryProcessor,
usePathRendering,
&random,
dummyTextures);
// creates a random xfer processor factory on the draw state
set_random_xpf(fContext, gpu->glCaps(), &ds, &random, dummyTextures);
set_random_state(&ds, &random);
set_random_stencil(&ds, &random);
GrDeviceCoordTexture dstCopy;
const GrPrimitiveProcessor* primProc;
if (hasGeometryProcessor) {
primProc = gp.get();
} else {
primProc = pathProc.get();
}
if (!this->setupDstReadIfNecessary(&ds, &dstCopy, NULL)) {
SkDebugf("Couldn't setup dst read texture");
return false;
}
// create optimized draw state, setup readDst texture if required, and build a descriptor
// and program. ODS creation can fail, so we have to check
GrOptDrawState ods(ds, primProc, *gpu->caps(), scissor, &dstCopy);
if (ods.mustSkip()) {
continue;
}
GrBatchTracker bt;
primProc->initBatchTracker(&bt, ods.getInitBatchTracker());
GrProgramDesc desc;
gpu->buildProgramDesc(&desc, *primProc, ods, ods.descInfo(), bt);
GrGpu::DrawArgs args(primProc, &ods, &desc, &bt);
SkAutoTUnref<GrGLProgram> program(GrGLProgramBuilder::CreateProgram(args, gpu));
if (NULL == program.get()) {
SkDebugf("Failed to create program!");
return false;
}
// because occasionally optimized drawstate creation will fail for valid reasons, we only
// want to increment on success
++t;
}
return true;
}
DEF_GPUTEST(GLPrograms, reporter, factory) {
for (int type = 0; type < GrContextFactory::kLastGLContextType; ++type) {
GrContext* context = factory->get(static_cast<GrContextFactory::GLContextType>(type));
if (context) {
GrGLGpu* gpu = static_cast<GrGLGpu*>(context->getGpu());
/*
* For the time being, we only support the test with desktop GL or for android on
* ARM platforms
* TODO When we run ES 3.00 GLSL in more places, test again
*/
int maxStages;
if (kGL_GrGLStandard == gpu->glStandard() ||
kARM_GrGLVendor == gpu->ctxInfo().vendor()) {
maxStages = 6;
} else if (kTegra3_GrGLRenderer == gpu->ctxInfo().renderer() ||
kOther_GrGLRenderer == gpu->ctxInfo().renderer()) {
maxStages = 1;
} else {
return;
}
#if SK_ANGLE
// Some long shaders run out of temporary registers in the D3D compiler on ANGLE.
if (type == GrContextFactory::kANGLE_GLContextType) {
maxStages = 3;
}
#endif
GrTestTarget target;
context->getTestTarget(&target);
REPORTER_ASSERT(reporter, target.target()->programUnitTest(maxStages));
}
}
}
#endif