skia2/tests/GrMemoryPoolTest.cpp
mtklein 6f07665768 Simplify SkInstCnt
This code requires fewer macros to use it (just one), has less code in macro
definitions, and has simpler synchronization code (just atomic ints, no SkOnce,
no SkMutex, etc.)

A minor downside, we lose indentation and reverse-ordering in the final report:
  Leaked SkRefCntBase: 7
     Leaked SkFontMgr: 1
     Leaked SkWeakRefCnt: 1
         Leaked SkTypeface: 1
     Leaked SkFlattenable: 3
         Leaked SkXfermode: 3
     Leaked SkPathRef: 1
     Leaked SkPixelRef: 1
         Leaked SkMallocPixelRef: 1
becomes
  Leaked SkXfermode: 3
  Leaked SkMallocPixelRef: 1
  Leaked SkPixelRef: 1
  Leaked SkPathRef: 1
  Leaked SkFlattenable: 3
  Leaked SkTypeface: 1
  Leaked SkWeakRefCnt: 1
  Leaked SkFontMgr: 1
  Leaked SkRefCntBase: 7

This is motivated by wanting to land https://codereview.chromium.org/806473006/,
which makes sure all static use of SkOnce are in global scope.  The current
implementation of SkInstCnt uses them in function scope, which isn't safe.
BUG=skia:

No public API changes.
TBR=reed@google.com

Review URL: https://codereview.chromium.org/841263004
2015-01-13 08:22:44 -08:00

243 lines
6.3 KiB
C++

/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Test.h"
// This is a GPU-backend specific test
#if SK_SUPPORT_GPU
#include "GrMemoryPool.h"
#include "SkInstCnt.h"
#include "SkRandom.h"
#include "SkTDArray.h"
#include "SkTemplates.h"
// A is the top of an inheritance tree of classes that overload op new and
// and delete to use a GrMemoryPool. The objects have values of different types
// that can be set and checked.
class A {
public:
A() {};
virtual void setValues(int v) {
fChar = static_cast<char>(v);
}
virtual bool checkValues(int v) {
return fChar == static_cast<char>(v);
}
virtual ~A() {};
void* operator new(size_t size) {
if (!gPool.get()) {
return ::operator new(size);
} else {
return gPool->allocate(size);
}
}
void operator delete(void* p) {
if (!gPool.get()) {
::operator delete(p);
} else {
return gPool->release(p);
}
}
SK_DECLARE_INST_COUNT(A);
static A* Create(SkRandom* r);
static void SetAllocator(size_t preallocSize, size_t minAllocSize) {
#if SK_ENABLE_INST_COUNT
SkASSERT(0 == GetInstanceCount());
#endif
GrMemoryPool* pool = new GrMemoryPool(preallocSize, minAllocSize);
gPool.reset(pool);
}
static void ResetAllocator() {
#if SK_ENABLE_INST_COUNT
SkASSERT(0 == GetInstanceCount());
#endif
gPool.reset(NULL);
}
private:
static SkAutoTDelete<GrMemoryPool> gPool;
char fChar;
};
SkAutoTDelete<GrMemoryPool> A::gPool;
class B : public A {
public:
B() {};
virtual void setValues(int v) {
fDouble = static_cast<double>(v);
this->INHERITED::setValues(v);
}
virtual bool checkValues(int v) {
return fDouble == static_cast<double>(v) &&
this->INHERITED::checkValues(v);
}
virtual ~B() {};
private:
double fDouble;
typedef A INHERITED;
};
class C : public A {
public:
C() {};
virtual void setValues(int v) {
fInt64 = static_cast<int64_t>(v);
this->INHERITED::setValues(v);
}
virtual bool checkValues(int v) {
return fInt64 == static_cast<int64_t>(v) &&
this->INHERITED::checkValues(v);
}
virtual ~C() {};
private:
int64_t fInt64;
typedef A INHERITED;
};
// D derives from C and owns a dynamically created B
class D : public C {
public:
D() {
fB = new B();
}
virtual void setValues(int v) {
fVoidStar = reinterpret_cast<void*>(v);
this->INHERITED::setValues(v);
fB->setValues(v);
}
virtual bool checkValues(int v) {
return fVoidStar == reinterpret_cast<void*>(v) &&
fB->checkValues(v) &&
this->INHERITED::checkValues(v);
}
virtual ~D() {
delete fB;
}
private:
void* fVoidStar;
B* fB;
typedef C INHERITED;
};
class E : public A {
public:
E() {}
virtual void setValues(int v) {
for (size_t i = 0; i < SK_ARRAY_COUNT(fIntArray); ++i) {
fIntArray[i] = v;
}
this->INHERITED::setValues(v);
}
virtual bool checkValues(int v) {
bool ok = true;
for (size_t i = 0; ok && i < SK_ARRAY_COUNT(fIntArray); ++i) {
if (fIntArray[i] != v) {
ok = false;
}
}
return ok && this->INHERITED::checkValues(v);
}
virtual ~E() {}
private:
int fIntArray[20];
typedef A INHERITED;
};
A* A::Create(SkRandom* r) {
switch (r->nextRangeU(0, 4)) {
case 0:
return new A;
case 1:
return new B;
case 2:
return new C;
case 3:
return new D;
case 4:
return new E;
default:
// suppress warning
return NULL;
}
}
struct Rec {
A* fInstance;
int fValue;
};
DEF_TEST(GrMemoryPool, reporter) {
// prealloc and min alloc sizes for the pool
static const size_t gSizes[][2] = {
{0, 0},
{10 * sizeof(A), 20 * sizeof(A)},
{100 * sizeof(A), 100 * sizeof(A)},
{500 * sizeof(A), 500 * sizeof(A)},
{10000 * sizeof(A), 0},
{1, 100 * sizeof(A)},
};
// different percentages of creation vs deletion
static const float gCreateFraction[] = {1.f, .95f, 0.75f, .5f};
// number of create/destroys per test
static const int kNumIters = 20000;
// check that all the values stored in A objects are correct after this
// number of iterations
static const int kCheckPeriod = 500;
SkRandom r;
for (size_t s = 0; s < SK_ARRAY_COUNT(gSizes); ++s) {
A::SetAllocator(gSizes[s][0], gSizes[s][1]);
for (size_t c = 0; c < SK_ARRAY_COUNT(gCreateFraction); ++c) {
SkTDArray<Rec> instanceRecs;
for (int i = 0; i < kNumIters; ++i) {
float createOrDestroy = r.nextUScalar1();
if (createOrDestroy < gCreateFraction[c] ||
0 == instanceRecs.count()) {
Rec* rec = instanceRecs.append();
rec->fInstance = A::Create(&r);
rec->fValue = static_cast<int>(r.nextU());
rec->fInstance->setValues(rec->fValue);
} else {
int d = r.nextRangeU(0, instanceRecs.count() - 1);
Rec& rec = instanceRecs[d];
REPORTER_ASSERT(reporter, rec.fInstance->checkValues(rec.fValue));
delete rec.fInstance;
instanceRecs.removeShuffle(d);
}
if (0 == i % kCheckPeriod) {
for (int r = 0; r < instanceRecs.count(); ++r) {
Rec& rec = instanceRecs[r];
REPORTER_ASSERT(reporter, rec.fInstance->checkValues(rec.fValue));
}
}
}
for (int i = 0; i < instanceRecs.count(); ++i) {
Rec& rec = instanceRecs[i];
REPORTER_ASSERT(reporter, rec.fInstance->checkValues(rec.fValue));
delete rec.fInstance;
}
#if SK_ENABLE_INST_COUNT
REPORTER_ASSERT(reporter, !A::GetInstanceCount());
#endif
}
}
}
#endif